

PROGETTO

CENTRO PER L'EDUCAZIONE SPORTIVA ED AMBIENTALE MEISINO

Cluster 2 - Rigenerazione ex Galoppatoio

CLIENTE Città di Torino

Dipartimento Manutenzioni e Servizi Tecnici

Divisione Manutenzioni

Servizio Infrastrutture per il Commercio e lo Sport

Dipartimento Grandi Opere, Infrastrutture e Mobilità

Divisione Verde e Parchi

GRUPPO DI PROGETTAZIONE

Determina D.D. N°5382 DEL 27/09/2023

RUP/CP

Arch.Maria Vitetta

SOCIETA' MANDATARIA / Coordinatore del Gruppo di Progettazione / Progettista

1AX srl

Via F.Crispi, 69 67051 - Avezzano (AQ)

info@1ax.it

PROGETTISTA IMPIANTI

Proimpianti srl

Via Garibaldi, 89 67051 - Avezzano (AQ) c.granata@proimpianti.it

GEOLOGO

Dott. Geologo Andrea Piano

Via Provenzale 6 14100 - Asti

andrea@actispianogeologi.it

CONSULENTI

PAESAGGIO

Arch.Paesaggista Diego Colonna

Studio Biosfera - Dott. Biologo Gianni Bettini Myricae s.r.l.- Dott. Agronomo Giordano Fossi Dott. Agronomo Tommaso Vai

CUP **CODICE OPERA**

C13I22000080006 5057

FASE PROGETTUALE

PROGETTO ESECUTIVO

ELABORATO

RELAZIONE DI VERIFICA CONTRO LE SCARICHE ATMOSFERICHE

CODICE ELABORATO CALC.IMP.								DATA		SCALA
COD.LAVORO	FASE DI PROGETTAZIONE	AUTORE	AREA	LIVELLO	TIPO FILE	DISCIPLINA	N. DOCUMENTO	05/04/24		_
104-2	ESECUTIVO	Proimpianti	IMP	PT	.doc	elettrico	63	REV.	00	

NOME FILE 63-104_2_ESE_5057_IMP-CALC.IMP.-63-00-Relazione di verifica contro le scariche atmosferiche

RELAZIONE TECNICA

Protezione contro i fulmini

Valutazione del rischio e scelta delle misure di protezione

Dati del progettista / installatore:

Ragione sociale: Ing. Carlo Granata -Proimpianti

Indirizzo: Via Garibaldi 89

Città: Avezzano CAP: 67051 Provincia: AQ

Albo professionale: Ordine degli ingegneri dell'Aquila

Committente:

Committente: COMUNE DI TORINO

Descrizione struttura: PARCO DEL MEISINO Indirizzo: S.da del Meisino, 81, 10132 Torino TO

Comune: TORINO Provincia: TO

SOMMARIO

- 1. CONTENUTO DEL DOCUMENTO
- 2. NORME TECNICHE DI RIFERIMENTO
- 3. INDIVIDUAZIONE DELLA STRUTTURA DA PROTEGGERE
- 4. DATI INIZIALI
 - 4.1 Densità annua di fulmini a terra
 - 4.2 Dati relativi alla struttura
 - 4.3 Dati relativi alle linee esterne
 - 4.4 Definizione e caratteristiche delle zone
- 5. CALCOLO DELLE AREE DI RACCOLTA DELLA STRUTTURA E DELLE LINEE ELETTRICHE ESTERNE
- 6. VALUTAZIONE DEI RISCHI
 - 6.1 Rischio R_1 di perdita di vite umane
 - 6.1.1 Calcolo del rischio R_1
 - 6.1.2 Analisi del rischio R₁
- 7. SCELTA DELLE MISURE DI PROTEZIONE
- 8. CONCLUSIONI
- 9. APPENDICI
- 10. ALLEGATI

Disegno della struttura Grafico area di raccolta AD Grafico area di raccolta AM Valore Ng

1. CONTENUTO DEL DOCUMENTO

Questo documento contiene:

- la relazione sulla valutazione dei rischi dovuti al fulmine;
- la scelta delle misure di protezione da adottare ove necessarie.

2. NORME TECNICHE DI RIFERIMENTO

Questo documento è stato elaborato con riferimento alle seguenti norme:

- CEI EN 62305-1

"Protezione contro i fulmini. Parte 1: Principi generali" Febbraio 2013;

- CEI EN 62305-2

"Protezione contro i fulmini. Parte 2: Valutazione del rischio" Febbraio 2013:

- CEI EN 62305-3

"Protezione contro i fulmini. Parte 3: Danno materiale alle strutture e pericolo per le persone" Febbraio 2013;

- CELEN 62305-4

"Protezione contro i fulmini. Parte 4: Impianti elettrici ed elettronici nelle strutture" Febbraio 2013;

- CEI 81-29

"Linee guida per l'applicazione delle norme CEI EN 62305" Maggio 2020;

- CEI EN IEC 62858

"Densità di fulminazione. Reti di localizzazione fulmini (LLS) - Principi generali" Maggio 2020.

3. INDIVIDUAZIONE DELLA STRUTTURA DA PROTEGGERE

L'individuazione della struttura da proteggere è essenziale per definire le dimensioni e le caratteristiche da utilizzare per la valutazione dell'area di raccolta.

La struttura che si vuole proteggere coincide con un intero edificio a sé stante, fisicamente separato da altre costruzioni.

Pertanto, ai sensi dell'art. A.2.2 della norma CEI EN 62305-2, le dimensioni e le caratteristiche della struttura da considerare sono quelle dell'edificio stesso.

4. DATI INIZIALI

4.1 Densità annua di fulmini a terra

La densità annua di fulmini a terra al kilometro quadrato nella posizione in cui è ubicata la struttura vale:

 $N_{\rm g}$ = 5,01 fulmini/anno km²

4.2 Dati relativi alla struttura

La pianta della struttura è riportata nel disegno (Allegato *Disegno della struttura*).

La destinazione d'uso prevalente della struttura è: ufficio

In relazione anche alla sua destinazione d'uso, la struttura può essere soggetta a:

- perdita di vite umane
- perdita economica

In accordo con la norma CEI EN 62305-2 per valutare la necessità della protezione contro il fulmine, deve pertanto essere calcolato:

- rischio R1:

Le valutazioni di natura economica, volte ad accertare la convenienza dell'adozione delle misure di protezione, non sono state condotte perché espressamente non richieste dal Committente.

L'edificio ha struttura portante metallica o in cemento armato con ferri d'armatura continui.

4.3 Dati relativi alle linee elettriche esterne

La struttura è servita dalle seguenti linee elettriche:

- Linea di energia: linea elettrica

- Linea di segnale: linea segnale

Le caratteristiche delle linee elettriche sono riportate nell'Appendice *Caratteristiche delle linee elettriche*.

4.4 Definizione e caratteristiche delle zone

Tenuto conto di:

- compartimenti antincendio esistenti e/o che sarebbe opportuno realizzare;
- eventuali locali già protetti (e/o che sarebbe opportuno proteggere specificamente) contro il LEMP (impulso elettromagnetico);
- i tipi di superficie del suolo all'esterno della struttura, i tipi di pavimentazione interni ad essa e l'eventuale presenza di persone;
- le altre caratteristiche della struttura e, in particolare il lay-out degli impianti interni e le misure di protezione esistenti;

sono state definite le seguenti zone:

Z1: zona interna Z2: esterno Le caratteristiche delle zone, i valori medi delle perdite, i tipi di rischio presenti e le relative componenti sono riportate nell'Appendice *Caratteristiche delle Zone*.

5. CALCOLO DELLE AREE DI RACCOLTA DELLA STRUTTURA E DELLE LINEE ELETTRICHE ESTERNE

L'area di raccolta AD dei fulmini diretti sulla struttura è stata valutata graficamente secondo il metodo indicato nella norma CEI EN 62305-2, art. A.2, ed è riportata nel disegno (Allegato *Grafico area di raccolta AD*).

L'area di raccolta AM dei fulmini a terra vicino alla struttura, che ne possono danneggiare gli impianti interni per sovratensioni indotte, è stata valutata graficamente secondo il metodo indicato nella norma CEI EN 62305-2, art. A.3, ed è riportata nel disegno (Allegato *Grafico area di raccolta AM*).

Le aree di raccolta AL e AI di ciascuna linea elettrica esterna sono state valutate analiticamente come indicato nella norma CEI EN 62305-2, art. A.4 e A.5.

I valori delle aree di raccolta (A) e i relativi numeri di eventi pericolosi all'anno (N) sono riportati nell'Appendice *Aree di raccolta e numero annuo di eventi pericolosi*.

I valori delle probabilità di danno (P) per il calcolo delle varie componenti di rischio considerate sono riportate nell'Appendice *Valori delle probabilità P per la struttura non protetta*.

6. VALUTAZIONE DEI RISCHI

6.1 Rischio R1: perdita di vite umane

6.1.1 Calcolo del rischio R1

I valori delle componenti ed il valore del rischio R1 sono di seguito indicati.

Z1: zona interna RA: 5,37E-08 RB: 1,07E-08

RU(energia): 0,00E+00 RV(energia): 0,00E+00 RU(segnale): 0,00E+00 RV(segnale): 0,00E+00 Totale: 6,44E-08

Z2: esterno RA: 3,58E-07

RB: 3,58E-09

RU(energia): 0,00E+00 RV(energia): 0,00E+00

Totale: 3,62E-07

Valore totale del rischio R1 per la struttura: 4,26E-07

6.1.2 Analisi del rischio R1

Il rischio complessivo R1 = 4,26E-07 è inferiore a quello tollerato RT = 1E-05

7. SCELTA DELLE MISURE DI PROTEZIONE

Poiché il rischio complessivo R1 = 4,26E-07 è inferiore a quello tollerato RT = 1E-05, non occorre adottare alcuna misura di protezione per ridurlo.

8. CONCLUSIONI

Rischi che non superano il valore tollerabile: R1 Secondo la norma CEI EN 62305-2 la protezione contro il fulmine non è necessaria.

Data 10/11/2023

Timbro e firma

9. APPENDICI

APPENDICE - Caratteristiche della struttura

Dimensioni: vedi disegno

Coefficiente di posizione: isolata (CD = 1) Schermo esterno alla struttura: assente

Densità di fulmini a terra (fulmini/anno km²) Ng = 5,01

APPENDICE - Caratteristiche delle linee elettriche

Caratteristiche della linea: linea elettrica

La linea ha caratteristiche uniformi lungo l'intero percorso

Tipo di linea: energia - interrata

Lunghezza (m) L = 1000

Resistività (ohm x m) $\rho = 400$

Coefficiente ambientale (CE): urbano con edifici alti (> 20 m)

Linea in tubo o canale metallico

SPD ad arrivo linea: livello I (PEB = 0.01)

Caratteristiche della linea: linea segnale

La linea ha caratteristiche uniformi lungo l'intero percorso

Tipo di linea: segnale - interrata

Lunghezza (m) L = 1000

Resistività (ohm x m) $\rho = 400$

Coefficiente ambientale (CE): urbano con edifici alti (> 20 m)

Linea in tubo o canale metallico

Interfaccia isolante

APPENDICE - Caratteristiche delle zone

Caratteristiche della zona: zona interna

Tipo di zona: interna

Tipo di pavimentazione: ceramica (rt = 0,001) Rischio di incendio: ridotto (rf = 0,001)

Pericoli particolari: ridotto rischio di panico (h = 2)

Protezioni antincendio: nessuna (rp = 1)

Schermatura di zona: assente

Protezioni contro le tensioni di contatto e di passo: nessuna

Impianto interno: energia

Alimentato dalla linea linea elettrica

Tipo di circuito: Cond. attivi e PE nello stesso cavo (spire fino a 0,5 m²) (Ks3 = 0,01)

Tensione di tenuta: 1,5 kV Tensione indotta trascurabile

Sistema di SPD - livello: I (PSPD = 0.01)

Frequenza di danno tollerabile: 1,0

Impianto interno: segnale

Alimentato dalla linea linea segnale

Tipo di circuito: Cavo schermato o canale metallico (Ks3 = 0,0001)

Tensione di tenuta: 1,5 kV

Sistema di SPD - livello: Assente (PSPD =1)

Frequenza di danno tollerabile: 1,0

Valori medi delle perdite per la zona: zona interna

Rischio 1

Numero di persone nella zona: 60

Numero totale di persone nella struttura: 100

Tempo per il quale le persone sono presenti nella zona (ore all'anno): 2000 Perdita per tensioni di contatto e di passo (relativa a R1) LA = LU = 1,37E-06

Perdita per danno fisico (relativa a R1) LB = LV = 2,74E-07

Rischio 4

Valore dei muri (€): 1875000 Valore del contenuto (€): 250000

Valore degli impianti interni inclusa l'attività (€): 375000

Valore totale della struttura (€): 2500000

Perdita per avaria di impianti interni (relativa a R4) LC = LM = LW = LZ = 1,50E-03

Perdita per danno fisico (relativa a R4) LB = LV = 2,00E-04

Rischi e componenti di rischio presenti nella zona: zona interna

Rischio 1: Ra Rb Ru Rv

Rischio 4: Rb Rc Rm Rv Rw Rz

Caratteristiche della zona: esterno

Tipo di zona: interna

Tipo di pavimentazione: erba (rt = 0,01) Rischio di incendio: ridotto (rf = 0,001) Pericoli particolari: nessuno (h = 1) Protezioni antincendio: nessuna (rp = 1)

Schermatura di zona: assente

Protezioni contro le tensioni di contatto e di passo: nessuna

Impianto interno: energia

Alimentato dalla linea linea elettrica

Tipo di circuito: Cond. attivi e PE nello stesso cavo (spire fino a 0.5 m^2) (Ks3 = 0.01)

Tensione di tenuta: 1,5 kV

Sistema di SPD - livello: I (PSPD = 0,01)

Frequenza di danno tollerabile: 1,0

Valori medi delle perdite per la zona: esterno

Rischio 1

Numero di persone nella zona: 40

Numero totale di persone nella struttura: 100

Tempo per il quale le persone sono presenti nella zona (ore all'anno): 2000 Perdita per tensioni di contatto e di passo (relativa a R1) LA = LU = 9,13E-06

Perdita per danno fisico (relativa a R1) LB = LV = 9.13E-08

Rischio 4

Valore dei muri (€): 375000 Valore del contenuto (€): 50000

Valore degli impianti interni inclusa l'attività (€): 75000

Valore totale della struttura (€): 500000

Perdita per avaria di impianti interni (relativa a R4) LC = LM = LW = LZ = 1,50E-03

Perdita per danno fisico (relativa a R4) LB = LV = 2,00E-04

Rischi e componenti di rischio presenti nella zona: esterno

Rischio 1: Ra Rb Ru Rv

Rischio 4: Rb Rc Rm Rv Rw Rz

APPENDICE - Frequenza di danno

Impianto interno 1

Zona: zona interna Linea: linea elettrica Circuito: energia FS Totale: 0,0

Frequenza di danno tollerabile: 1,0

Circuito protetto: SI

Impianto interno 2

Zona: zona interna Linea: linea segnale Circuito: segnale FS Totale: 0,0

Frequenza di danno tollerabile: 1,0

Circuito protetto: SI

Impianto interno 3

Zona: esterno

Linea: linea elettrica Circuito: energia FS Totale: 0,0004

Frequenza di danno tollerabile: 1,0

Circuito protetto: SI

APPENDICE - Aree di raccolta e numero annuo di eventi pericolosi

Struttura

Area di raccolta per fulminazione diretta della struttura AD = 7,82E-03 km² Area di raccolta per fulminazione indiretta della struttura AM = 4,24E-01 km² Numero di eventi pericolosi per fulminazione diretta della struttura ND = 3,92E-02 Numero di eventi pericolosi per fulminazione indiretta della struttura NM = 2,12E+00

Linee elettriche

Area di raccolta per fulminazione diretta (AL) e indiretta (AI) delle linee:

linea elettrica

 $AL = 0.040000 \text{ km}^2$

 $AI = 4,000000 \text{ km}^2$

linea segnale

 $AL = 0.040000 \text{ km}^2$

 $AI = 4,000000 \text{ km}^2$

Numero di eventi pericolosi per fulminazione diretta (NL) e indiretta (NI) delle linee:

linea elettrica

NL = 0.001002

NI = 0,100200

linea segnale

NL = 0.001002

NI = 0.100200

APPENDICE - Valori delle probabilità P per la struttura non protetta

Zona Z1: zona interna

PA = 1.00E+00

PB = 1,0

PC (energia) = 0.00E+00

PC (segnale) = 0.00E+00

PC = 0.00E + 00

PM (energia) = 4,44E-07

PM (segnale) = 4,44E-09

PM = 4,49E-07

PU (energia) = 0.00E+00

PV (energia) = 0.00E+00

PW (energia) = 0.00E+00

PZ (energia) = 0.00E+00

PU (segnale) = 0.00E+00

PV (segnale) = 0.00E+00

PW (segnale) = 0.00E+00

PZ (segnale) = 0.00E+00

Zona Z2: esterno

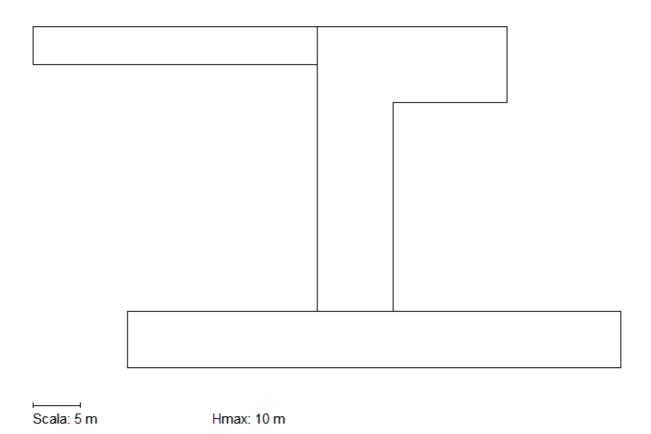
PA = 1,00E+00

PB = 1.0

PC (energia) = 1,00E-02

PC = 1,00E-02

PM (energia) = 4,44E-07

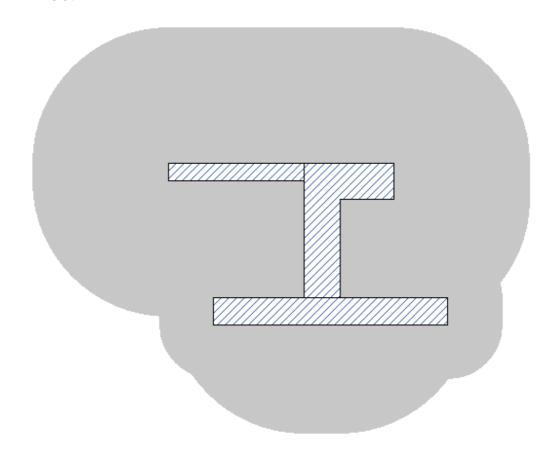

PM = 4,44E-07

PU (energia) = 0.00E+00

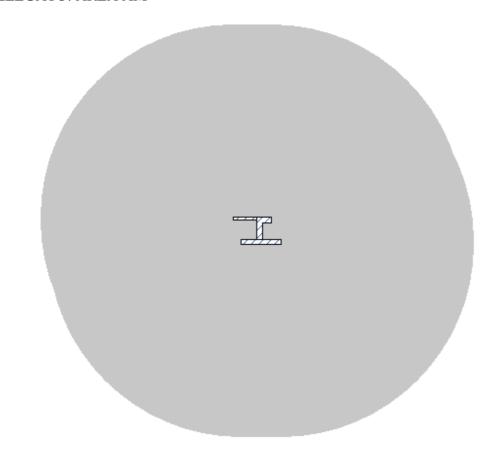
PV (energia) = 0.00E + 00

PW (energia) = 0,00E+00 PZ (energia) = 0,00E+00

ALLEGO: DISEGNO DELLA STRUTTURA


Allegato - Disegno della struttura

Committente: COMUNE DI TORINO


Descrizione struttura: PARCO DEL MEISINO Indirizzo: S.da del Meisino, 81, 10132 Torino TO

Comune: TORINO Provincia: TO

ALLEGO: AREA AD

ALLEGATO: AREA AM

ALLEGATO : VALORE Ng

VALORE DI N_G

(CEI EN 62305 - CEI EN IEC 62858)

 $N_G = 5,01$ fulmini / (anno km²)

POSIZIONE

Latitudine: 45,091874° N

Longitudine: 7,730207° E

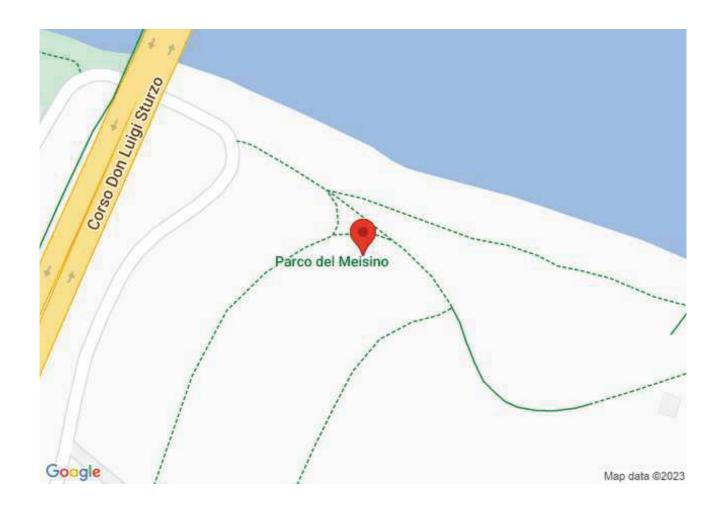
INFORMAZIONI

- Il valore di N_G è riferito alle coordinate geografiche fornite dall'utente (latitudine e longitudine, formato WGS84). E' responsabilità dell'utente verificare l'affidabilità degli strumenti utilizzati per la rilevazione delle coordinate stesse, ivi inclusi la precisione e l'accuratezza di eventuali rilevatori GPS utilizzati per rilevazioni sul campo.
- I valori di N_G derivano da rilevazioni ed elaborazioni effettuate secondo lo stato dell'arte della tecnologia e delle conoscenze tecnico-scientifiche in materia.
- Il valore di N_G dipende dalle coordinate inserite. In uno stesso Comune si possono avere più valori di N_G.
- Piccole variazioni delle coordinate possono portare a valori diversi di N_G a causa della natura discreta della mappa ceraunica.
- I dati forniti da TNE srl possiedono le caratteristiche indicate dalla norma CEI EN IEC 62858 per essere utilizzati nella analisi del rischio prevista dalla norma CEI EN 62305-2.
- I valori di N_G forniti sono di proprietà di TNE srl. Senza il consenso scritto da parte della TNE, è vietata la raccolta e la divulgazione dei suddetti dati, anche a titolo gratuito, sotto qualsiasi forma e con qualsiasi mezzo.

VALIDITA' TEMPORALE

• Il valore di N_G riportato sul presente attestato, in accordo con la norma CEI EN IEC 62858, art. 4.3, dovrà essere rivalutato a partire dal 1° gennaio 2028.

Data 10/11/2023



Coordinate in formato decimale (WGS84)

Indirizzo: Coordinate manuali

Latitudine: 45,091874

Longitudine: 7,730207

