MINISTERO DELLE INFRASTRUTTURE E DELLA MOBILITÀ SOSTENIBILI STRUTTURA TECNICA DI MISSIONE

COMUNE DI TORINO

METROPOLITANA AUTOMATICA DI TORINO LINEA 2 - TRATTA POLITECNICO - REBAUDENGO

PROGETTAZIONE DEFINITIVA

Lotto Costruttivo 2: Bologna - Politecnico

PROGETTO	DEFINITIVO												
DIRETTORE PROGETTAZIONE Responsabile integrazione discipline specialistiche	IL PROGETTISTA			NI				er la moi			INFR	RATRASPO	ORTI.TO S.r.l.
Ing. R. Crova Ordine degli Ingegneri della Provincia di Torino n. 6038S	Ing. F. Rizzo Ordine degli Ingegneri della Provincia di Torino n. 9337K	SUBSIDENZE, PRESIDIO E MONITORAGGI BACINO SUBSIDENZA E IMPATTO SULLE PRE-ESISTENZE STAZIONE VERONA											
					ELAI	BOF	RATO			RE Int.	V. Est.	SCALA	DATA
BIM MANAGER G	eom. L. D'Accardi	MT L2 T1 A2 D PRC SVR R 001 0 0 - 25/11/2022							25/11/2022				
	AGGIORNAMENTI Fa. 1 di 1												

AGGIORNAMENTI Fg. 1 ai 1

REV.	DESCRIZIONE	DATA	REDATTO	CONTROLLATO	APPROVATO	VISTO
0	EMISSIONE	25/11/22	VFI	PDm	FRi	RCr
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

	LOTTO 2	CARTELLA	10	91	MTL2T1A2D	PRCSVRR001
--	---------	----------	----	----	-----------	------------

STAZIONE APPALTANTE

DIRETTORE DI DIVISIONE INFRASTRUTTURE E MOBILITÀ Ing. R. Bertasio

RESPONSABILE UNICO DEL PROCEDIMENTO Ing. A. Strozziero

Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

INDICE

1	PREMESSA	3
1.1	SCOPO	3
1.2	CARATTERISTICHE GENERALI DELLA STAZIONE	4
2	DEFORMAZIONI E CEDIMENTI INDOTTI DAGLI SCAVI	5
2.1 2.1.1 2.1.2 2.1.3	MODELLAZIONE NUMERICA E METODOLOGIA DI CALCOLO CALCOLO DELLE DEFORMAZIONI PER C&C CALCOLO DELLE DEFORMAZIONI PER LE GALLERIE DI BANCHINA CALCOLO DELLE DEFORMAZIONI PER ACCESSO SPECIALE	5 6 7
2.2 2.2.1 2.2.2	EFFETTI INDOTTI SUGLI EDIFICI CLASSIFICAZIONI DI DANNO E CONCETTO DI RISCHIO INDICE DI VULNERABILITÀ	7 9 10
2.3	SEZIONI DI STUDIO	12
2.4	CONTESTO GEOLOGICO/GEOTECNICO	14
3	DEFORMAZIONI E CEDIMENTI INDOTTI DAGLI SCAVI	15
3.1	DEFORMAZIONI INDOTTE DALLO SCAVO C&C DEL CORPO STAZIONE	15
3.2	DEFORMAZIONI INDOTTE DALLO SCAVO DELL'ACCESSO SPECIALE	16
3.3	DEFORMAZIONI INDOTTE DALLO SCAVO DEGLI ACCESSI DI STAZIONE	18
3.4	DEFORMAZIONI INDOTTE DALLO SCAVO DELLE GALLERIE DI BANCHINA	20
3.5	EFFETTI SUGLI EDIFICI	20
4 MONIT	INDICAZIONI SULLE OPERE DI PRESIDIO E SUL SISTEMA DI ORAGGIO DURANTE LE FASI COSTRUTTIVE	26
4.1	OPERE DI PRESIDIO DEGLI EDIFICI	26
4.2	MONITORAGGIO CORPO DI STAZIONE E ACCESSI	26
4.3	MONITORAGGIO EDIFICI	31

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

INDICE DELLE FIGURE

Figura 1.	Key-plan della linea 2 – lotto funzionale 2 (Stazione Verona)	3
Figura 2.	Modello 3d – Stazione Verona	4
Figura 3.	Modello costitutivo Hardening Soil	5
Figura 4.	Modello geometrico corpo stazione (Cut&Cover)	6
Figura 5.	Zona di influenza minima per scavi in C&C	6
Figura 6.	Schema modello di calcolo accesso speciale	7
Figura 7.	Principali parametri per la valutazione del danneggiamento degli edifici	9
Figura 8.	Sezioni di analisi della stazione	13
Figura 9.	Tipologici delle sezioni di scavo degli accessi (MTL2T1A2DSTRSVRT020.1)	13
Figura 10.	Spostamenti verticali	15
Figura 11.	Spostamenti orizzontali	16
Figura 12.	Spostamenti verticali del piano di fondazione	17
Figura 13.	Spostamenti orizzontali del piano di fondazione	17
-	Subsidenza dovuta alla realizzazione dei micropali degli accessi – Schema A	18
-	Subsidenza dovuta alla realizzazione dei micropali degli accessi – Schema B	19
_	Subsidenza dovuta alla realizzazione dei micropali degli accessi – Schema C	19
_	Subsidenza dovuta alla realizzazione dei micropali degli accessi – Schema D	20
Figura 18.	Edifici in prossimità dell'opera in oggetto e relativi Indici di Vulnerabilità	
	(MTL2T1A0D_FABGENT002)	21
•	Cortina di micropali in acciaio in adiacenza di edifici.	26
_	Diagramma di flusso relativo alla metodologia di progettazione flessibile	27
Figura 21.	Schema di monitoraggio (MTL2T1A2DPRCSVRT001) – Planimetria. Per le rima	nenti
	sezioni, vedasi la tavola di riferimento	29
Figura 22.	Schema di monitoraggio – Sezione 2-2 (MTL2T1A2DPRCSNOT001). Per le rim	
	sezioni, vedasi la tavola di riferimento.	29

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio MTL2T1A2DPRCSVRR001-0-0

1 PREMESSA

1.1 Scopo

La presente relazione si inserisce nell'ambito della progettazione definitiva della Metropolitana Automatica di Torino – Linea 2, con lo scopo di valutare le subsidenze dovute alla realizzazione della **Stazione Verona**, degli accessi e dei vani di ventilazione e di eventuali danni provocati sugli edifici limitrofi.

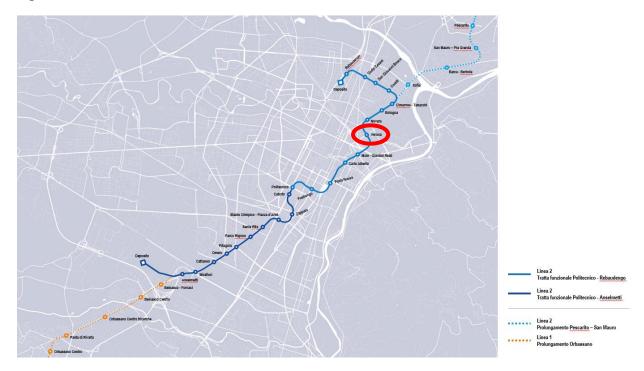


Figura 1. Key-plan della linea 2 – lotto funzionale 2 (Stazione Verona)

Lo scavo all'interno di opere di sostegno, quali diaframmi o paratie, genera a tergo degli stessi un disturbo nel terreno che potrebbe comportare cedimenti in corrispondenza dei fabbricati. Tali effetti devono essere valutati e, ove necessario, mitigati in maniera preventiva, operando, quindi, prima dell'effettuarsi degli scavi e mantenendo sotto osservazione il loro evolversi attraverso un accurato monitoraggio dei fenomeni tensio-deformativi sul terreno e sulle strutture, ponendo eventualmente in opera le contromisure per ricondurre le varie situazioni entro i limiti previsti. Tutte le deformazioni delle strutture, compresi i cedimenti delle fondazioni, sono state considerate non solo per il loro effetto sul comportamento strutturale, ma anche per l'impatto sulle preesistenze. Il controllo delle deformazioni attraverso la corretta progettazione strutturale è di fondamentale importanza per ottenere la qualità del sistema.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

Metropolitana automatica di Torino Linea 2 - Tratta Politecnico – Rebaudengo Progettazione definitiva Lotto funzionale 2: Bologna - Politecnico

MTL2T1A2DPRCSVRR001-0-0

1.2 Caratteristiche generali della stazione

La **Stazione Verona** fa parte del Lotto 2 ed è una stazione a tre livelli interrati con fondo scavo posto alla profondità di -25.6 m rispetto al piano di campagna. Al suo interno troviamo un solettone di fondo di spessore variabile e sagomato per consentire il passaggio a vuoto della TBM, un livello quota banchina, due solai intermedi ed uno di copertura il cui estradosso è posto ad una quota pari a -1.80 m rispetto al piano campagna.

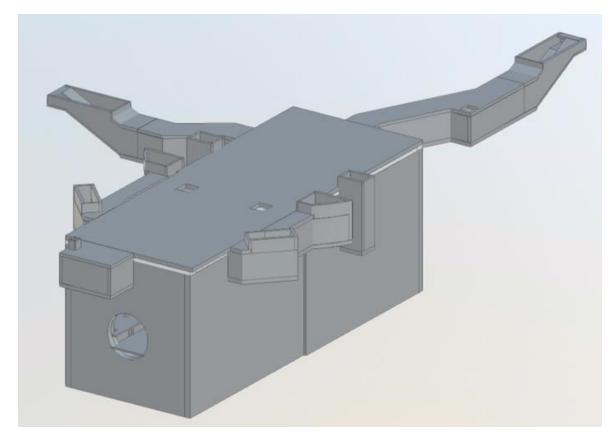


Figura 2. Modello 3d - Stazione Verona

La stazione verrà realizzata attraverso la tecnologia esecutiva di tipo top-down caratterizzata da uno scavo sostenuto da diaframmi contrastati da solai permanenti e puntoni temporanei. In un secondo tempo verranno realizzate le opere legate alla ventilazione, la vasca antincendio e gli accessi.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

2 DEFORMAZIONI E CEDIMENTI INDOTTI DAGLI SCAVI

2.1 Modellazione numerica e metodologia di calcolo

Il metodo di calcolo impiegato per valutare l'interazione terreno-struttura ed ottenere le sollecitazioni agenti sui rivestimenti primari e definitivi della galleria è quello degli elementi finiti (FEM) implementato tramite il codice commerciale Plaxis2D. Le condizioni al contorno ed iniziali sono realizzate tramite una maglia di elementi triangolari i cui confini sono stati collocati ad una distanza dalla sezione della galleria tale da non risentire degli effetti di bordo; il bordo superiore del modello coincide con il profilo topografico del terreno.

Per la stazione in oggetto le deformazioni sono state ottenute mediante modellazioni FEM *ad hoc*, modellando il suolo interferente con le strutture di stazione con modello di comportamento avanzato (Hardening soil). In tale modello, esattamente come in quello di Mohr Coulomb, la legge di resistenza è di tipo attritivo scandita dalla coesione c' e dall'angolo di attrito ϕ' . L'angolo di dilatanza Ψ è posto uguale 0° . Attraverso il modello "Hardening Soil" è possibile descrivere con maggiore dettaglio il comportamento del terreno lontano dalle condizioni di rottura attraverso l'impostazione di tre parametri: E_{50} , modulo di deformabilità secante al 50% del carico di rottura, modulo edometrico E_{Oed} e modulo di scarico e ricarico E_{Ur} . Questo consente di avere dei riscontri in termini di cedimento più realistici, evitando gli effetti di sollevamento derivanti da analisi effettuate con il modello elastoplastico di Mohr Coulomb.

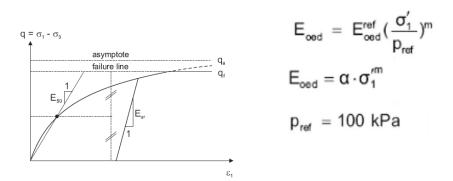


Figura 3. Modello costitutivo Hardening Soil

Per maggiori dettagli sulle modellazioni numeriche effettuate si rimanda al report MTL2T1A2DSTRSVRR001.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio MTL2T1A2DPRCSVRR001-0-0

2.1.1 Calcolo delle deformazioni per C&C

Il modello geometrico è mostrato nella figura seguente e definisce la geometria della sezione del corpo centrale considerata sia delle strutture che delle unità geotecniche considerate.

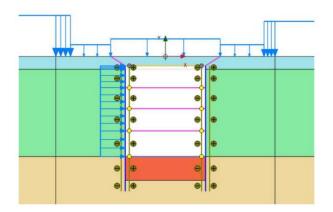


Figura 4. Modello geometrico corpo stazione (Cut&Cover)

La zona di influenza minima per una struttura scavata in Cut&Cover è rappresentata da un trapezio come illustrato nella figura seguente.

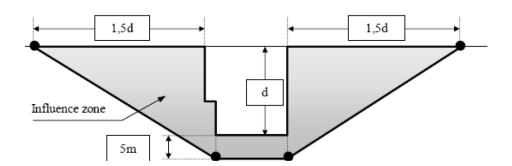


Figura 5. Zona di influenza minima per scavi in C&C

Le fasi di calcolo considerate per le sue sezioni di calcolo sono riportate nel report MTL2T1A2DSTRSPAR001.

2.1.2 Calcolo delle deformazioni per le gallerie di banchina

[Tipologia di opera assente in questa stazione].

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

2.1.3 Calcolo delle deformazioni per Accesso speciale

Di seguito sono riportati i risultati dello studio numerico relativo all'accesso speciale in prossimità degli edifici della stazione ferroviario e del tunnel della linea 1 della metropolitana.

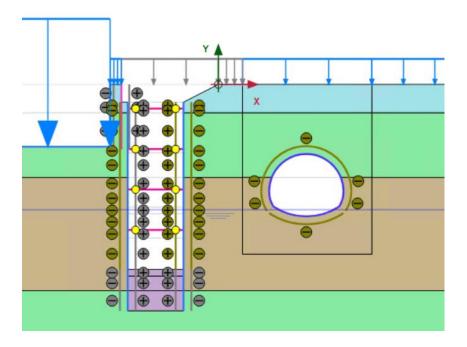


Figura 6. Schema modello di calcolo accesso speciale

2.2 Effetti indotti sugli edifici

La previsione degli effetti deformativi indotti dallo scavo con paratie o diaframmi, si basa sui risultati delle analisi numeriche.

Per quanto riguarda lo scavo del corpo stazione realizzato fra diaframmi in calcestruzzo e ciò che riguarda lo scavo degli accessi realizzato fra paratie di micropali, l'andamento dei cedimenti del terreno a tergo dell'elemento di confinamento dello scavo dipende essenzialmente dalla rigidezza dell'elemento strutturale stesso. Le deformazioni attese si ripercuotono sul terreno, corrispondendo ad una diminuzione del volume di terreno a tergo della paratia o del diaframma legato a quello teoricamente richiamato nell'area di scavo. Definite tutte le caratteristiche di forma

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio MTL2T1A2DPRCSVRR001-0-0

e ampiezza del bacino di subsidenza, è necessario analizzare il fenomeno di interferenza tra i movimenti subiti dal terreno e le strutture in superficie.

Nella metodologia di analisi agli stati limite di esercizio, al fine di stabilire il potenziale danneggiamento cui è sottoposto un manufatto, le norme propongono dei valori ammissibili dei più comuni parametri d'identificazione dello stato deformativo di un edificio soggetto a cedimenti differenziali in fondazione. Parimenti è disponibile un'ampia documentazione bibliografica sull'argomento che permette di determinare, sulla base di osservazioni sperimentali ed esperienze condotte sul campo, delle categorie di danno delimitate da valori caratteristici dei parametri identificativi dello stato deformativo indotto. Per definire in maniera più precisa il comportamento degli edifici nei confronti della subsidenza e, quindi, per individuare i parametri che maggiormente inducono il danneggiamento delle strutture, è necessario effettuare una prima distinzione sulla base della tipologia delle fondazioni:

- **fondazioni continue**: in questa categoria ricadono tutti gli edifici fondati su platea, su plinti in pietra, su palificate in legno e, in qualche caso, su palificate in calcestruzzo armato;
- **fondazioni isolate**: in questa categoria ricadono tutti gli edifici fondati su plinti in calcestruzzo armato, e, in qualche caso, su palificate in calcestruzzo armato.

È quindi necessario dapprima individuare i parametri identificativi dello stato deformativo indotto in funzione della tipologia strutturale e delle fondazioni, e associare a questi delle "categorie di rischio" delimitate da valori caratteristici. In sintesi, questi parametri identificativi possono essere identificati secondo i sequenti punti:

- per strutture caratterizzate da *fondazioni continue*, il parametro di valutazione del danno è dato dalla **deformazione massima di trazione** subita dell'edificio (ϵ_{max}), che è funzione dell'inflessione relativa massima (Δ_{max}) subita dall'edificio. La deformazione massima di trazione deve essere confrontata con la deformazione limite (ϵ_{lim}) di trazione fornita dalle classificazioni.
- per strutture su *fondazioni isolate* il danneggiamento è causato principalmente dal cedimento differenziale fra i plinti. I parametri più importanti, in questo caso, sono la **distorsione angolare massima** β_{max} e il cedimento massimo S_{max} subito dall'edificio

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

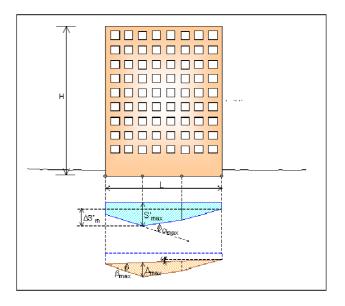


Figura 7. Principali parametri per la valutazione del danneggiamento degli edifici

Per ciò che riguarda l'entità del danneggiamento, i danni indotti possono essere classificati secondo le seguenti categorie:

- danni estetici: riguardano lievi fessurazioni o dislocamenti in tamponamenti, pareti divisorie, pavimentazioni, e finiture in genere. Questi effetti possono essere tollerati in quanto eventualmente facilmente riparabili, soprattutto per fabbricati ordinari;
- danni funzionali: riguardano la perdita di funzionalità di alcune parti della struttura o di strumentazioni in essa alloggiate, senza che sia messa in pericolo l'integrità o la sicurezza della struttura stessa. L'interruzione di funzionalità può, però, avere gravi conseguenze commerciali sulla vita dell'immobile;
- danni strutturali: riguardano la fessurazione (strutture in c.a.) o l'eccessiva deformazione (strutture in muratura portante) di elementi strutturali. L'entità delle deformazioni subite dall'edificio o parte di esso può portare al collasso di singoli elementi strutturali, alla connessione di questi e, al limite, al collasso dell'intero edificio.

2.2.1 Classificazioni di danno e concetto di rischio

Per le strutture aventi tipologia di *fondazione* definita come *continua*, i valori di riferimento per il parametro di valutazione del possibile danneggiamento (la deformazione limite di trazione) sono forniti dalla classificazione di Burland (classificazione di rischio 1, 1977), che individua diverse categorie di rischio, in funzione dello stato fessurativo della struttura. La seguente tabella associa ad ogni categoria di rischio una descrizione visiva del potenziale danno alla struttura.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

Tabella 1. Classificazione del danno secondo Burland

CATEGORIA DI RISCHIO	TIPO DI DANNO	DESCRIZIONE DEL DANNO
0 (estetico)	Irrilevante, non visibile	Crepe a "corda di crine".
1 (estetico)	Molto lieve	Crepe leggere. Eventuali fessurazioni isolate all'interno degli edifici. Crepe nei tavolati in laterizio osservabili con attente ispezioni.
2 (estetico)	Lieve	Molte fessurazioni all'interno dell'edificio: crepe visibili, possibili infiltrazioni dovute all'umidità. Le porte e le finestre possono svergolarsi.
3 (estetico/funzionale)	Medio	Danni a porte e finestre. Danni da infiltrazioni di umidità. Possibili danneggiamenti alle tubature.
4 (funzionale)	Elevato	Onde e rigonfiamenti sulle pavimentazioni e sui muri. Perdita della capacità portante delle travature.
5 (strutturale)	Molto elevato	Notevole perdita della capacità portante delle travature. Pericolo d'instabilità strutturali.

Per gli edifici caratterizzati da *fondazioni isolate*, è la classificazione di Rankine (classificazione di rischio 2, 1988) che stabilisce i limiti base in funzione dei parametri di riferimento cedimento e deformazione angolare e quindi permette l'individuazione delle diverse categorie di rischio. In tabella è presentata la descrizione del danno per tale classificazione.

Tabella 2. Classificazione del danno secondo Rankine

CATEGORIA DI RISCHIO	TIPO DI DANNO	DESCRIZIONE DEL DANNO
1 (estetico)	Irrilevante, non visibile	Improbabile danno superficiale.
2 (estetico)	Lieve	Possibile danno superficiale senza conseguenze strutturali
3 (funzionale)	Medio	Probabile danno superficiale e possibile danno strutturale ed alle tubature
4 (strutturale)	Elevato	Probabile danno strutturale ed alle tubature

Le classificazioni utilizzate per la valutazione del rischio di danneggiamento potenziale (sia quella di Burland che quella di Rankine), si riferiscono agli effetti provocati dalla subsidenza su edifici in buone condizioni. Le modifiche ai valori di riferimento in funzione delle condizioni degli edifici sono apportate sulla base del parametro Indice di Vulnerabilità dell'edificio. Nel seguito sono riportate le classificazioni di rischio con i relativi valori dei parametri limiti di riferimento per le varie categorie, integrate in funzione della vulnerabilità caratteristica degli edifici.

2.2.2 Indice di vulnerabilità

La realizzazione di strutture sotterranee può causare nell'edificio modi di deformazione differenti da quelli che esso più comunemente sperimenta e che sono relazionabili ai cedimenti del

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

terreno di fondazione indotti dal peso proprio della struttura e dall'imposizione dei carichi strutturali.

Pertanto, le nuove deformazioni potenzialmente indotte dalla realizzazione degli scavi vanno a sommarsi alle deformazioni preesistenti, tanto che una piccola deformazione addizionale può provocare effetti critici non proporzionali alla sua entità se le deformazioni preesistenti hanno già raggiunto un livello molto prossimo alla soglia critica.

Risulta quindi indispensabile disporre di una quantificazione, sebbene approssimata ed empirica, delle condizioni preesistenti dell'immobile. A tale scopo si definisce vulnerabilità una caratteristica intrinseca dell'edificio (dipendente dalla sua storia ma indipendente dai fattori esterni che possono indurre cedimenti differenziali a quota delle sue fondazioni), che esprime di quanto l'edificio si allontana dalle condizioni di perfetta conservazione e, quindi, quanto è vulnerabile. Maggiore risulta la vulnerabilità dell'edificio, minore è la sua capacità di tollerare ulteriori deformazioni indotte da eventi esterni.

La vulnerabilità viene espressa attraverso un indice, che prende appunto il nome di indice di vulnerabilità IV.

INDICE DI VULNERABILITÀ

0-20 trascurabile

20-40 basso

40-60 lieve

60-80 moderato

80-100 alto

Tabella 3. Indice di vulnerabilità

L'indice di vulnerabilità viene utilizzato per stabilire un fattore riduttivo dei valori limite dei parametri di controllo che compaiono nelle classificazioni di rischio, le quali sono generalmente riferite a fabbricati in buono stato di conservazione, proprio per tenere in conto la particolarità della storia di ogni edificio che, nel corso del tempo, ne può ridurre la capacità di risposta. In funzione della classe di appartenenza di Iv, si stabilisce un coefficiente riduttivo (FR) dei valori limite dei parametri di controllo (ϵ_{lim} , Δ_{max} , ϵ_{max}) variabile da 1.0 a 2.0.

Al fine della definizione del livello soglia si stabilisce che tale danno non possa essere di natura strutturale o che non possa in qualche modo ledere la funzionalità degli impianti presenti, ovvero si accetta che l'edificio subisca al massimo un livello di danno definito ' lieve' (Categoria 2).

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio MTL2T1A2DPRCSVRR001-0-0

>0.150

Tabella 4. Correzione degli intervalli di valori del parametro di controllo della Classificazione di Rischio attraverso la vulnerabilità Iv caratteristica dell'edificio

Indice di Vulnerabilità dell'edificio IRRILEVANTE BASSO MEDIO ALTO **ELEVATO** 0<Iv<2 2<Iv<4 4<Iv<6 6<Iv<8 8<Iv<10 Fr=1.75 Fr=1.0 Fr=1.5 Fr=2.0 Parametri di controllo S_{max} [mm] S_{max} [mm] β _{lim} [%] S_{max} [mm] β _{lim} [%] β _{lim} [%] S_{max} [mm] β _{lim} [%] _{max} [mm] β _{lim} [%] <1/500 <1/625 <1/750 1/875 <1/1000 <10 <8 <6.7 <5.7 <5 ε_{lim} [%] ε_{lim} [%] min max min max min max min max min max 1 0.000 0.000 0.050 0.000 0.040 0.000 0.033 0.000 0.029 0.025 Categorie di Rischio 0,050 0,075 0,040 0,060 0,033 0,050 0,029 0,043 0,025 0,038 S_{max} [mm] max [mm] max [mm] β _{lim} [%] S_{max} [mm] S_{max} [mm] β _{lim} [%] β _{lim} [%] β _{lim} [%] β _{lim} [%] 10-50 1/200 8-40 1/250 6.7-33.3 1/300 5.7-28.6 1/350 5-25 1/400 2 ε_{lim} [%] ϵ_{lim} [%] E lim [%] ϵ_{lim} [%] ε_{lim} [%] min max min max min max min max min max 0,060 0,075 0,150 0,120 0,050 0,100 0,043 0,086 0,038 0,075 S_{max} [mm] S_{max} [mm] S_{max} [mm] S_{max} [mm] S_{max} [mm] β _{lim} [%] 50-75 40-60 1/62.5 33.3-50 1/75 28.6-42.9 1/87.5 25-37.5 1/100 3 ε_{lim} [%] ε_{lim} [%] ε_{lim} [%] min max min max min max min max min max 0.100 0.086 0.075 0.150 0.300 0 120 0.240 0,200 0 171 0 150 S_{max} [mm] β _{lim} [%] _{max} [mm] β _{lim} [%] max [mm] β_{lim} [%] S_{max} [mm] β_{lim} [%] max [mm] β _{lim} [%] >75 >1/50 >60 >1/62.5 >50 >1/75 >42.9 >1/87.5 >37.5 >1/100 ε_{lim} [%] ε _{lim} [%] 4 ε_{lim} [%] ε _{lim} [%] ε _{lim} [%] min min min

2.3 Sezioni di studio

>0.300

>0.240

La stazione è interessata dalla presenza di edifici posti a differente distanza rispetto alle opere di contenimento. Di seguito è indicata la sezione critica oggetto dello studio numerico. L'andamento degli spostamenti indotti in superficie dal corpo stazione e dagli accessi tipologici, sono mostrati e descritti nel capitolo 3.

>0.200

>0.171

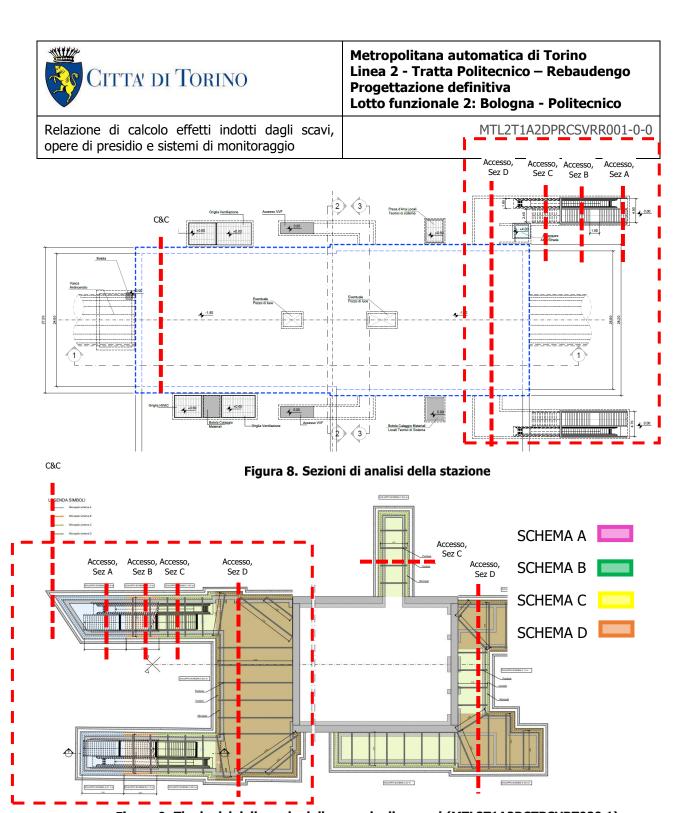


Figura 9. Tipologici delle sezioni di scavo degli accessi (MTL2T1A2DSTRSVRT020.1)

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

2.4 Contesto geologico/geotecnico

Il deposito di terreno è caratterizzato da una coltre superficiale di 2.5 metri denominata *Unità 1* posta al di sopra di un materiale ghiaioso sabbioso denominato *Unità 2*. Oltre i 24.5 m dal piano di campagna invece si trovano delle argille limose compatte e localmente litificate denominate U7

Il livello di falda considerato per le fasi di scavo a breve termine è di -8.00 m dal piano campagna. I parametri meccanici utilizzati per definire il legame costitutivo delle due unità sono riportati di seguito:

		Ta	bella 5.	Parametri	Hardening-	Soil		
	γ	φ	С	$ u_{ur}$	E_{50}^{ref}	E_{oed}^{ref}	E_{ur}^{ref}	m
	[kN/m³]	[°]	[kPa]	[-]	[Mpa]	[Mpa]	[Mpa]	
U1	19	29	0	0.3	15	15	45	0.5
U2	19	36	10	0.3	150	150	450	0.5
U7	20	28	25	0.3	150	150	450	0.5

Vale la pena evidenziare che per tenere in conto degli effetti di *fluage* a lungo termine, a favore di sicurezza, il modulo di Young del cls è stato assunto 2.75 volte inferiore del valore originale durante tutte le operazioni di scavo. Nella tabella seguente vengono riassunti i carichi applicati al modello.

Tabella 6. Carichi assunti per il modello numerico.

Tipologia carico	Valore	
Peso strutture in calcestruzzo	25	kN/m³
Sovraccarico superficiale	20	kPa
Carico edifici	10	kPa/piano

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio MTL2T1A2DPRCSVRR001-0-0

3 DEFORMAZIONI E CEDIMENTI INDOTTI DAGLI SCAVI

3.1 Deformazioni indotte dallo scavo C&C del corpo stazione

Di seguito sono stati riportati gli spostamenti superficiali in direzione verticale e orizzontale ottenuti per la sezione di studio del corpo stazione. Data la simmetria della stazione, delle caratteristiche degli edifici e della distanza rispetto al corpo stazione le curve dei cedimenti a destra e a sinistra del corpo stazione sono uguali per la sezione di studio indagata.

I risultati dello studio numerico mostrano che gli spostamenti verticali a tergo delle paratie di micropali raggiungono valori di 40 mm mentre quelli orizzontali fino a 17 mm.

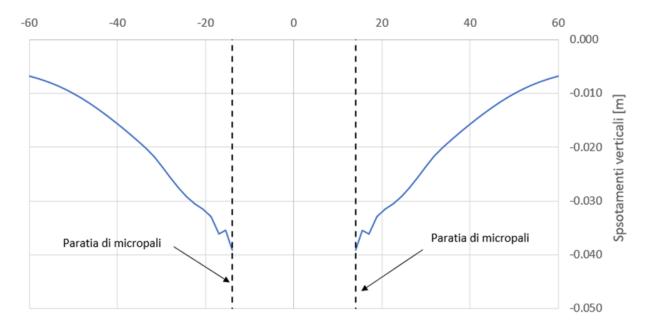


Figura 10. Spostamenti verticali

I risultati si riferiscono al caso di sbancamento del terreno per la realizzazione delle paratie del corpo stazione in coerenza con la modellazione numerica (si veda Figura 4). Nel caso di realizzazione di micropali dietro ai diaframmi si considerano i medesimi risultati in via cautelativa.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

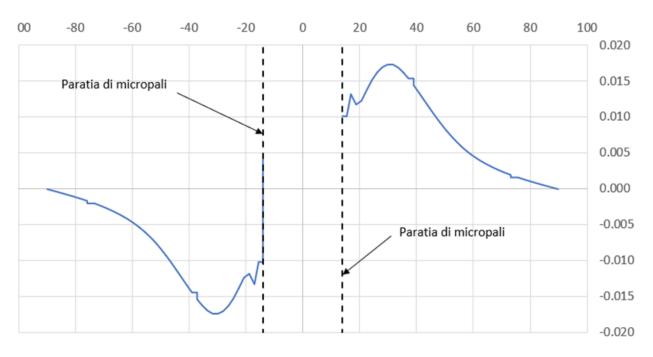


Figura 11. Spostamenti orizzontali

3.2 Deformazioni indotte dallo scavo dell'accesso speciale

Nella figura seguente sono rappresentati gli spostamenti verticali, una volta terminato lo scavo dell'accesso, a livello della fondazione considerata a favore di sicurezza infinitamente flessibile.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

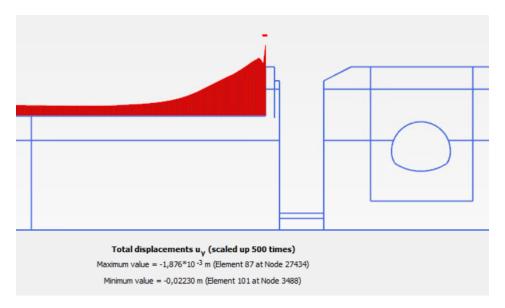


Figura 12. Spostamenti verticali del piano di fondazione

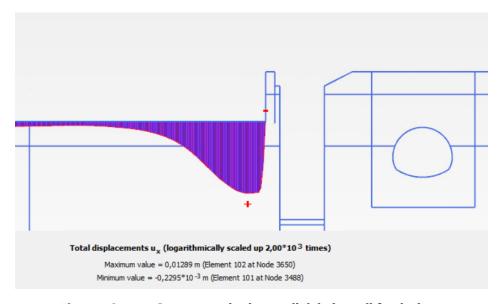


Figura 13. Spostamenti orizzontali del piano di fondazione

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

Tutti gli edifici rientrano nella categoria di rischio 2:

Edificio	S lim	B _{lim}	S max	β _{max}
PAPN32	28.6 mm	1/350	22.2 mm	1/397

3.3 Deformazioni indotte dallo scavo degli accessi di stazione

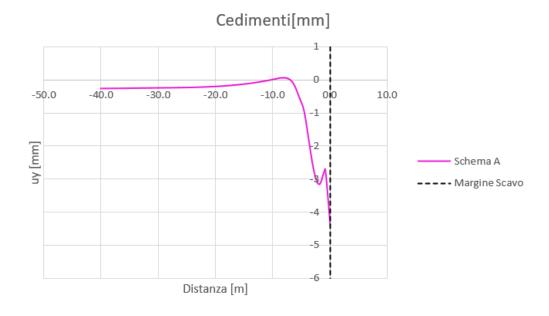


Figura 14. Subsidenza dovuta alla realizzazione dei micropali degli accessi – Schema A

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

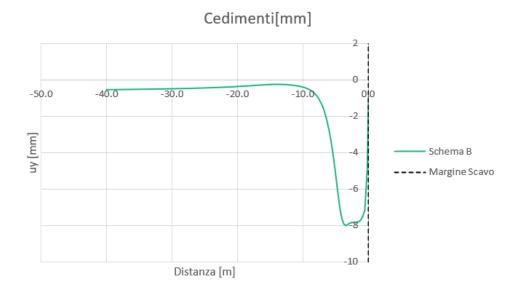


Figura 15. Subsidenza dovuta alla realizzazione dei micropali degli accessi – Schema B Cedimenti[mm]

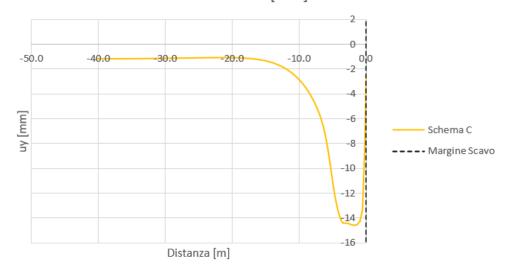


Figura 16. Subsidenza dovuta alla realizzazione dei micropali degli accessi – Schema C

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio MTL2T1A2DPRCSVRR001-0-0

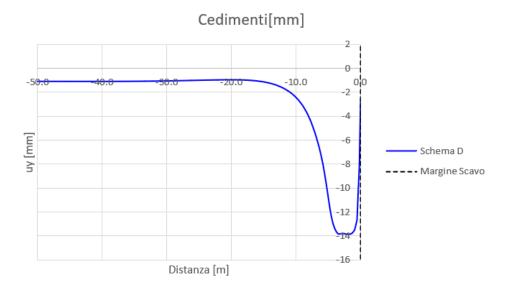


Figura 17. Subsidenza dovuta alla realizzazione dei micropali degli accessi – Schema D

3.4 Deformazioni indotte dallo scavo delle gallerie di banchina

Tale tipologia di opera non è presente nella stazione in esame.

3.5 Effetti sugli edifici

Di seguito sono riportati i risultati in termini di effetti sugli edifici limitrofi allo scavo della stazione. Gli edifici di maggiore attenzione per la prossimità agli scavi sono i seguenti: VRNO01, VRNO02, VRNO04, MOVR44. Tutti essi si trovano in condizioni di Vulnerabilità Bassa o Lieve (colore verde o giallo), tranne l'edificio VRNO01 che si trova in condizione di Vulnerabilità Moderata (colore rosso).

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

Metropolitana automatica di Torino Linea 2 - Tratta Politecnico – Rebaudengo Progettazione definitiva Lotto funzionale 2: Bologna - Politecnico

MTL2T1A2DPRCSVRR001-0-0

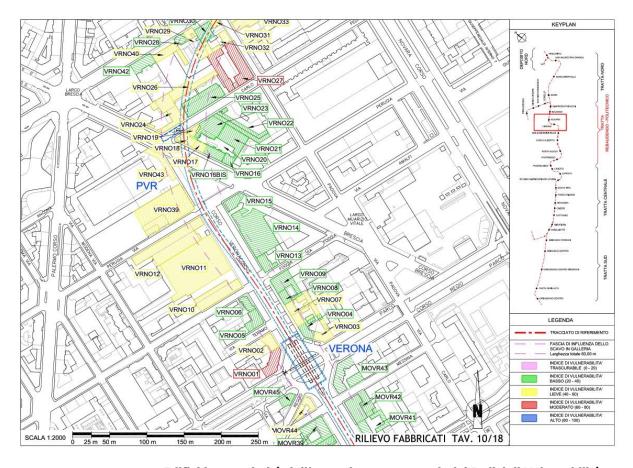
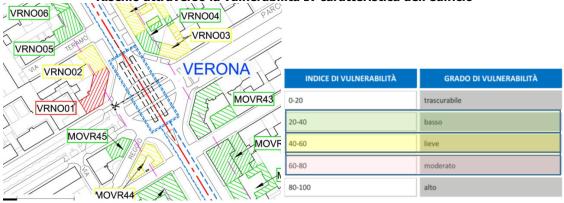


Figura 18. Edifici in prossimità dell'opera in oggetto e relativi Indici di Vulnerabilità (MTL2T1A0D_FABGENT002)



Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

Tabella 7. Correzione degli intervalli di valori del parametro di controllo della Classificazione di Rischio attraverso la vulnerabilità Iv caratteristica dell'edificio

Indice di Vulnerabilità dell'edificio

		IRRILEVANTE		BASSO		MED		ALT		ELEVATO	
		0 <lv<2< th=""><th colspan="2">2< v<4</th><th>4< v</th><th>_</th><th>6<i\< th=""><th></th><th>8<iv< th=""><th></th></iv<></th></i\<></th></lv<2<>		2< v<4		4< v	_	6 <i\< th=""><th></th><th>8<iv< th=""><th></th></iv<></th></i\<>		8 <iv< th=""><th></th></iv<>	
		Fr=	1.0	Fr=1.25		Fr=1.5		Fr=1.75		Fr=2.0	
						metri di controllo					
		S _{max} [mm]		S _{max} [mm]		S _{max} [mm]		S _{max} [mm]		S _{max} [mm]	
		<10	<1/500	<8	<1/625	<6.7	<1/750	<5.7	1/875	<5	<1/1000
		ε _{lim}	[%]	ε _{lim}	[%]	ε _{lim}	[%]	ε _{lim}	[%]	ε _{lim}	[%]
	1	min	max	min	max	min	max	min	max	min	max
		0,000	0,050	0,000	0,040	0,000	0,033	0,000	0,029	0,000	0,025
l.≝ l		0,050	0,075	0,040	0,060	0,033	0,050	0,029	0,043	0,025	0,038
Rischio		S_{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]
<u>.s</u>	2	10-50	1/200	8-40	1/250	6.7-33.3	1/300	5.7-28.6	1/350	5-25	1/400
		ε _{lim} [%]		ε _{lim} [%]		ε _{lim} [%]		ε _{lim} [%]		ε _{lim} [%]	
∣ਢ		min	max	min	max	min	max	min	max	min	max
		0,075	0,150	0,060	0,120	0,050	0,100	0,043	0,086	0,038	0,075
<u>-</u>		S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]
<u>Q</u>		50-75	1/50	40-60	1/62.5	33.3-50	1/75	28.6-42.9	1/87.5	25-37.5	1/100
Categorie	3	ε _{lim}	[%]	ε _{lim}	[%]	ε _{lim}	[%]	ε _{lim}	[%]	ε _{lim}	[%]
a ⊨		min	max	min	max	min	max	min	max	min	max
l Ö		0,150	0,300	0,120	0,240	0,100	0,200	0,086	0,171	0,075	0,150
		S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]	S _{max} [mm]	β _{lim} [%]
		>75	>1/50	>60	>1/62.5	>50	>1/75	>42.9	>1/87.5	>37.5	>1/100
	4	ε _{lim}	[%]	ε _{lim}	[%]	ε _{lim}	[%]	ε _{lim} [%]		ε _{lim} [%]	
		min		min		min		min		min	
		>0.300		>0.240		>0.200		>0.171		>0.150	

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

Tabella 8. Classificazione di Rischio attraverso la vulnerabilità Iv caratteristica dell'edificio (06_MTL2T1A0DFABGENK001.1 a 06_MTL2T1A0DFABGENK001.4)

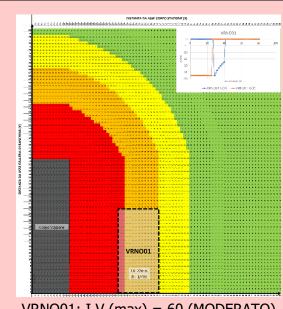
VRNO01: I.V.(max) = 60 (MODERATO)

VRNO02: I.V.(max) = 40.5 (LIEVE)

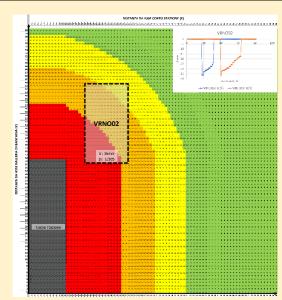
VRNO04: I.V.(max) = 38 (BASSO)

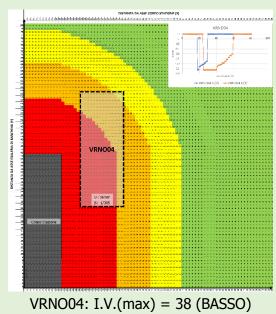
MOVR44: I.V.(max) = 48.5 (LIEVE)

Al fine di stabilire il potenziale danno a cui sono sottoposti i manufatti gli spostamenti verticali massimi del piano di fondazione e le distorsioni degli edifici sono stati confrontati con i valori limite. La combinazione degli effetti dello scavo del corpo stazione (in C&C) e delle gallerie di banchina (in scavo convenzionale e foro cieco) suppone la condizione di maggior criticità per gli edifici in prossimità. Gli effetti della costruzione degli accessi sono risultati tutti trascurabili rispetto ai restanti cedimenti.

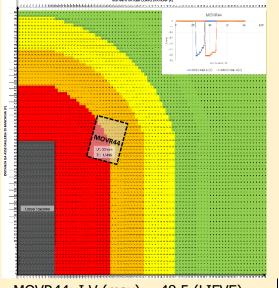


Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio


MTL2T1A2DPRCSVRR001-0-0


VRNO01: I.V.(max) = 60 (MODERATO)

Ui: 27mm βi: 1/498



VRNO02: I.V.(max) = 40.5 (LIEVE)

Ui: 36mm βi: 1/305

Ui: 36mm βi: 1/305

MOVR44: I.V.(max) = 48.5 (LIEVE)

Ui: 30mm βi: 1/498

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

Tabella 10. Spostamenti verticali massimi del piano di fondazione e distorsioni degli edifici e confronto con i valori limite

CONTORCO CON I VAIOTI INITIC									
Edificio	S max	β _{max}	S _i	βi	Note				
VRNO01	28.6mm	1/350	27 mm	≈1/500	Considerati gli effetti dello scavo della stazione C&C e della galleria di banchina. Trascurati gli altri effetti.				
VRNO02	33.3 mm	1/300	36 mm	1/305	Considerati gli effetti dello scavo della stazione C&C e della galleria di banchina. Trascurati gli altri effetti.				
VRNO04	40 mm	1/250	36 mm	1/305	Considerati gli effetti dello scavo della stazione C&C e della galleria di banchina. Trascurati gli altri effetti.				
MOVR44	33.3 mm	1/300	30 mm	≈1/500	Considerati gli effetti dello scavo della stazione C&C e della galleria di banchina. Trascurati gli altri effetti.				

 S_{max} , β_{max} : valori limite dei parametri di controllo (cedimenti, distorsioni) in funzione dell'indice di vulnerabilita' Iv e della Categoria di danno ammissibile.

 S_{i},β_{t} : valori massimi dei parametri di controllo (cedimenti, distorsioni) in corrispondenza di detti edifici

Combinando in modo conservativo i differenti contributi di cedimento e con le assunzioni relative agli indici di vulnerabilità degli edifici, non si superano i limiti ammessi (Categoria 2) in nessuno degli edifici analizzati, eccezion fatta per l'edificio VRNO02 in cui si supera la soglia di cedimento di circa 2-3mm.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

4 INDICAZIONI SULLE OPERE DI PRESIDIO E SUL SISTEMA DI MONITORAGGIO DURANTE LE FASI COSTRUTTIVE

4.1 Opere di presidio degli edifici

Come ulteriore misura di mitigazione a presidio del fabbricato VRNO02, si raccomanda l'adozione di una cortina di micropali in acciaio con cordolo di testa in adiacenza agli edifici menzionati.

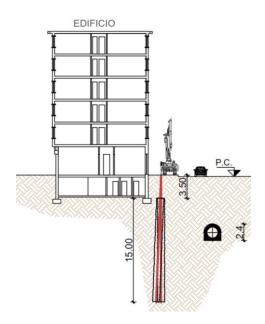


Figura 19. Cortina di micropali in acciaio in adiacenza di edifici.

4.2 Monitoraggio corpo di stazione e accessi

L'entità reale dei fenomeni deformativi che si possono verificare durante la realizzazione dell'opera dipende in maniera considerevole dalle variabilità locali della situazione geologico-geotecnica e, soprattutto, dalle reali modalità esecutive adottate. Per tale ragione deve essere messo in opera un adeguato sistema di monitoraggio, che permetta il confronto della situazione teorica

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

progettuale con le reali situazioni che possono instaurarsi sia durante le operazioni di scavo che sul medio termine.

Il monitoraggio delle opere in progetto dovrà permettere:

- la verifica dell'efficacia delle soluzioni progettuali prescelte in ragione della variabilità locale della geologia, attuando misure sullo stato deformativo e tensionale delle strutture;
- la misura della situazione deformativa del terreno determinata a tergo delle paratie e dei diaframmi, per le zone di influenza degli scavi delle stazioni e degli accessi;

Le operazioni di monitoraggio dovranno poi permettere la validazione dei parametri utilizzati per la definizione dei metodi di stabilizzazione degli scavi, al fine di avallare le scelte effettuate oppure effettuare le necessarie modifiche. Questo metodo permette quindi di garantire la gestione degli imprevisti legati allo scavo. La metodologia adottata segue il principio di progettazione secondo la "filosofia di progetto flessibile", correntemente applicata nel campo dell'ingegneria geotecnica e per le opere in sotterraneo (vedi Figura 20).

Il progetto specifico del sistema di monitoraggio comprende i seguenti elementi:

- definizione dei parametri chiave del monitoraggio;
- definizione delle sezioni tipo di monitoraggio e della tipologia di strumentazione da mettere in opera, sia per le strutture che per i manufatti preesistenti;
- localizzazione delle sezioni tipo e dei manufatti cui applicare le strumentazioni;
- definizione della frequenza delle letture;
- definizione dei valori (limiti) di attenzione e allarme per le grandezze monitorate;
- definizione delle contromisure da attuare in caso di superamento dei valori di allarme definiti.

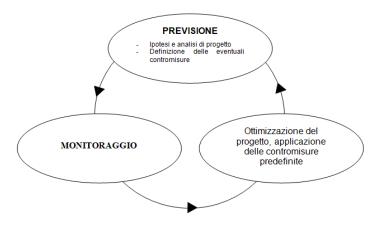


Figura 20. Diagramma di flusso relativo alla metodologia di progettazione flessibile

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio MTL2T1A2DPRCSVRR001-0-0

Il sistema di monitoraggio della stazione in progetto prevede in generale delle sezioni di monitoraggio che possono comprendere tutte o in parte le seguenti strumentazioni:

- tubi inclinometrici (IN) su pannelli di diaframmi o all'interno dei pali, di lunghezza pari alla profondità dell'elemento, al fine di controllare con precisione l'evoluzione della deformata e confrontarla con i risultati delle analisi progettuali nelle varie fasi di scavo;
- punti di controllo topografico di precisione posizionati in prossimità della testa del tubo inclinometrico (CTC);
- riscontri in acciaio predisposti per l'attacco di mire per letture di convergenza 3D (CTC), ancorati sul pannello e disposti sui pannelli a diverse altezze dello scavo;
- coppie di barrette estensimetriche BE (lato intradosso e lato estradosso) fissate sulle gabbie d'armatura del diaframma, sugli elementi orizzontali per il controllo dello stato di sollecitazione dell'elemento strutturale ed il controllo delle tensioni dell'acciaio e del calcestruzzo, poste in posizioni rappresentative;
- estensimetri elettrici BEA dotati di sistema di controllo delle temperature fissate sulle gabbie d'armatura del diaframma, sugli elementi orizzontali, al fine di controllare lo stato tensionale e deformativo degli elementi;
- punti di livellazione superficiale per il controllo dei cedimenti del terreno a tergo dei diaframmi CPL allo scopo di definire il quadro deformativo generale a tergo del diaframma, ed in particolare la tipologia del profilo di subsidenza indotto dagli scavi.

La possibilità di controllo della situazione reale si basa principalmente sulla definizione di soglie aventi lo scopo di segnalare l'instaurarsi di una particolare situazione tensio-deformativa. Sulla base di queste soglie è messa in opera tutta una serie di azioni e contromisure.

Lo schema preliminare della posizione della strumentazione è indicato nelle seguenti immagini.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

Metropolitana automatica di Torino Linea 2 - Tratta Politecnico – Rebaudengo Progettazione definitiva Lotto funzionale 2: Bologna - Politecnico

MTL2T1A2DPRCSVRR001-0-0

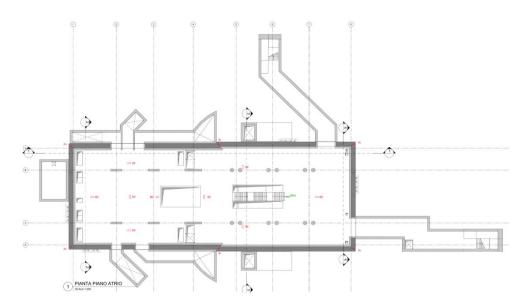


Figura 21. Schema di monitoraggio (MTL2T1A2DPRCSVRT001) – Planimetria. Per le rimanenti sezioni, vedasi la tavola di riferimento

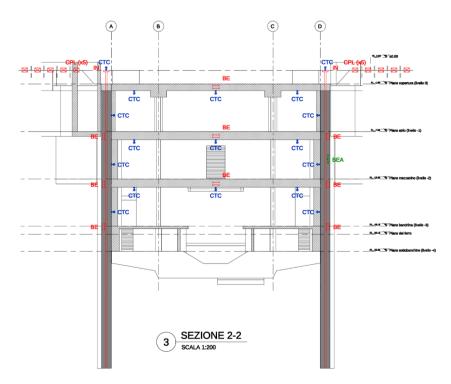


Figura 22. Schema di monitoraggio – Sezione 2-2 (MTL2T1A2DPRCSNOT001). Per le rimanenti sezioni, vedasi la tavola di riferimento.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio MTL2T1A2DPRCSVRR001-0-0

Strumento	Sigla	Applicazione	Misurazione	Num.
Punti di livellazione superficiale	CPL	Piano campagna (distanza 2m)	Subsidenza	40
Mire ottiche	СТС	Diaframmi e solette	Misurazione delle deformazioni	51
Barrette estensimetriche	BE	Rivestimento definitivo e diaframmi	Stato tensionale	45
Barrette estensimetriche di riferimento	BEA	Rivestimento definitivo e diaframmi	Stato tensionale	6
Inclinometri	IN	Diaframmi	Misurazione inclinazione	6

I valori di soglia fissati sono funzione dei risultati previsti (in termini di spostamento, deformazione, tensioni, ecc.) in fase progettuale.

Questi limiti sono definiti come:

- <u>limite di attenzione</u>: è definito come una quota parte delle risultanze dei calcoli in progetto.
 Il superamento di questo limite implica l'incremento della frequenza delle misure, allo scopo di stabilire e monitorare la velocità con la quale il fenomeno si evolve in modo da valutare il potenziale instaurarsi di fenomeni ad evoluzione rapida che potrebbero, in particolari situazioni, divenire potenzialmente incontrollabili;
- <u>limite di allarme</u>: è definito in funzione del livello deformativo più gravoso per una determinata situazione di scavo.

Al raggiungimento della soglia di allarme sarà necessaria la valutazione dell'attuazione di opportune contromisure, che hanno lo scopo di riportare la situazione reale entro i limiti previsti in progetto.

Relazione di calcolo effetti indotti dagli scavi, opere di presidio e sistemi di monitoraggio

MTL2T1A2DPRCSVRR001-0-0

4.3 Monitoraggio edifici

Obiettivo del monitoraggio sugli edifici e i manufatti esistenti è il controllo e la salvaguardia delle stesse durante l'esecuzione dei lavori.

Il piano di monitoraggio prevede il controllo del comportamento deformativo dei fabbricati. In accoppiamento con le sezioni di livellazione superficiale previste per le stazioni, la strumentazione in opera dovrà permettere la definizione del quadro deformativo generale nell'intorno degli scavi, ed in particolare la zona di influenza degli scavi e la tipologia del profilo di subsidenza indotto.

Nel caso di edifici di altezza superiore a 5 piani fuori terra, edifici sensibili, edifici con un quadro fessurativo importante o vincolati dalla Soprintendenza ai beni culturali ai sensi del D.Lgs 42/2004, è necessaria una applicazione del sistema di monitoraggio molto "pesante", in modo da poter valutare tempestivamente qualsiasi condizione critica per l'edificio.

Essenzialmente si andranno a misurare:

- Le deformazioni;
- La variazione nell'apertura delle fessure se già presenti;
- Le rotazioni della facciata nel proprio asse o nel piano ad essa perpendicolare;
- Le vibrazioni.

Per ogni tipo di misurazione andranno fissati dei valori limite in funzione dei risultati previsti (in termini di spostamento, deformazione, tensioni, ecc.) dai calcoli di progetto.

Questi limiti sono definiti, per ogni grandezza monitorata, come:

- limite di attenzione: una quota parte delle risultanze dei calcoli in progetto. Il superamento
 di questo limite implica l'incremento della frequenza delle misure, allo scopo di stabilire e
 monitorare la velocità con la quale il fenomeno si evolve, in modo da valutare la tendenza
 ad instaurarsi di fenomeni ad evoluzione rapida che potrebbero, in particolari situazioni,
 divenire potenzialmente incontrollabili;
- limite di allarme: funzione del livello deformativo, tensionale, ecc. più gravoso per una determinata situazione di scavo. Il suo superamento implica la valutazione dell'attuazione di opportune contromisure.

Le contromisure da adottare in caso di superamento dei limiti di allarme hanno lo scopo di riportare la situazione reale entro i limiti previsti in progetto, ovvero rinforzare le strutture perché possano risultare comunque stabili.

