DOCUMENTAZIONE TECNICA

ASCENSORE IDRAULICO N° 07002

di costruzione

S.A.S. s.r.l.

La presente documentazione comprende:

	documento	codice	revisione
V	Disegno Planimetria e Elevazione	PL/EL- 07002	0
7	Relazione Tecnica di calcolo	RTA-07002	0
	Relazione Tecnica Castello		
	Schemi		
	Schema impianto elettrico		
	Schema impianto idraulico		
	Certificati		
	dispositivi di blocco		
	porte di piano se REI		
	paracadute		
	limitatore di velocità		
	ammortizzatori idraulici		
	Altri documenti relativi ai pezzi		
	istruzioni paracadute		
	calcolo molla paracadute		
	istruzioni valvola di blocco		
	Dichiarazioni ed altro		
1	montaggio e regolazione pezzi		
	dichiarazione stabilità		
	dichiarazione Legge 13		
	dichiarazione 46/90		

Via Aquileia, Torino

Regole tecniche di riferimento:

D.P.R. 30 aprile 1999, n° 162

I disegni EL-07002 e il disegno PL-07002 comprendono i:
"dati generali" ed i "dati tecnici e disegni" previsti nella Appendice C
delle Norme UNI EN 81-2 che non compaiono nella relazione di calcolo RT-07002

DICHIARAZIONI

- La corsa sopra il pianterreno non è > 20 m e l' altezza di gronda non è > di 24 m
- L'accesso al locale macchinario ed al locale delle pulegge di rinvio è conforme al punto 6.2 delle UNI EN 81-1 armon.
- Non sono previsti casi speciali , ai sensi del punto 1.2 delle UNI EN 81-1 armonizzate

ORDINE INGECATERI ROMA
LEGISTATE LA STATE

ESTATUTE E BENIADE

ANAMORE DE STATE

ANA

RTA - 07002

Impianto nº: 07002

INDICE

- 1 CALCOLO DI VERIFICA A TENSIONE DELLE FUNI PORTANTI
- 2 VERIFICA DELLE GUIDE DELLA CABINA NORMALMENTE SOSPESA
- 3 VERIFICA DEGLI AMMORTIZZATORI AD ACCUMULO DI ENERGIA
- 4 CALCOLO DEL GRUPPO CILINDRO PISTONE E DELLE TUBAZIONI
- 5 CARATTERISTICHE DEL FLUIDO IMPIEGATO
- 6 CENTRALINA
- 7 STRUTTURE DI SOSTEGNO DEL CILINDRO

BERNABE' numero B-0175 - settore b

S.A.S. s.r.l. COSTRUZIONE ST1213 **PROGETTO** Città di Torino

PROPRIETARIO SITO IMPIANTO

Via Aquileia, Torino

DATI GENERALI

TIPO IMPIANTO	Ascensore			sollevamento: taglia later.			
CATEGORIA UTENTI	utenti autorizzat	li ed esperti:		NO			
PORTATA	680	Kg	Q				
CAPIENZA	9	-					
FERMATE	5						
SERVIZI	5						
CORSA	13,2	m	Lc				
VELOCITA' NOMINALE	0,6	m/s	\mathbf{v}_{s}				
VELOCITA' LIVELLAMENTO	0,15	m/s	v_i				
SUPERFICIE UTILE CABINA	1,643	m²					
PESO GRUPPO CABINA	760	Kg	P_3	cabina, arcata, operatori, accessori			

0	03/05/2007	emesso per approvazione	EB	FC	
rev	data	emissione	redatto	verificato	approvato

CALCOLO DI VERIFICA A TENSIONE DELLE FUNH PORTANTIO_1021-RTA

CARATTERISTICHE DELLE FUI	NI					
TIPO E FORMAZIONE	114 FILI - SEALE 6x19+FC (UNI 7294-74)					
NUMERO FUNI	4		n			
NUMERO TREFOLI	6	and the				
DIAMETRO NOMINALE	10	mm	d			
RESISTENZA FILI INTERNI	1570	N/mm²	R_{i}			
RESISTENZA FILI ESTERNI	1570	N/mm²	R.			
SEZIONE FUNE	39,95	mm²	Α			
CARICO ROTTURA MINIMO	49500	N	R	per ciascu	na fune	
DIAMETRO AVVOLGIMENTO	400	mm	D	valore mini	imo	
ANALISI DEI CARICHI						
PORTATA	6670,80	N	Q			
PESO GRUPPO CABINA	7451,68	N	P ₃	cabina, arc	ata, operatori, accessori	
PESO FUNI	332,13	N	P_f	,	, , , , , , , , , , , , , , , , , , , ,	
CALCOLI						
CARICO TOTALE SULLE FUNI	14454,60	N	Т	Q+P3+Pf		
CARICO SU OGNI FUNE	3613,65	N	T	T/n		
SOLLECITAZIONE	90,45	N/mm²	S	T'/A		
COEFFICIENTE DI SICUREZZA	13,70		GS_f	R/T'	>= 12	
RAPPORTO FRA I DIAMETRI	40,00		-	D/d	>= 40	
ATTACCHI DELLE FUNI TIPO	capicorda a cur	ieo				
RESISTENZA FUNE-ATTACCO	>= 80% di R (ca	rico di rottura d	iella fune)			

VERIFICA DELLE GUIDE DELLA CABINA NORMALMENTE SOSPESA

(si riporta solo la condizione di carico più sfavorevole)

CARATTERISTICHE DELLE GUIDE				
PROFILO	T 90/A (ISO 7465)			
QUALITA'	trafilate			
DIM. SUP. SCORRIMENTO	30	mm		
NUMERO	2		n	
CARICO DI ROTTURA	370	N/mm²	Rm	acciaio tipo Fe 360
MOMENTO D'INERZIA ASSE X	1012000	mm'	l _x	,
MOMENTO D'INERZIA ASSE Y	515000	mm'	ł _y	
SEZIONE ORIZZONTALE	1700	mm²	Α	
RAGGIO D'INERZIA MINIMO	17,41	mm	i	
MODULO DI RESISTENZA ASSE X	20800	mm³	\mathbf{W}_{x}	
MODULO DI RESISTENZA ASSE Y	11400	mm³	W_y	
COEFFICIENTE DI SNELLEZZA	86,18		1	Vi
COEFF. MAGGIORAZIONE	1,64		W	del carico di punta
DATI				
DIM. CABINA SECONDO ASSE X	1160	mm	DX	
DIM. CABINA SECONDO ASSE Y	1460	mm	DY	
CENTRO CABINA ASSE X	760	mm	XC	
CENTRO CABINA ASSE Y	100	mm	YC	
BARICENTRO CABINA ASSE X	790	mm	X P	
BARICENTRO CABINA ASSE Y	200	mm	Y P	
DIST. MAX ANCORAGGI	1500	mm	ě	
DIST. TRA I PATTINI DI CABINA	2630	mm	h	
ACCELERAZIONE DI GRAVITA'	9,81	m/s²	gn	
COEFFICIENTE DINAMICO 1	3	***	k 1	paracadute a presa ist. a rulli
COEFFICIENTE DINAMICO 3	0		k 3	
INTERVENTO DEL PARACADUTE				
Caso 1 relativo all'asse X				
BARICENTRO PORTATA ASSE X	905	mm	XQ	=XC+DX/8
BARICENTRO PORTATA ASSE Y	100	mm	YQ	=YC
 FLESSIONE RELATIVA ALL'ASSE Y	,			

2310_1021-RTA

FORZA SULLA GUIDA	6800,70	N	FX	k1*gn(Q*XQ+P*XP)/nh
MOMENTO FLETTENTE	1912697,52	N mm	MY	3FX*I/16
SOLLECITAZIONE	167,78	N/mm²	sY	MYMY
FLESSIONE RELATIVA ALL'ASSE X			_	
FORZA SULLA GUIDA	615,23	N	FY	k1*gn(Q*YQ+P*YP)/nh/2
MOMENTO FLETTENTE	173034,1	N mm	MX	3FY*I/16
SOLLECITAZIONE	8,32	N/mm²	sX	MX/WX
CARICO DI PUNTA				145 (O. D))
FORZA SULLA GUIDA	21183,714	N	Fk	k1*gn(Q+P)/n
SOLLECITAZIONE	20,44	N/mm²	sk	Fk*w/A
VERIFICA				
VALORI AMMISSIBILI				
SOLLECITAZIONI	205	N/mm²	s amm d amm	
FRECCE	5	mm	u aiiiii	
SOLLECITAZIONE COMPOSTA	470.40	h1/mm-2	sm	sx+sy < samm
FLESSIONE	176,10	N/mm² N/mm²	S	sm+Fk/A < samm
FLESS. E COMPRESS.	188,56	N/mm²	SC	sk+0.9*sm < samm
FLESS. E CAR. DI PUNTA	178,93 155,32	N/mm²	Sf	1,85*Fx/c² < samm
TORSIONE	100,32	INTITUTE	91	1,00 1 700 - 0011111
FRECCE	3 00	mm	dΧ	0,7*Fx*I³/(48*E*Iy) <damm< td=""></damm<>
DIREZIONE X	3,09 0,14	mm mm	dY	0,7*Fy*I³/(48*E*lx) <damm< td=""></damm<>
DIREZIONE Y	V, 14	111111		-77 (-2 - 24
Caso 2 relativo all'asse Y				
BARICENTRO PORTATA ASSE X	760	mm	XQ	=XC
BARICENTRO PORTATA ASSE Y	283	mm	YQ	=YC+DY/8
FLESSIONE RELATIVA ALL'ASSE Y				
FORZA SULLA GUIDA	6249,03	N	FX	k1*gn(Q*XQ+P*XP)/nh
MOMENTO FLETTENTE	1757539,60	N mm	MY	3FX*V16
SOLLECITAZIONE	154,17	N/mm²	sY	MY/WY
FLESSIONE RELATIVA ALL'ASSE X				
FORZA SULLA GUIDA	962,41	N.	FY	k1*gn(Q*YQ+P*YP)/nh/2
MOMENTO FLETTENTE	270676,6	N mm	MX	3FY*I/16
SOLLECITAZIONE	13,01	N/mm²	sX	MX/WX
CARICO DI PUNTA				
FORZA SULLA GUIDA	21183,714	N	Fk	k1*gn(Q+P)/n
SOLLECITAZIONE	20,44	N/mm²	sk	Fk*w/A
VERIFICA				
VALORI AMMISSIBILI		_		
SOLLECITAZIONI	205	N/mm²	samm	
FRECCE	5	mm	damm	
SOLLECITAZIONE COMPOSTA				
FLESSIONE	167,18	N/mm²	sm	sx+sy < samm
FLESS. E COMPRESS.	179,64	N/mm²	S	sm+Fk/A < samm
FLESS. E CAR. DI PUNTA	170,90	N/mm²	SC	sk+0,9*sm < samm 1,85*Fx/c² < samm
TORSIONE	142,72	N/mm ²	sf	1,05 FXC > Samu
FRECCE	4 45		dX	0,7*Fx*I³/(48*E*Iy) <damm< td=""></damm<>
DIREZIONE X	1,45	mm	d/Y	0,7*Fy*F/(48*E*Ix) <damm< td=""></damm<>
DIREZIONE Y	0,44	mm	G :	0,7 1 y 17(40 L 1X) *46mm
USO NORMALE, IN MARCIA				
CENTRO SOSPENSIONE ASSEX	0	mm	XS	
CENTRO SOSPENSIONE ASSE Y	75	mm	Y S	
Caso 1 relativo all'asse X				
FLESSIONE RELATIVA ALL'ASSE Y				
FORZA SULLA GUIDA	2720,28	N	FX	k2*gn(Q(XQ-XS)+P(XP-XS))/nh
MOMENTO FLETTENTE	765079,01	N mm	MY	3FX*V16
SOLLECITAZIONE	67,11	N/mm²	sY	MYMY
FLESSIONE RELATIVA ALL'ASSE X	•			
FORZA SULLA GUIDA	125,27	N	FY	k2*gn(Q(YQ-YS)+P(YP-YS))/nh/2
MOMENTO FLETTENTE	35233,1	N mm	MX	3FY*I/16
SOLLECITAZIONE	1,69	N/mm²	sX	MXMX
The Top Syndrom Set 1 1 Value 1 Set 2 Then	. ,			

-RTA

VERIFICA				Relazione Tecnica RT-2
VALORI AMMISSIBILI				
SOLLECITAZIONI	165	N/mm²	samm	
FRECCE	5	mm	d amm	
SOLLECITAZIONE DI FLESSIONE	68,81	N/mm²	Sm	sx+sy < samm
SOLLECITAZIONE DI TORSIONE	62,13	N/mm²	sf	1,85*Fx/c² < samm
FRECCE	·			,
DIREZIONE X	1,24	mm	dΧ	0,7*Fx*l³/(48*E*ly) <damm< td=""></damm<>
DIREZIONE Y	0,03	mm	ďΥ	0,7*Fy*I³/(48*E*Ix) <damm< td=""></damm<>
Caso 2 relativo all'asse Y				
FLESSIONE RELATIVA ALL'ASSE Y				
FORZA SULLA GUIDA	2499,61	N	FX	k2*gn(Q(XQ-XS)+P(XP-XS))/nh
MOMENTO FLETTENTE	703015,84	N mm	MY	3FX*V16
SOLLECITAZIONE	61,67	N/mm²	sY	MY/WY
FLESSIONE RELATIVA ALL'ASSE X		William	J	14(1)441
FORZA SULLA GUIDA	264,14	N	FY	k2*gn(Q(YQ-YS)+P(YP-YS))/nh/2
MOMENTO FLETTENTE	74290,1	N mm	MX	3FY*1/16
SOLLECITAZIONE	3,57	N/mm²	sX	MX/WX
VERIFICA	5,57	19/11111	3/	1917 V V V
VALORI AMMISSIBILI				
SOLLECITAZIONI	165	N/mm²	samm	
FRECCE	5	mm	damm	
7712002	3	111111	Mairini	
SOLLECITAZIONE DI FLESSIONE	65,24	N/mm²	Sm	sx+sy < samm
SOLLECITAZIONE DI TORSIONE	57.09	N/mm²	sf	1,85*Fx/c² < samm
FRECCE	01,00		•	1,50 / NO - 5UNM
DIREZIONE X	1,14	mm	dΧ	0,7*Fx*I³/(48*E*Iy) <damm< td=""></damm<>
DIREZIONE Y	0,06	mm	dΥ	0,7*Fy*I³/(48*E*Ix) <damm< td=""></damm<>
	-,	***************************************		c, if if to a my damin
USO NORMALE, CARICO				
FORZA SULLA SOGLIA	2668	N	F S	Q<2500kg
POSIZIONE SOGLIA ASSE X	860	mm	X'	caso più sfavorevole
POSIZIONE SOGLIA ASSE Y	750	mm	Υ'	и и
FLESSIONE RELATIVA ALL'ASSE Y				
FORZA SULLA GUIDA	1555	N	FX	an (Ea/V) VOLLEWA VOLVE
MOMENTO FLETTENTE	437466	N N mama	MY	gn(Fs(X'-XS)+P(XP-XS))/nh
SOLLECITAZIONE	38,37	N mm N/mm²	sY	3FX*I/16 MY/WY
FLESSIONE RELATIVA ALL'ASSE X	30,37	TANTIHEE.	31	MILLARAL
FORZA SULLA GUIDA	180	N	FY	an/En/V VC) - DA/D VC)V-LIO
MOMENTO FLETTENTE	50691			gn(Fs(Y'-YS)+P(YP-YS))/nh/2
SOLLECITAZIONE	2,44	N mm N/mm²	MX sX	3FY*I/16 MX/WX
VERIFICA	2,44	MARKE	3∧	MYAAY
VALORI AMMISSIBILI				
SOLLECITAZIONI	165	N/mm²	Samm	
FRECCE	5		s amm d amm	
/ NEOOE	3	mm	uann	
SOLLECITAZIONE DI FLESSIONE	40,81	N/mm²	sm	sx+sy < samm
SOLLECITAZIONE DI TORSIONE	35,53	N/mm²	sf	1,85*Fx/c² < samm
FRECCE	•			
DIREZIONE X	0,71	mm	d Χ	0,7*Fx*l3/(48*E*ly) <damm< td=""></damm<>
DIREZIONE Y	0,04	mm	ďΥ	0,7*Fy*l3/(48*E*lx) <damm< td=""></damm<>

^{*} la resistenza delle guide, dei loro attacchi, e dei dispositivi che collegano gli elementi è sufficiente per permettere loro di sopportare gli sforzi dovuti all'intervento del paracadute e le flessioni dovute a carichi eccentrici; le frecce che si verificano in quest'ultimo caso hanno un valore limitato in modo che la marcia dell'ascensore non ne è influenzata

CALCOLO DELLE SPINTE SULLE GUIDE PER IL DIMENSIONAMENTO DEGLI ANCORAGGI PROFILO ANCORAGGIO L70x7 UNI 5783 SPINTA NEL PIANO DELLE GUIDE 1283,21 Ν Sy (Q*Yq+P3*Yp)/lp SPINTA NEL PIANO ORT. 4533,80 N Sx (Q*Xq+P3*Xp)/lp

LUNGHEZZA ANCORAGGI 190,00 mm 1 FRECCIA AMMISSIBILE 0,1267 famm =1/1500 $\,mm$ 2310_1021-RTARECCIA TOTALE 0,1167 mm f < fmax

DIMENSIONI E CALCOLO DI VERIFICA DEGLI AMMORTIZZATORI AD ACCUMULO DI ENERGIA

CARATTERISTICHE DEGLI AMMO							
TIPO	ad elica cilindrica - modello Primafase 02/C						
NUMERO DI AMMORTIZZATORI	2		N				
LUNGHEZZA	235	mm	L				
DIAMETRO MEDIO ELICA	84	mm	D				
DIAMETRO DEL FILO	18	mm	d				
NUMERO DI SPIRE ATTIVE	7,0		n				
MODULO DI ELASTICITA'	80000	N/mm²	G				
VELOCITA' MAX DISCESA	0,60	m/s	٧				
CALCOLI							
CORSA DELL' AMMORT.	78,40	mm	f	f>=f e f>= 65 mm			
• • • • • • • • • • • • • • • • • • • •		mm	f	135v²			
VALORE DI VERIFICA	48,60		•				
CARICO DI COMPRESSIONE	19836,73	N	F	fGd ⁴ /(8nD ³)			
CARICO STATICO	7061,238	N	C	per ciascuna molla			

2,81

CALCOLO DEL GRUPPO CILINDRO - PISTONE E DELLE TUBAZIONI

F/C

valore compreso tra 2,5 e 4

DATI GENERALI				
PORTATA	667,08	daN	Q	
PESO GR. CABINA E FUNI	778,38	daN	Pc	P3+Pf
PESO PISTONE E TAGLIA	183,80	daN	P p	Pr+Prh
CARICO COMPLESSIVO	3074,72	daN	T	(Q+Pc)*Cm+Pp
CORSA TOTALE PISTONE	6850	mm	Lp	(Lc+Eic+Esc)/Cm
LUNGHEZZA AGGIUNTIVA	270	mm	l ₁	dist. testa pistasse puleggia
LUNGHEZZA DI CALCOLO	7120	mm	L _o	Lp+l1
MODULO DI ELASTICITA'	210000	N/mm²	E	
DENSITA' DELL' OLIO	0,87	daN/dm³	g	
CARATTERISTICHE DEL PISTONE				
FABBRICAZIONE	HYDRONIC			
NUMERO PEZZI	1		Np	
RESISTENZA A TRAZIONE	510	N/mm²	Rm	acciaio Fe 510
LIMITE CONV. ELASTICITA'	355	N/mm²	Rs	acciaio Fe 510
LUNGHEZZA	6850	mm	L	
DIAMETRO ESTERNO	100	mm	d	
DIAMETRO INTERNO	86	mm	di	
SPESSORE	7	mm	es	
SEZIONE TOTALE	7854,00	mm²	Α	p*d²/4
SEZIONE RESISTENTE	2045,00	mm²	F	p/4(d²-di²)
MOMENTO DI INERZIA	2223600	mm*	J	p/64(d°-di°)
RAGGIO DI INERZIA	33,00	mm	i	
GRADO DI SNELLEZZA	215,76		ı	Lo/i
ALTEZZA PIEZOMETRICA	9,0	m	Н	
MASSA DEL PISTONE	139,65	daN	Pr	
PRESSIONE STATICA MAX	39,93	bar	ps	100*T/A+gH/10
PRESSIONE A VUOTO	22,94	bar	ps'	
PRESSIONE APERTURA V.S.*	55,90	bar	pa	=1,4 ps * valvola sovrappressione
		3 24 1		

^{*} Il sistema di giunzione tra gli elementi del pistone,quando eseguito in due o più pezzi, ne assicura una resistenza non inferiore a quella di un pistone delle stesse dimensioni, realizzato in unico pezzo

Precauzioni previste contro:

RAPPORTO F/Q

- 1) la caduta libera per rottura od allentamento di una o più funi =>
- 2) la discesa a velocità eccessiva
- 3) l'abbassamento lento =>

paracadute a presa ist. a rulli valvola di blocco

sistema elettrico antideriva

^{*} L'arresto del pistone al limite di corsa superiore avviene con mezzi ad effetto ammortizzato

^{*} Con cabina appoggiata in basso su ammortizzatori completamente compressi, il pistone non tocca il fondo del cilindro

VERIFICA DELLA PARETE DEL		RESSIONE RAD		
COEFFICIENTE DI SICUREZZA	5,03		gs	20*Rs(es-0,5)/(2,3*ps*d)>=1,7
VERIFICA DEL PISTONE A CARI	CO DI BUNTA			
CARICO DI PUNTA EFFETTIVO	41091	N.I	F5	4 400 0450 40 000 0 000
CARICO MASSIMO AMMISSIB.		N		1,4*9,81[Cm(Q+P3)+0,64Pr+Prh)]
GRADO DI STABILITA'	45455	Ν	Famm	per grado di snellezza >= 100
GRADO DI STABILITA	1,11		Ge	F5 <famm< td=""></famm<>
CARATTERISTICHE DEL CILIND	PO			
TIPO		lice, non interra	4	
LIMITE CONV. ELASTICITA'	355		Rc Rc	
DIAMETRO ESTERNO		N/mm²		acciaio Fe 510
DIAMETRO ESTERNO DIAMETRO INTERNO	133	mm	D	
SPESSORE	123	mm	Di	
SPESSORE	5	mm	e _{cyl}	
VERIFICA DELLA PARETE DEL O	CILINDRO ALLA E	PRESSIONE RAI	DIA! E	
COEFFICIENTE DI SICUREZZA	2,33	TESSIONE TO	gc	20*Pa(and 4)//2 2*==*F)\==4 7
o all the broke and the broke	2,30		90	20*Rc(ecyl-1)/(2,3*ps*D)>=1,7
VERIFICA DEL FONDO DEL CILII	NDRO			
TIPO	fondo piatto co	n gole di scario	0	
DIAMETRO ESTERNO FONDO	133	mm	$D_{\rm f}$	
SPESSORE FONDO	30	mm	e1	=h1
DIFFERENZA RAGGI	6,75	mm	s1	=ecyl
RAGGIO DI SCARICO	5	mm	r1	>= 5mm e >= 0,2*s1
SPESSORE FONDO SCARICO	8	mm	u1	<=1.5*s1
DISTANZA FONDO GIUNZIONE	36	mm	h1	>= u1+r1
COEFFICIENTE SICUREZZA	13,43		Ge1	10*Rc(e1-e0)²/(0,16*2,3*ps*Di)>=1,7
COEFFICIENTE SICUREZZA	3,68		Gu₁	10Rc(u1-e0)/(1,3*2,3*ps(Di/2-r1))>=1,7
	0,00		Out	101(c(u1-e0)/(1,3 2,3 ps(Di/2-11))>=1,7
TUBAZIONI TRA CENTRALINA E	CILINDRO			
RIGIDA	Serie 35 L			
LIMITE CONV. ELASTICITA'	23,5	daN/mm²	Rt	Fe 35.2 UNI 663-68
DIAMETRO ESTERNO	35	mm	Dt	
DIAMETRO INTERNO	30	mm	dt	
SPESSORE	2,5	mm	St	
COEFFICIENTE SICUREZZA	2,92	mm	Gt	200Rt(St-0,5)/(2,3*ps*Dt)>=1,7
	•			234 M(24 3,0 p. 25,4 1,1
FLESSIBILE	SAE 100 - R2 1"	' (DN25)		
DIAMETRO INTERNO	25,40	mm	d	
PRESSIONE DI SCOPPIO	352,00	bar	p1	p1/ps = 8.8 > 8
PRESSIONE DI PROVA	281,00	bar	p2	p2/ps=7.>5
			•	
La valunta a tutta	lo conneccioni co		-4	

Le valvole e tutte le connessioni sono calcolate e costruite in modo che sotto gli sforzi derivanti da una pressione pari a 2,3 volte la pressione statica massima sia assicurato un coefficiente di sicurezza di almeno 1.7 rispetto al limite convenzionale di elasticità dei materiali impiegati

CARATTERISTICHE DEL FLUIDO IMPIEGATO

TIPO

MOVO M 46

DENSITA'

0,865 daN/dm³ a 15°C

VISCOSITA' CINEMATICA

45 mm²/s a 40°C

INDICE DI VISCOSITA'

154

TEMPERATURA MAXIMPIEGO

75°C

ADDITIVI AGENTI CONTRO

usura, ossidazione, schiuma, emulsione, corrosione

CENTRALINA

TIPO	HYDRONIC	MHY 125
PORTATA POMPA	145	l/min.
POTENZA MOTORE	11/15	kW/CV

STRUTTURE DI SOSTEGNO DEL CILINDROione Tecnica RT-2310_1021-RTA

PILASTRINO						
PROFILO TUBOLARE	quadrato 100x4					
MATERIALE	Fe 42					
CARICO DI ROTTURA UNITARIO	420	N/mm²	Krt			
SEZIONE RESISTENTE	1481	mm²	F			
RAGGIO DI INERZIA	38,79	mm	i			
LUNGHEZZA LIBERA	3174	mm	1			
ALTEZZA PILASTRINO	3180	mm				
GRADO DI SNELLEZZA	81,98		1			
PESO DEL PILASTRO	369,834	N	₽p			
PESO DEL CILINDRO E OLIO	1572,02	N	Pc			
CARICO FISSO	1941,85	N	Ptf	Pp+Pc		
CARICO DINAMICO DIRETTO	2717,18	N	Cdd	1,5(Prh+Pr)		
CARICO DINAMICO	43363,81	N	Cd	1,5*Cm*T		
CARICO TOT. SUL PILASTRO	48022,84	N	Ptp	1,5*T*Cm+Pr	o+Pc	
CARICO CRITICO DI EULERO	456729,9	N	Ke	p2*E*F/I2		
GRADO DI STABILITA' EULERO	9,5		GSe	Ke/Ptp	>=6	
SOLLECITAZIONE EFFETTIVA	32,43	N/mm ²	Kn	Ptp/F		
GRADO DI SICUREZZA	12,95	47144	GSr	Krt/Kn	>=6	
TO ME DIATTACCO DEL CADO	ICCA DELLE ELIMI					
TRAVE DI ATTACCO DEL CAPOF	Primafase		attacc	o: ad un lato		
PROFILO/MODELLO	Fillidiase		audoo	o, da all late		
REAZIONI SUL FONDO FOSSA						
PESO DI UNA GUIDA	238	kg	Pg			
CARICO SU DI UNA GUIDA	2397,47	kg	F3			
CARICO SUL CAPOFISSO	4895,29	kg	F3			

	Note:
1	Le dimensioni indicate sono riferite al FINITO e NETTE TRA I PIOMBI. E' vietata per legge la messa in opera nel vano di corsa e nel locale macchinario,
	di canne fumarie, condutture e/o tubazioni estranee all'impianto ascensore.
	La soletta del locale macchina deve essere calcolata tenuto conto dei carichi indicati più un carico uniformemente ripartito di 600 Kg/mq. Le strutture di
	sostegno nella relazione di calcolo e verifica a firma di un Ingegnere iscritto all'albo, devono evidenziare un coeff. di sicurezza non inferiore a 6 sia per il
	ferro che per il calcestruzzo. La freccia di inflessione delle travi metalliche eventualmente usate deve risultare inferiore a 1/1500 della luce libera.

Il locale macchina deve essere munito di una porta metallica apribile verso l'esterno con chiusura a chiave, e di una finestra in diretta comunicazione con l'esterno (vedi nota 4). Non deve risultare umido e la sua temperatura deve essere compresa tra +5 e +40 gradi centigradi, l'accesso deve essere diretto agevole e sicuro, ed adequatamente illuminato, con interruttore sul lato di battuta della porta.

Norme antincendio - L'impianto deve sottostare alle norme del locale comando dei VVFF, nonché alle norme del DM 246 in particolare se l'impianto prevede corsa > 20 mt ed altezza di gronda > 24 mt. In generale il vano di corsa dovrà essere munito alla sommità di un foro di aerazione di superficie non inferiore a 0.20 mg e pari almeno al 3% della superficie orizzontale. Nel locale macchina si dovrà prevedere un foro di aerazione di superficie non inferiore 0.05 mq e pari al 3% della sup. del locale.

Sotto la fossa non devono trovarsi locali transitabili e/o accessibili a persone. All'interno della fossa andranno previsti idonei mezzi per la discesa/salita come nicchie poggiapiedi.

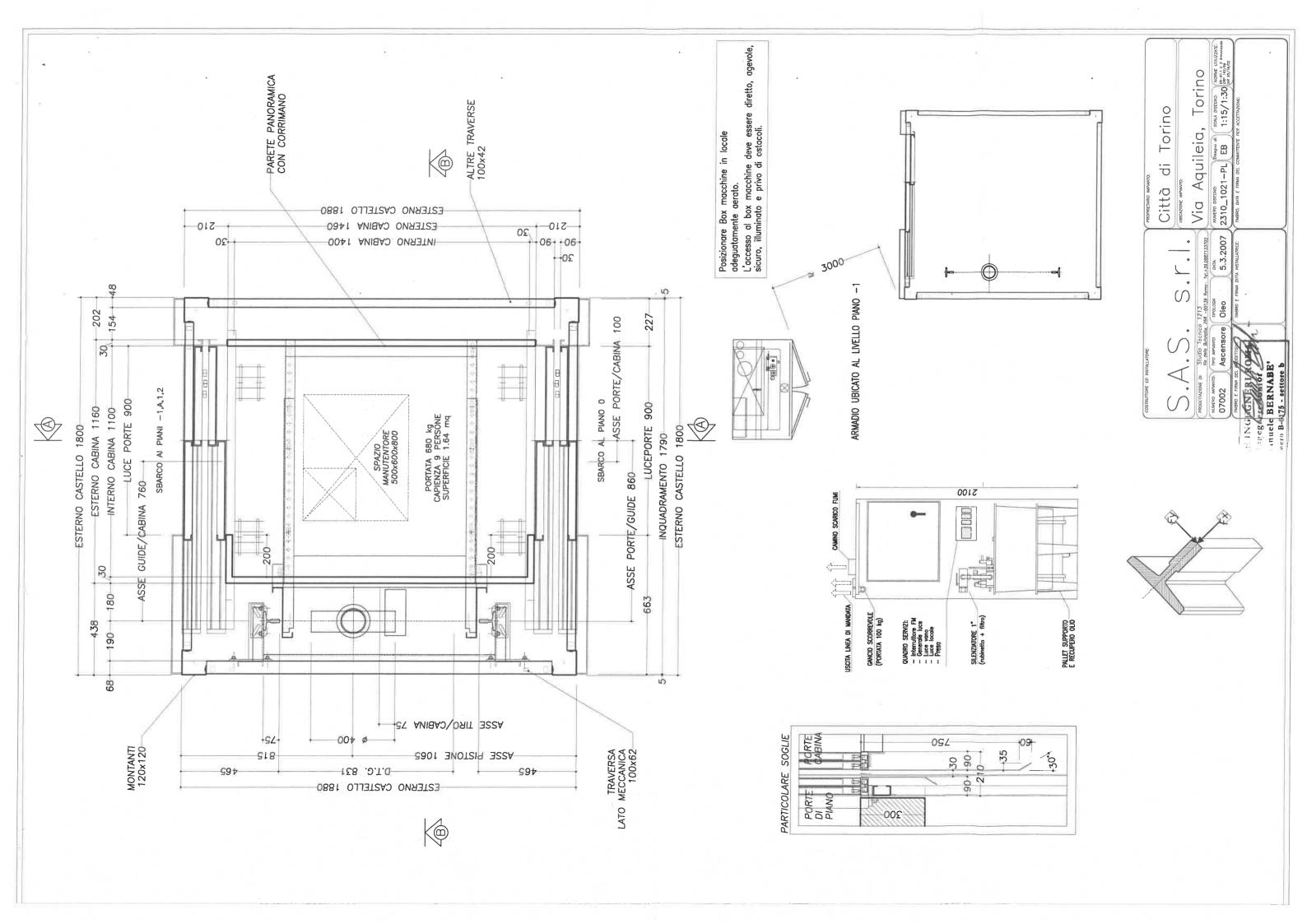
Il vano di corsa dovrà essere adeguatamente illuminato. Si dovrà prevedere una lampada sulla sommità del vano a max 0.50 mt dall'intradosso, ed una 6 in basso a max 0.50 mt dal fondo fossa, provvista di una presa e deviatore per l'accensione. Le altre lampada ad intervalli di max 6 mt.

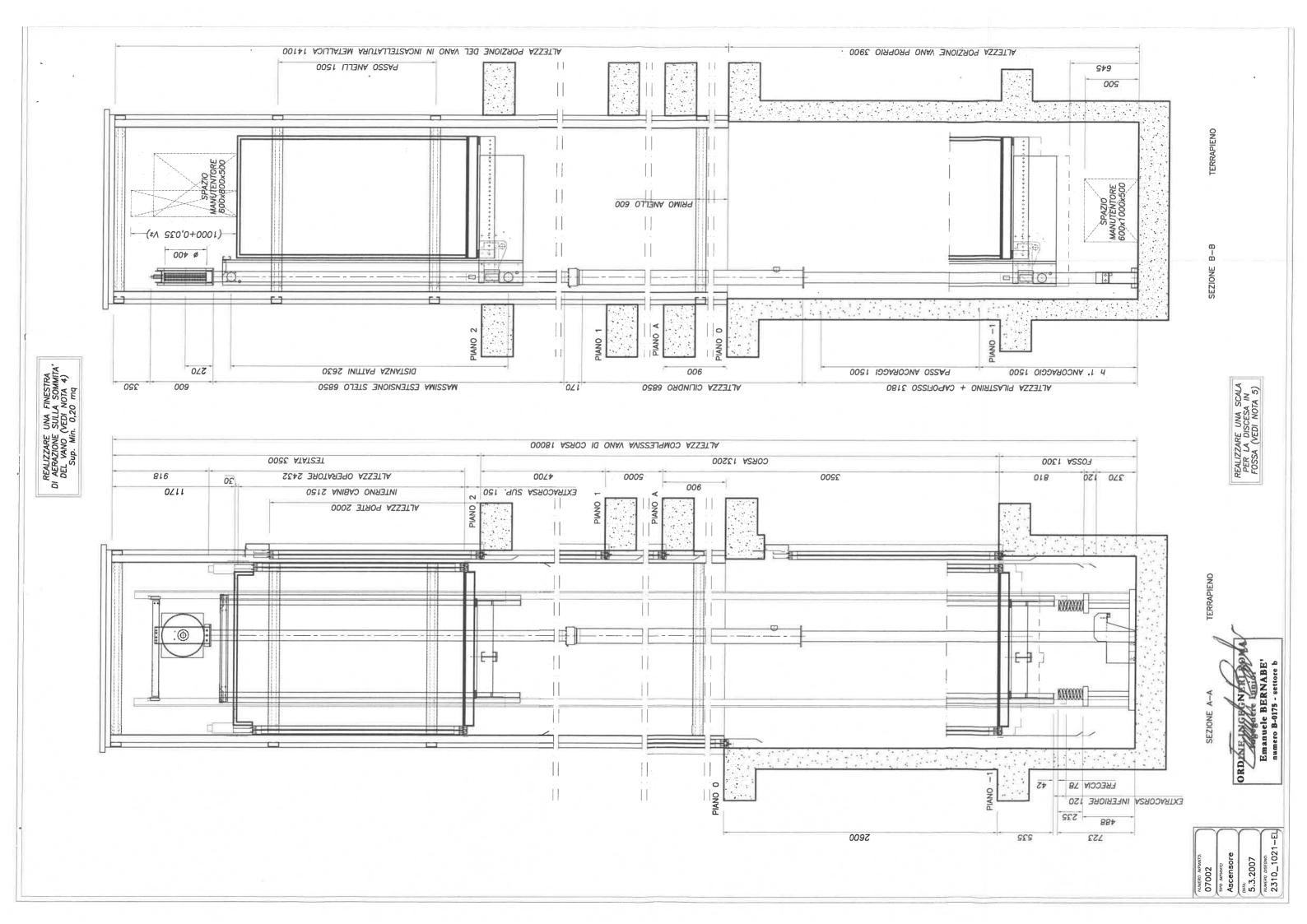
Sono da prevedere linee alimentazione luce e F.M. dal contatore al locale macchina calcolate in base alla lunghezza, tensione e assorbimenti indicati, garantendo una caduta di tensione non inf. al 3%. La sez. min. è quella CEI. Al collaudo sarà richiesto certificato di conformità 46/90.

Nel locale macchina dovrà essere installato un quadro con: interruttore quadripolare magnetotermico per F.M. e bipolare per la luce, una presa 16 Amp., un sezionatore luce loc, mac, e luce vano, un sezionatore per luce cabina e allarme. Al Piano Terreno, in prossimità dell'impianto facilmente visibile, un interruttore autom. di sicurezza per apertura F.M. in custodia sottovetro con chiusura a chiave, o pulsante di sgancio con linea e relativo contattore in locale macchina.

Impianto di terra. Deve essere previsto per ogni ascensore idoneo impianto terra collegato al generale con attacco distinto ed ispezionabile, fornito con un cavo nella fossa alle guide e nel locale macchina fino al quadro di manovra. La sezione minima di 5 mmq per F.M. e 2.5 mmq per la luce, ed uguale alla sezione dell'alimentazione.

Ponteggi. Nel vano ascensore, prima dell'inizio dell'installazione, deve essere allestito, in base alle nostre indicazioni di ingombro, un idoneo e sicuro 10 ponte di lavoro rispondente alle norme vigenti antinfortunistiche.


Salvo espresso patto contrario, sono a carico del committente le forniture in opera di eventuali travature metalliche di sostegno e di quelle eventualmente necessarie alla separazione di vani comuni.


Nel locale macchinario sulla centraline o argano e nel vano di corsa sul pistone sono da prevedere dei ganci di sostegno a carico del committente da 12 500 daN con relativo cartello di portata massima.

caratteristiche tecniche

Primafase 02/C 680 ammortizzatori cabina portata (kg) centralina potenza (Kw/HP) 9 11/15 persone 145/MHY 125 5 centralina portata (l/min) tipo fermate 39,92 / 22,94 press. Stati. max/vuoto (bar) servizi Hyd-100x7 / 6850 0,6 pistone (diam x spess. / c.se velocità (m/s) arcata (mod. -scartamento) Primafase Delta 3 (sc 950) accessi due opposti 13200 corsa (mm) 1300 estraz, stelo prima fossa (mm) 115 3500 messa in tiro testata (mm) 1800 / 1880 vano (mm - largh. X prof) carichi dinamici daN cabina (mm - largh. X prof) 1100 / 1400 A - Pistone 4895 2AT tipo porte 2397 B - Guide apertura porte piano (mm) 900 2935 4 x d. 10 mm - 6 tr. C - Ammortizzatori funi (n diam.) D - Montanti cast. puleggia D min (mm) 400 guide cabina T 90/A (ISO 7465) Sx 131 staffe quide cabina L70x7 UNI 5783 Sv 462

Installato		S.A.S. s.r.l.	Proprietario Impi	Città di Torino Ubicazione Impianto Via Aquileia, Torino			
Progettis	ata	ST1213	Ubicazione Impie				
umero	impianto 07002	lipo impianto Ascensore	azionamento oleodinamico	numero disegno PL/EL-07002	nome file 2310_1021		
0	03/05/2007	Planimetria vano co	rsa e locale macchinario	EB			
rev	data	emissione		redatto	verificato	approvato	
Phi	firma progetiva	nior	itta installatrice	timbro e firma dei	committente	And Comments	

PRIMAFASE S.r.I.

Nuove tecnologie per elevatori

STRUTTURA DI SOSTEGNO GUIDE E TAMPONAMENTI VANO ASCENSORE

RELAZIONE DI CALCOLO

COMMITTENTE:

Lift Point S.r.I.

IMPIANTO N.:

1021

DITTA COSTRUTTRICE STRUTTURA:

PRIMAFASE S.r.I.

N.RO COMMESSA PRIMAFASE:

8952

INDICE

- 1. INTRODUZIONE
- 2. PARAMETRI DI PROGETTO
 - 2.1 Normativa di riferimento
 - 2.2 Caratteristiche dei materiali
- 3. VERIFICHE STRUTTURALI
 - 3.1 Ipotesi di calcolo e schemi statici
 - 3.2 Analisi dei carichi
 - 3.3 Verifica delle traverse
 - 3.4 Verifica dei montanti
- 4. CONCLUSIONI
- 5. ALLEGATI

1. INTRODUZIONE

Oggetto della presente relazione di calcolo sono le strutture di sostegno per le guide, i tamponamenti e la copertura del vano ascensore dell'edificio sito in V. Aquileia nel Comune di Torino.

Caratteristiche generali

Dimensioni:

Larghezza:

1800 mm

Profondità:

1880 mm

Altezza:

14100 mm

Portata:

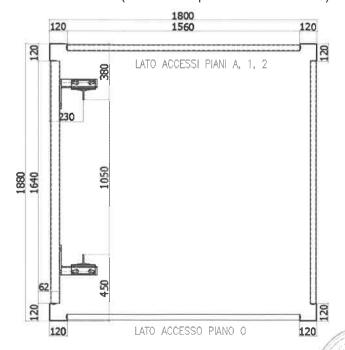
630 kg

Tipo impianto:

oleodinamico

N.ro fermate ai piani:

4


La struttura è costituita da traverse, a cui sono ancorate le guide dell'ascensore ed i tamponamenti, e da montanti verticali. Sia le traverse sia i montanti sono costituiti da profilati formati a freddo.

Il vano ascensore è situato all'esterno dell'edificio. Tre montanti della struttura, lato meccanica e lato accessi e sbarchi ai piani, sono ancorati all'edificio; la distanza massima tra i vincoli dei montanti all'edificio è pari a 5 m.

La struttura sorregge le azioni orizzontali trasmesse dalla cabina, il peso proprio, quello dei tamponamenti, i carichi dovuti agli agenti atmosferici ed i carichi dovuti alle azioni sismiche.

Si considerano le spinte verticali che si originano in caso di intervento dei blocchi paracadute.

Nello schema che segue sono evidenziate le dimensioni generali del vano con le posizioni relative di guide, traverse e montanti (lo schema riportato non è in scala).

2. PARAMETRI DI PROGETTO

L'analisi statica della struttura è stata eseguita nel rispetto della normativa italiana attualmente vigente in materia ed elencata nel seguito.

2.1 Normativa di riferimento

- [A] Legge 5/11/1971 n. 1086 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica";
- [B] D.M. 9/1/96 "Norme tecniche per l'esecuzione delle opere in cemento armato, normale e precompresso e per le strutture metalliche";
- [C] Circ. Min. LL.PP. 15/10/96 n. 252 "Istruzioni relative alle norme tecniche per l'esecuzione delle opere in cemento armato, normale e precompresso e per le strutture metalliche":
- [D] D.M. 16/1/1996 Norme tecniche relative ai "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi";
- [E] Circ. Min. LL.PP. 04/07/96 n. 156AA.GG./STC "Istruzioni per l'applicazione delle norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M. 16/01/1996;
- [F] Norme Tecniche C.N.R. N.10011/85 "Costruzioni di acciaio: istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione";
- [G] Norme Tecniche C.N.R. N.10021/85 "Strutture di acciaio per apparecchi di sollevamento. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione";
- [H] Norme Tecniche C.N.R. N.10022 "Costruzione di profilati di acciaio formati a freddo. Istruzioni per l'impiego";
- [I] Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica";
- [L] Ordinanza n. 3316 del 2/10/2003 "Modifiche ed integrazioni all'Ordinanza n. 3274 del 20/3/2003";
- [M] Ordinanza n. 3431 del 3/5/2005 "Modifiche ed integrazioni all'Ordinanza n. 3274 del 20/3/2003".

2.2 Caratteristiche dei materiali

In riferimento ai materiali utilizzati, si riportano nel seguito le principali caratteristiche assunte nei calcoli.

Acciaio

Fe360

Viti

classe 8.8

Dadi

classe 6S

Acciaio Fe360

Peso: $\gamma_a = 78.50 \text{ kN/m}^3$

Modulo di elasticità tangenziale: E = 206000 MPa

Coefficiente di Poisson: v = 0.3

Resistenza a rottura per trazione: $f_t = 360 \text{ MPa}$

Resistenza di progetto: $f_d = 235 \text{ MPa}$

3. VERIFICHE STRUTTURALI

3.1 Ipotesi di calcolo e schemi statici

I montanti verticali sono realizzati con profilati di spessore 4 mm. Essi sono collegati da traverse orizzontali costituite da profilati di spessore 3 mm. Il collegamento traverse-montanti è realizzato mediante nodi che possono assimilarsi ad un collegamento continuo a fronte di rotazioni poste sul piano verticale e a cerniere sul piano orizzontale. Si considera tuttavia, a favore di sicurezza, un comportamento a cerniera in entrambe le direzioni.

I montanti poggiano sul bordo della fossa in modo da potersi considerare ad esso vincolati per mezzo di cerniere.

Su 3 montanti è prevista la realizzazione di staffature di ancoraggio costituenti vincoli assimilabili a cerniere, al piano di sbarco ed a metà della corsa.

Il programma utilizzato per la modellazione della struttura e per la rielaborazione dei risultati del calcolo è Modest ver. 7.8, prodotto da Tecnisoft S.a.s. – Prato, aggiornato a giugno 2006; la struttura è stata calcolata utilizzando come solutore agli elementi finiti il programma di calcolo Xfinest ver. 7.1, prodotto da Ce.A.S. S.r.l. – Milano. Nelle pagine allegate si riporta la vista tridimensionale della mesh del modello utilizzato per la schematizzazione della struttura.

Per tutti gli elementi strutturali vengono condotte le verifiche di resistenza previste dalla normativa vigente. Nell'analisi sismica statica si considerano le spinte trasmesse dalla cabina, opportunamente incrementate per tenere conto degli effetti dinamici conseguenti l'intervento dei dispositivi di sicurezza, l'azione del vento sulla struttura, il peso proprio della struttura e le azioni sismiche; tali condizioni di carico vengono opportunamente combinate secondo le disposizioni della normativa vigente.

3.2 Analisi dei carichi

Le azioni considerate nell'analisi della struttura sono le seguenti:

Azioni permanenti
 Peso proprio struttura costituita da castelletto metallico e tamponamenti
 W = 3500 kg

• Spinte sulle guide in caso di intervento dei blocchi paracadute

 $F_x = 4534 \text{ N}$

sul piano perpendicolare alle guide

 $F_v = 1283 \text{ N}$

sul piano parallelo alle guide

• Spinte sulle guide in esercizio normale (ipotizzate)

 $F_x = 2176 \text{ N}$

sul piano perpendicolare alle guide

 $F_{v} = 616 \text{ N}$

sul piano parallelo alle guide

Azione del vento

La pressione esercitata dal vento risulta pari a:

$$p = q_{ref} \cdot c_e \cdot c_p \cdot c_d$$

dove

 $q_{ref} = V_{ref}^2 / 1.6 = 25^2 / 1.6 = 390.625 \text{ N/m}^2 \text{ (pressione cinetica di riferimento)}$

V_{ref} = 25 m/s (velocità di riferimento funzione della categoria di esposizione del sito)

 $c_e = 2.022$

(coefficiente di esposizione del sito)

 $c_p = 0.85$

(coefficiente di forma)

 $c_d = 1.00$

(coefficiente dinamico)

pertanto il valore di pressione del vento risulta:

$$p = 390.625 \cdot 2.022 \cdot 0.85 \cdot 1.00 = 0.671 \text{ kN/m}^2$$

Azione del vento sulle traverse posizionate a passo 1500 mm:

 $p_t = 1.007 \text{ kN/m}$

Azioni sismiche

Tipo di normativa: stati limite Ord. 3431

Tipo di calcolo: analisi sismica statica.

Dati struttura:

- Categoria edificio: III
- Fattore di importanza (γ_i): 1
- Classe di duttilità: classe B
- Tipologia strutturale: struttura acciaio intelaiata
- Tipologia membrature: membrature duttili
- Coeff. di riduzione per tipologia zone dissipative: 1
- Tipologia edificio: edificio acciaio a telaio a più piani e più campate
- Rapporto di sovraresistenza (α_u / α_1): 1.3
- Valore di riferimento del fattore di struttura (q₀): 4
- Fattore di struttura (q): 4

Dati di calcolo:

- Categoria del suolo di fondazione: C

- Zona sismica: zona 4

- Accelerazione orizzontale (A_g /g): 0.05

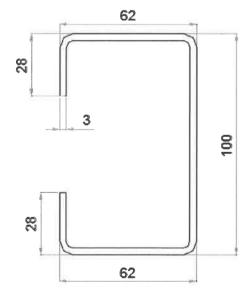
- Angolo di ingresso del sisma: 0.00 <grad>

- Spettro di risposta:

- È stato considerato lo spettro di risposta previsto dal regolamento Italiano

- Smorzamento spettro di progetto: 5%

- Creazione SLU non sismici: si


3.3 Verifica delle traverse

La condizione più critica in cui viene a trovarsi la traversa si verifica quando agiscono su di essa i pattini della cabina trasmettendo alla guida e successivamente alla traversa le relative spinte orizzontali. Si considera la più gravosa tra le configurazioni di carico a cui la traversa può essere sottoposta.

Nella combinazione di carico più gravosa per la traversa lato meccanica si considerano l'azione del vento sulla struttura, le spinte trasmesse dalle guide, il peso proprio e le azioni dovute al sisma.

Il passo tra le traverse è di 1500 mm.

Le caratteristiche geometriche della sezione delle traverse utilizzate lato meccanica sono riportate di seguito (28-62-100-62-28 spessore 3 mm).

Materiale: Acciaio tipo Fe360B Tensione ammissibile = 160 N/mm² CARATTERISTICHE GEOMETRICHE

Area della sezione: 780.82 [mm²]

> Xg: 36 [mm]

> > Yg: 50 [mm]

1212687.59 [mm⁴] Jx:

454565.08 [mm⁴] Jy:

Wx: 24253.75 [mm³]

Wy: 12626.81 [mm³]

Verifica a seguito di analisi sismica statica

Dalle combinazioni di carico analizzate risulta che le sollecitazioni massime agenti nella sezione in esame sono relative alle azioni sismiche combinate alle azioni trasmesse dalle guide della cabina, all'azione del vento e al peso proprio della struttura, ciascuna moltiplicata per i coefficienti previsti dalla normativa vigente.

Momento massimo:

 $M_{max} = 2179000 \text{ Nmm}$

Sforzo assiale massimo:

 $N_{max} = 2683 \text{ N}$

Taglio massimo:

 $T_{max} = 6939 N$

Secondo la normativa vigente deve risultare:

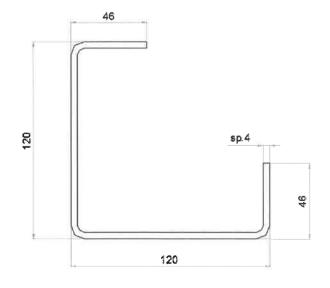
$$\sigma_N + \sigma_M \le f_d$$

$$3.4 + 172.6 = 176 < 235 MPa$$

$$\tau \leq f_d / \sqrt{3}$$

17.8 < 135.7 MPa

$$\sigma_{id} \leq f_d$$


178.7 < 235 MPa

3.4 Verifica dei montanti

La condizione più critica in cui si trovano a lavorare i montanti si ha quando i pattini della cabina agiscono nella mezzeria della campata più lunga. I quattro montanti reggono le spinte della cabina ripartite dalle traverse; la reazione offerta da ciascun montante è proporzionale alla sua rigidezza flessionale nella direzione della forza. Almeno tre montanti sono vincolati all'edificio; la distanza massima tra i vincoli all'edificio è pari a 5 m.

Sono state ipotizzate diverse posizioni dei carichi dovuti alla cabina dell'ascensore lungo tutta l'altezza del castelletto metallico; la verifica è stata effettuata considerando il posizionamento delle azioni nella mezzeria dei montanti aventi campata maggiore.

Nella figura seguente sono indicate le caratteristiche geometriche dei montanti utilizzati.

Materiale: Acciaio tipo Fe360B Tensione ammissibile = 160 N/mm² CARATTERISTICHE GEOMETRICHE

Area della sezione: 1249.1 [mm²]

Xg: 42.04 [mm]
Yg: 42.04 [mm]
r min: 32.5 [mm]
r max: 53.12 [mm]
J min: 2409536 [mm⁴]
J max: 3524756.9 [mm⁴]
W min: 31376 [mm³]

W min: 31376 [mm³] W max: 83843 [mm³]

In corrispondenza della traversa posizionata in prossimità della mezzeria della campata più lunga si hanno le seguenti sollecitazioni:

Momento massimo:

 $M_{max} = 4146000 \text{ Nmm}$

Taglio massimo:

 $T_{max} = 5759 \text{ N}$

Secondo la normativa vigente deve risultare:

$$\sigma_{M} \leq f_{d}$$

132.1 < 235 MPa

$$\tau \leq f_d / \sqrt{3}$$

9.2 < 135.7 MPa

$$\sigma_{id} \leq f_d$$

133.1 < 235 MPa

Verifica di stabilità

Facendo riferimento alla norma C.N.R. 10022, a cui si rimanda per il significato dei simboli, risultano, in base alle caratteristiche geometriche della sezione, i seguenti valori:

Q = 0.98

K = 0.97

 $\lambda_k = 94.44$

 $\lambda = 113.8$

 $\lambda/\lambda_k = 1.21$

 $\sigma_{adim} = 0.4338$

 $\sigma_{\rm c}$ = 98.88 MPa

 $\omega = 2.38$

 $I_0 = 5000 \text{ mm}$

distanza massima tra i vincoli dei montanti all'edificio

Tensione equivalente in condizioni dinamiche:

$$\sigma_{eq}$$
 = 144.3 MPa < σ_{amm} = 160 MPa

4. CONCLUSIONI

In base alle analisi effettuate risulta che in nessun punto della struttura vengono superati gli stati limite ultimi e le tensioni ammissibili secondo le disposizioni stabilite dalla normativa vigente e pertanto la struttura risulta idonea a sostenere le sollecitazioni indotte dall'installazione e dall'esercizio dell'impianto ascensore.

5. ALLEGATI

Di seguito si riportano i seguenti output grafici:

- 1. mesh tridimensionale della struttura
- 2. numerazione dei nodi della struttura vincoli della struttura
- 3. diagramma dei momenti flettenti sulla struttura parte caricata

Mesh tridimensionale della struttura

Numerazione dei nodi della struttura – Vincoli della struttura

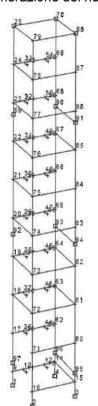


Diagramma dei momenti flettenti sulla struttura – parte caricata

