

REPORT DI DIAGNOSI ENERGETICA

Asilo nido + consultorio Via Ghedini 22 – TORINO

Timbro e firma

Il Responsabile della diagnosi energetica
Arch. Marco Paolo Massara

Timbro e Firma

Sommario

1.	Exe	ecutive summary					
2.	Intr	oduzione	7				
	2.1.	Introduzione alla diagnosi e scopo dello studio	7				
	2.2.	Norme tecniche e legislazione di riferimento	8				
	2.2.	1. UNI CEI/TR 11428 e verifica di coerenza	13				
	2.3.	Oggetto della diagnosi	15				
	2.4.	Riferimento e contatti auditor e personale coinvolto	16				
	2.5.	Documentazione acquisita	16				
3.	Ana	ılisi dei consumi	18				
	3.1.	Unità di misura, fattori di conversione	18				
	3.2.	Modalità di raccolta dati di consumo	18				
	3.3.	Analisi dei consumi elettrici	19				
	3.4.	Analisi dei consumi termici	25				
	3.5.	Risultati dell'analisi dei consumi	27				
4.	Des	crizione dell'edificio	29				
	4.1.	Informazioni sul sito	29				
	4.2.	Inquadramento territoriale	29				
	4.3.	Foto del sito	31				
	4.4.	Dati geografici e climatici	32				
	4.5.	Caratteristiche tecniche generali e dimensionali	33				
	4.6.	Planimetrie	35				
	4.1.	Considerazioni generali sull'edificio	36				
	4.1.	Considerazioni sull'uso dell'edificio rilevate attraverso interviste	36				
5.	Мо	dello termico	37				
	5.1.	Modellazione involucro edilizio	37				
	5.2.	Modellazione impianto termico	40				
	5.3.	Confronto tra Consumo Operativo e Consumo Effettivo	42				
	5.4.	Indici di prestazione energetica	44				
6.	Pro	poste di intervento	46				
	6.1.	Generatore di calore a condensazione e valvole termostatiche	46				
	6.2.	Isolamento solaio sottotetto	47				

6	.3.	Sostituzione serramenti	47
6	.4.	Cappotto	48
6	.5.	Conclusioni	49
7.	Alle	gatigati	49

1. Executive summary

Di seguito si riassumono gli elementi principali (dati e risultati) della diagnosi energetica svolta per l'edificio sito in via Ghedini 22, Torino. L'edifico ospita l'asilo nido "LA PINETA" ed un consultorio medico. Il fabbricato è composto da 3 piani fuori terra ed 1 piano seminterrato, ingresso principale su via Ghedini, copertura realizzata con tetto parte a falde e parte piano.

Dati geometrici:

	Superficie (m²)		Volu	umetria complessiv	a (m³)
	2.248		8.712		
Piani riscaldati	Superficie utile riscaldata (m²)	Superficie disperde edilizio (Volume lordo riscaldato (m³)	Rapporto S/V (m ⁻¹)
4	1972,14	3.672,3	33	8.712,15	0,42

Caratteristiche termo-fisiche dei componenti edilizi:

Descrizione elemento opaco	U	Sup.
	[W/m²K]	[m²]
M1 E Muro perim 48cm su ESTERNO	1,303	1301,16
M2 E Muro 48cm su LNR	1,167	73,7
M3 E Muro 30cm su LNR	1,399	27,64
M4 E Cassonetto 48cm su ESTERNO	2,134	101,38
M5 E Sottofinestra muro17cm su ESTERNO	2,234	118,66
M6 E Sottofinestra doppialamiera4cm su ESTERNO	2,857	2,58
M7 E Sottofinestra doppialamiera2cmISOL su ESTERNO	1,754	2,53
M8 E Porta REI su LNR	1,211	2,35
M9 E Porta REI su ESTERNO	1,359	5,81
P1 Pavim piano interrato su TERRENO vespaio areato	0,389	562,51
P4 EP Pavimento su LNR	1,332	282,91
S2 EP Soffitto tetto piano su ESTERNO	1,501	237
S3 E Soffitto tetto inclinato su LNR sottotetto	1,856	602,78

Descrizione elemento trasparente	U	Sup.
	[W/m²K]	[m²]
W1 E Fin120x210 Legno VS	4,219	163,8
W2 E Fin160x210 Legno VS	4,316	60,48
W3 E Porta115x285 Ferro VS	5,875	4,03
W4 E Porta115x285 Legno VD	2,542	2,68
W5 E Fin70x210 Legno VS	4,186	22,05
W6 E Porta160x285 Legno VS	2,916	13,68
W7 E Porta160x285 Legno VS	4,079	9,12
W8 E Porta160x285 Legno VS	3,818	4,56
W9 E Porta160x285 Legno VS	3,818	4,56
W10 E Fin60x85 Ferro VS	6,042	7,65
W11 E Porta120x295 Ferro VS	6,096	3,54
W12 E Porta115x260 Alluminio VS	6,161	3,45
W13 E Fin115x170 Alluminio VD	4,962	1,96
W14 E Fin115x170 Legno VS	4,341	48,88
W15 E porta115x260 Legno VS	3,642	2,99
W16 E Porta150x290 Legno VD	2,874	30,45
W17 E 160x215 Legno VD	2,866	7,2
W18 E porta115x280 Legno VS	4,304	6,45
W19 E porta115x230 Legno VS	3,861	2,64
W20 E Fin70x170 Legno VS	4,224	1,19
W21 E Fin65x100 Legno VS	4,094	0,65

Consumi termici reali:

	Stagione 2012/'13	Stagione 2013/'14	Stagione 2014/'15
Consumi reali (Smc)	49.132	44.627	44.502
GG	2.502	2.136	2.161
Consumo Specifico (Smc/mc risc.)	5,6	5,1	5,1

Consumi elettrici:

	Anno 2014	Anno 2015
Consumo elettrico (kWh)	62.505	63.131

Consumo Specifico (kWh/mc) 7,17 7,25

Interventi proposti:

Interventi	Investimento		Risparmio		РВ
	€	%	Smc	€/anno	anni
Generatore di calore a condensazione + valvole + regolazione climatica	43748	38%	18648	12681	3
Isolamento sottotetto	24111	13%	6303	4286	6
Serramenti	180900	15%	7323	4980	36
Cappotto	153960	22%	10891	7406	21

2. Introduzione

2.1.Introduzione alla diagnosi e scopo dello studio

La diagnosi energetica viene definita, nell'ambito della legislazione che regolamenta l'efficienza energetica negli usi finali dell'energia, come la "procedura sistemica volta a fornire un'adeguata conoscenza del profilo di consumo energetico di un edificio o gruppo di edifici, di un'attività o impianto industriale o di servizi pubblici o privati, ad individuare e quantificare le opportunità di risparmio energetico sotto il profilo costi-benefici e riferire in merito ai risultati".

La diagnosi energetica, oltre ad essere un servizio obbligatorio per i soggetti coinvolti, diventa utile al committente nel momento in cui quest'ultimo riesca a trovarvi le informazioni necessarie per decidere se e quali interventi di risparmio energetico mettere in atto. La conoscenza delle opportunità di risparmio energetico e la riduzione dei consumi sono gli elementi fondamentali di una diagnosi.

I vantaggi conseguenti alla Diagnosi Energetica possono quindi essere:

- maggiore efficienza energetica del sistema;
- riduzione dei costi per gli approvvigionamenti di energia elettrica e gas;
- miglioramento della sostenibilità ambientale;
- riqualificazione del sistema energetico;

Tali obiettivi sono raggiungibili attraverso l'utilizzo dei seguenti sistemi:

- razionalizzazione dei flussi energetici;
- recupero delle energie disperse (es. recupero del calore);
- individuazione di tecnologie per il risparmio di energia;
- autoproduzione di parte dell'energia consumata;
- miglioramento delle modalità di conduzione e manutenzione (O&M);
- buone pratiche;
- ottimizzazione dei contratti di fornitura energetica.

2.2.Norme tecniche e legislazione di riferimento

	NORME TECNICHE E LEGISLAZIONE DI RIFERIMENTO					
	DIRETTIVE EUROPEE					
(1)	<u>Dir. Eu.</u> 2003/87/CE	Direttiva Europea Emission Trading	Istituisce un sistema per lo scambio di quote di emissioni dei gas a effetto serra nella Comunità e che modifica la direttiva 96/61/CE del Consiglio			
(2)	<u>Dir. Eu.</u> 2012/27/UE	Direttiva Europea sull'efficienza energetica	Modifica le direttive 2009/125/CE e 2010/30/UE e abroga le direttive 2004/8/CE e 2006/32/CE			
		LEGGI ITA	LIANE			
(3)	<u>D. Lgs.</u> 4 aprile 2006, n° 216	Attuazione delle direttive 2003/87 e 2004/101/CE in materia di scambio di quote di emissioni dei gas a effetto serra	Tra i settori industriali regolati dalla direttiva ET rientrano anche gli Impianti per la fabbricazione di prodotti ceramici mediante cottura con una capacità di produzione di oltre 75 tonnellate al giorno e con una capacità di forno superiore a 4 m³ e con una densità di colata per forno superiore a 300 kg/m³			
(4)	D. Lgs 115/08	Attuazione della direttiva 2006/32/CE relativa all'efficienza degli usi finali dell'energia e i servizi energetici	Decreto con cui si promuove la diffusione dell'efficienza energetica in tutti i settori. E' introdotta e definita la diagnosi energetica. Decreto abrogato dal D. Lgs 102/14			
(5)	D. Lgs.3 marzo 2011, n° 28	Attuazione della direttiva 2009/28/CE del 23 aprile 2009 del Parlamento europeo e del Consiglio sulla promozione dell'uso dell'energia da fonti rinnovabili	Decreto che definisce gli strumenti, i meccanismi, gli incentivi e il quadro istituzionale, finanziario e giuridico, necessari per il raggiungimento degli obiettivi fino al 2020 in materia di quota complessiva di energia da fonti rinnovabili sul consumo finale lordo di energia e di quota di energia da fonti rinnovabili nei trasporti.			
(6)	D. Lgs 102/14	Attuazione della direttiva 2012/27/UE sull'efficienza energetica	In aggiunta l' <u>Allegato 2</u> che riporta i criteri minimi per gli audit energetici, compresi quelli realizzati nel quadro dei sistemi di gestione dell'energia			
(7)	D.M. 26 giugno 2015	Schemi e modalità di riferimento per la compilazione della relazione tecnica di progetto ai fini dell'applicazione delle prescrizioni e dei requisiti minimi di prestazione energetica negli edifici.	Decreto che detta i criteri generali e i requisiti delle prestazioni energetiche degli edifici. Requisiti e prescrizioni specifici per gli edifici di nuova costruzione o soggetti a ristrutturazioni importanti e/o sottoposti a riqualificazione energetica			
		NORME TE	CNICHE			
(8)	<u>UNI EN ISO</u> 6946 : 2008	Componenti ed elementi per edilizia – Resistenza termica e trasmittanza termica – Metodo di calcolo	Metodologia di calcolo per le resistenze termiche e le trasmittanze termiche dei componenti opachi			
(9)	<u>UNI EN ISO</u> <u>10077 – 1 :</u> <u>2007</u>	Prestazione termica di finestre, porte e chiusure oscuranti – Calcolo della trasmittanza termica – Parte 1: generalità	La norma fornisce metodi di calcolo semplificati di stima delle prestazioni termiche dei telai e valori tabulati della trasmittanza termica delle principali tipologie di vetrazioni			

(10)	<u>UNI EN ISO</u> 10211 : 1998	Ponti termici in edilizia. Flussi termici e temperature superficiali. Calcoli dettagliati	La norma definisce le specifiche dei modelli geometrici 3D e 2D di un ponte termico, ai fini del calcolo numerico. La norma include i limiti del modello geometrico e le sue suddivisioni, le condizioni limite ed i valori termici che sono ad esse collegate
(8)	<u>UNI 10339 :</u> <u>1995</u>	Indicazioni in merito alla classificazione e la definizione dei requisiti minimi degli impianti e dei valori delle grandezze di riferimento durante il funzionamento degli stessi	Applicata agli impianti aeraulici destinati al benessere delle persone e consentire di raggiungere e mantenere: le condizioni di qualità e movimento dell'aria e le condizioni termiche ed igrometriche dell'aria specifiche delle funzioni assegnate (filtrazione, riscaldamento)
(9)	<u>UNI 10349 :</u> <u>1994</u>	Dati climatici necessari per il riscaldamento ed il raffrescamento	La seguente norma fornisce i dati climatici convenzionali necessari per la progettazione e la verifica sia degli edifici sia degli impianti tecnici per il riscaldamento ed il raffrescamento
(10)	<u>UNI 10351 :</u> <u>1994</u>	Valori di conduttività termica e permeabilità al vapore dei materiali da costruzione	La presente norma fornisce i valori conduttività termica e di permeabilità al vapore dei materiali da costruzione. Deve essere applicata quando non esistano specifiche norme per il materiale considerato
(11)	<u>UNI 10355 :</u> <u>1994</u>	Murature e solai: Valori della resistenza termica e metodo di calcolo	La norma fornisce i valori delle resistenze termiche unitarie di tipologie di pareti e solai più diffuse in Italia
(12)	<u>UNI EN ISO</u> 10456 : 2008	Materiali e prodotti per l'edilizia – proprietà igrometriche – Valori tabulati di progetto e procedimenti per la determinazione dei valori termici dichiarati e di progetto	La norma specifica i metodi per la determinazione dei valori termici dichiarati e di progetto per materiali e prodotti per l'edilizia tecnicamente omogenei. Fornisce i procedimenti per convertire i valori ottenuti per un insieme di condizioni in quelli validi per un altro insieme di condizioni
(13)	<u>UNI/TS 11300</u> - 1 : 2014	Prestazione energetica degli edifici – Determinazione del fabbisogno di energia termica dell'edificio per la climatizzazione estiva ed invernale	La norma specifica i procedimenti di calcolo per la determinazione dei fabbisogni di energia termica per la climatizzazione estiva ed invernale dell'edificio
(14)	UNI/TS 11300 - 2 : 2014	Prestazione energetica degli edifici – Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione invernale e la produzione di acqua calda sanitaria	La norma fornisce oltre ai metodi di calcolo dei fabbisogni di energia termica utile per la produzione di acqua calda sanitaria ed il calcolo dei fabbisogni di energia fornita e energia primaria per i servizi di climatizzazione invernale e acqua calda sanitaria, anche il metodo di calcolo per la determinazione del fabbisogno di energia primaria per il servizio di ventilazione e le indicazioni e i dati nazionali per la determinazione dei fabbisogni di energia primaria per il servizio di illuminazione, per edifici non residenziali, in accordo con la UNI EN 15193
(15)	<u>UNI/TS 11300</u> <u>– 3 : 2014</u>	Prestazione energetica degli edifici – Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione estiva	La prestazione energetica di un edificio esprime la quantità di energia primaria richiesta per la climatizzazione degli ambienti e per la produzione di acqua calda sanitaria in condizioni di riferimento per

			quanto riguarda i dati climatici, le temperature interne ed il consumo di acqua calda sanitaria
(16)	<u>UNI/TS 11300</u> <u>– 4 : 2016</u>	Prestazione energetica degli edifici – Utilizzo di energie rinnovabili e altri metodi di generazione per riscaldamento di ambienti e preparazione di acqua calda sanitaria	La specifica calcola il fabbisogno di energia primaria per la climatizzazione invernale e la produzione di acqua calda sanitaria nel caso vi siano sottosistemi di generazione che forniscono energia termica utile da energie rinnovabili o con metodi di generazione diversi dalla combustione a fiamma di combustibili fossili trattata nella UNI/TS 11300-2
(17)	<u>UNI CEI</u> <u>11339</u>	Gestione dell'energia. Esperti in gestione dell'energia. Requisiti generali per la qualificazione	E' la norma che stabilisce i requisiti perché una persona possa diventare Esperto in Gestione dell'Energia (EGE): compiti, competenze e modalità di valutazione
(18)	<u>UNI CEI TR</u> 11428:2011	Gestione dell'energia. Diagnosi energetiche: Requisiti generali del servizio di diagnosi energetica	È la norma che regola i requisiti e la metodologia comune per le diagnosi energetiche nonché la documentazione da produrre
(19)	<u>UNI EN 12831</u> <u>: 2006</u>	Impianti di riscaldamento negli edifici – Metodo di calcolo del carico termico di progetto	La norma fornisce metodi di calcolo delle dispersioni termiche di progetto e del carico termico in condizioni di progetto. Essa può essere utilizzata per tutti gli edifici con altezza interna non maggiore di 5 m, ipotizzati in regime termico stazionario alle condizioni di progetto
(20)	<u>UNI EN ISO</u> 13370 : 2001	Prestazione termica degli edifici – Trasferimento di calore attraverso il terreno – Metodi di calcolo	La norma descrive i metodi di calcolo dei coefficienti del trasferimento del calore e dei flussi termici degli elementi di edifici in contatto con il terreno, compresi le solette appoggiate al terreno, le solette su intercapedine e soprasuoli. Essa si applica agli elementi di edifici o loro parti, che si trovano al di sotto del piano orizzontale delimitato dal perimetro esterno dell'edificio
(21)	<u>UNI EN ISO</u> 13786 : 2001	Prestazione termica dei componenti per edilizia – caratteristiche termiche dinamiche – Metodi di calcolo	La norma definisce metodi per il calcolo del comportamento termico in regime dinamico di componenti edilizi completi. Inoltre essa specifica quali siano le informazioni sul componente edilizio necessarie per il calcolo. Nelle appendici sono forniti metodi semplificati per la stima delle capacità termiche, informazioni per informatizzare il metodo di calcolo, un esempio di calcolo per un componente edilizio
(22)	<u>UNI EN ISO</u> 13789 : 2001	Prestazione termica degli edifici – Coefficienti di trasferimento del calore per trasmissione e ventilazione – Metodo di calcolo	La norma specifica un metodo e fornisce le convenzioni per il calcolo del coefficiente di perdita di calore per trasmissione di un intero edificio e di parti di edificio
(23)	<u>UNI EN ISO</u> 13790 : 2005	Prestazione energetica degli edifici – Calcolo del fabbisogno di energia per il riscaldamento e il raffrescamento	La norma fornisce un metodo di calcolo semplificato per la determinazione del fabbisogno energetico annuo per il riscaldamento di edifici residenziali e non residenziali, o di loro parti
(24)	<u>UNI EN ISO</u>	Sistemi di gestione ambientale –	La ISO 14001 è una norma internazionale di carattere volontario, applicabile a tutte le tipologie di imprese,

	14001 : 2004	Requisiti e guida per l'uso	che definisce come deve essere sviluppato un efficace
			Sistema di Gestione Ambientale. La Certificazione ISO 14001 dimostra l'impegno concreto nel minimizzare
			l'impatto ambientale dei processi, prodotti e servizi e attesta l'affidabilità del Sistema di Gestione
			Ambientale applicato. La norma richiede che l'Azienda
			definisca i propri obiettivi e target ambientali e implementi un Sistema di Gestione Ambientale che
			permetta di raggiungerli.
		Ponti termici in edilizia – Coefficiente di trasmissione	La norma specifica dei metodi semplificati per la determinazione del flusso di calore attraverso i ponti
(25)	<u>UNI EN ISO</u> 14683 : 2001	termica lineica – Metodi	termici lineari che si manifestano alla giunzioni degli
	<u> </u>	semplificati e valori di riferimento	elementi dell'edificio. Essa non tratta i ponti termici associati agli infissi e alle facciate
	UNI EN ISO	Impianti di riscaldamento degli edifici – Metodo di calcolo dei	Parte 4-8: Sistemi di generazione per il riscaldamento
(26)	<u>15316 – 4 – 8</u>	requisiti energetici e dei	degli ambienti, riscaldamento ad aria e sistemi di riscaldamento radianti
	<u>: 2011</u>	rendimenti dell'impianto	
		Calcoli dei risparmi e	La norma ha lo scopo di fornire un approccio generale per i calcoli dei risparmi e dell'efficienza energetica
(27)	UNI CEI EN	dell'efficienza energetica - Metodi top-down (discendente)	utilizzando metodologie standard. L'impostazione della
(27)	<u>16212 : 2012</u>	e bottom-up	norma permette l'applicazione ai risparmi energetici negli edifici, nelle automobili, nei processi industriali,
		(ascendente)	ecc. Il suo campo d'applicazione è il consumo
			energetico in tutti gli usi finali La norma definisce i requisiti e fornisce
			raccomandazioni sulla metodologia di benchmarking
(28)	<u>UNI CEI EN</u>	Metodologia di benchmarking	dell'efficienza energetica. Lo scopo del benchmarking è l'individuazione di dati chiave e indicatori del consumo
, ,	<u>16231 : 2012</u>	dell'efficienza energetica	energetici. Gli indicatori possono essere sia tecnici che
			comportamentali, qualitativi e quantitativi, e devono essere mirati alla comparazione delle prestazioni
			È la norma europea che regola i requisiti e la
			metodologia comune per le diagnosi energetiche nonché la documentazione da produrre:
(29)	UNI CEI EN	Requisiti e la metodologia comune per le diagnosi	Parte 1 - Requisiti generali
, ,	<u>16247 : 2012</u>	energetiche	Parte 2 - Edifici Parte 3 - Processi
			Parte 4 - Trasporti
			Parte 5 – Auditor energetici (in fase di elaborazione) E' la versione ufficiale italiana della norma
	<u>UNI CEI EN</u>		internazionale ISO 50001. La norma specifica i requisiti
(30)	ISO	Sistemi di gestione dell'energia - Requisiti e linee guida per l'uso	per creare, avviare, mantenere e migliorare un sistema di gestione dell'energia. L'obiettivo di tale sistema è di
	<u>50001 : 2011</u>	rrequisiti e ililee gulua per i uso	consentire che un'organizzazione persegua, con un
			approccio sistematico, il miglioramento continuo della propria prestazione energetica comprendendo in

	questa l'efficienza energetica nonché il consumo e l'uso dell'energia. La norma ha sostituito la UNI CEI EN
	16001, di derivazione europea

2.2.1. UNI CEI/TR 11428 e verifica di coerenza

Al fine di sintetizzare schematicamente la metodologia di lavoro adottata, si riporta di seguito un algoritmo riassuntivo delle fasi di lavoro di audit eseguito come previsto dalla "Procedura di dettaglio della diagnosi energetica" riportata nella UNI CEI TR 11428 par. 4.7.

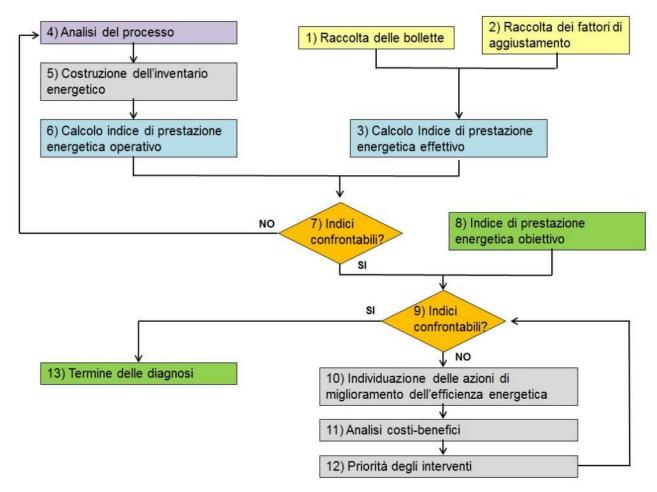


Figura 1 - Azioni previste per la Diagnosi Energetica secondo la norma UNI CEI TR 11428

In base alla norma UNI CEI TR 11428, la Diagnosi Energetica (DE) deve prevedere almeno le seguenti azioni:

1)	raccolta dei dati relativi alle bollette di fornitura energetica e ricostruzione dei consumi effettivi	CAP.3
	di elettricità e combustibili, per uno o più anni considerati significativi ai fini della DE;	
2)	identificazione e raccolta dei fattori di aggiustamento cui riferire i consumi energetici (es.: orari	CAP.3
	di utilizzo; superfici, volumetrie, gradi giorno)	
3)	identificazione e calcolo di un indice di prestazione energetica effettivo espresso in	
	energia/fattore di riferimento (es.: Tep/unità di prodotto anno, GJ/posto letto anno; kWh/m²	CAP.5
	anno);	
4)	raccolta delle informazioni necessarie alla creazione dell'inventario energetico e allo	
	svolgimento della diagnosi (es.: Processo produttivo, censimento dei macchinari, layout e	CADAGE
	planimetrie, contratti di fornitura energetica, dati dell'edificio e degli impianti di produzione e	CAP.4 e 5
	trasformazione dell'energia);	
5)	costruzione degli inventari energetici (elettrico e termico) relativi all'oggetto della diagnosi;	CAP.5
6)	calcolo dell'indice di prestazione energetica operativo;	PAR. 5.4
7)	confronto tra l'indice di prestazione energetica operativo e quello effettivo. Se gli indici	
	tendono a convergere, si prosegue l'analisi col passo successivo; altrimenti si ritorna al passo	
	4) e si affinerà l'analisi del processo produttivo e degli inventari energetici individuando le	DAD E 2
	cause della mancata convergenza. La convergenza tra gli indici può considerarsi raggiunta per	PAR.5.3
	scostamenti percentuali tra gli indici ritenuti accettabili in funzione del settore d'intervento e	
	dello stato del sistema energetico;	
8)	individuazione dell'indice di prestazione energetica obiettivo (Nota. Il valore di riferimento	
	serve per il confronto con l'indice di prestazione energetica che, in funzione del mandato	
	impartito al REDE, può essere la media di settore o il benchmark o un riferimento di legge o il	
	consumo precedente ridotto di una certa percentuale per lo stesso settore di intervento. Il	
	dato può essere reperito dalla letteratura, da studi di mercato, presso gli uffici studi delle	
	associazioni di categoria, da istituii di ricerca, dalle stazioni sperimentali, da atti di congressi,	
	oppure può anche essere un riferimento normativo).	
9)	se i valori espressi dagli indicatori sono tra loro comparabili, la diagnosi può considerarsi	
,	conclusa in quanto l'obiettivo definito dall'indice di riferimento è stato raggiunto;	
10)	se esiste uno scarto significativo tra l'indice di prestazione operativo ottenuto nel punto 6 e	
,	l'indice di prestazione obiettivo di cui al punto 8, si individuano le misure di miglioramento	
	dell'efficienza che consentano il loro riallineamento;	
11)	per tali misure devono essere condotte le rispettive analisi di fattibilità tecnico-economiche;	CAP. 6
12)	le misure individuate, singole e/o integrate, sono ordinate in funzione degli indici concordati	
,	tra il REDE e il committente. Al termine di tale operazione, eseguire nuovamente il punto 9);	CAP. 6
13)	una volta attuati i passi di cui sopra, la diagnosi si considera conclusa.	

2.3.0ggetto della diagnosi

L'obiettivo di questo documento è quello di riportare gli esiti della diagnosi energetica effettuata dalla Fondazione Torino Smart City per conto di IREN Servizi e Innovazione sul complesso comunale Asilo Nido e Consultorio medico sito in via Ghedini, 22 a Torino.

Dati geometrici:

Superficie (m²)			Volumetria complessiva (m³)		
2.248			8.712		
Piani riscaldati	Superficie utile riscaldata (m²)	Superficie disperde edilizio (Volume lordo riscaldato (m³)	Rapporto S/V (m ⁻¹)
4	1972,14	3.672,33		8.712,15	0,42

L'analisi dei consumi si basa sui consumi termici riferiti alle stagioni termiche 2012/2013, 2013/2014, 2014/2015 e per quanto riguarda i consumi elettrici, quelli riferiti agli anni 2014 e al 2015.

Consumi termici:

	Stagione 2012/'13	Stagione 2013/'14	Stagione 2014/'15
Consumi reali (Smc)	49.132	44.627	44.502
GG	2.502	2.136	2.161
Consumo Specifico (Smc/mc risc.)	5,6	5,1	5,1

Consumi elettrici:

	Anno 2014	Anno 2015	
Consumo elettrico (kWh)	62.505	63.131	
Consumo Specifico (kWh/mc)	7,17	7,25	

Figura 2 - Vista aerea dell'edificio oggetto di analisi

2.4. Riferimento e contatti auditor e personale coinvolto

NOME	FUNZIONE		
arch. Marco Paolo Massara	Tecnico Fondazione Torino Smart City		
arch. Gian Luca Cesario	Tecnico Fondazione Torino Smart City		

2.5.Documentazione acquisita

I documenti acquisiti sono:

- elaborati grafici in formato digitale (planimetrie, sezioni e prospetti);
- consumi termici rilevati attraverso letture periodiche per le stagioni termiche 2012/2013, 2013/2014 e 2014/2015;
- consumi elettrici da bollette per gli anni 2014 e 2015;
- documentazione fotografica prodotta durante i sopralluoghi.
- documentazione fotografica della centrale termica;
- rilievo con strumentazione non invasiva.

Strumentazione non invasiva utilizzata nei sopralluoghi:

Bindella metrica e distanziometro laser:

strumenti utilizzati al fine di definire i volumi riscaldati e le superfici disperdenti; misurazione dei locali e dei serramenti con l'utilizzo di bindella metrica e distanziometro laser.

Macchina fotografica digitale:

strumento utilizzato per registrare informazioni di interesse quali le tipologie dei componenti opachi e trasparenti, i terminali di emissione, i corpi illuminanti ed i componenti della centrale termica, con il rilievo di tutti i dati necessari di targa.

Rilevatore trattamento bassoemissivo:

Lo strumento Low-E identifica i vetri con trattamenti di basso emissivo semplicemente premendo un pulsante.

I vetri di tipo basso emissivo, sono componenti vitali nell'efficienza delle finestre e/o porte finestrate.

Lo strumento permette oltre alla rilevazione dei trattamenti anche la possibilità di identificare qual è la faccia del vetro trattata.

Spessivetro:

Lo strumento, particolarmente semplice e preciso, permette misure accurate sul vetro e sulle vetrocamera fino a 3 camere. Lo strumento può misurare le seguenti tipologie di vetro: vetro semplice piano; vetro a 1, 2, 3 camere d'aria; vetro camera con pellicola PVB; vetro stratificato.

3. Analisi dei consumi

3.1.Unità di misura, fattori di conversione

Nel presente documento, i vettori energetici sono espressi con le seguenti unità di misura:

Energia elettrica [kWh_e]
 Metano [Smc]

Ogni vettore è inoltre correlato con il fattore di conversione in tonnellate di petrolio equivalente (circolare Mise del 18 dicembre 2014 e indicazioni ENEA).

Unità di misura e fattori di conversione dei vettori energetici

VETTORE	FATTORE DI CONVERSIONE IN TEP	UNITÀ DI MISURA	FONTE
Energia Elettrica	0,000187	tep/kWh _e	ENEA
Metano	0,000777	tep/Smc	ENEA
Densità	0,678	Kg/Smc	LINEA

3.2.Modalità di raccolta dati di consumo

Tutti i dati energetici sono costituiti da:

- Lettura diretta in campo;
- Analisi dei dati relativi alle bollette;
- Stima dei consumi delle utenze non monitorate.

3.3.Analisi dei consumi elettrici

L'edificio possiede un POD unico:

POD	
	IT020E00257752

Si riportano di seguito i consumi, da bolletta, relativi agli anni 2014 e 2015 in quanto unici dati disponibili.

MESE	kWh	Tot fattura [€] (IVA INCLUSA)	
gen-14	5.984	€ 1.382,98	
feb-14	5.985	€ 1.339,31	
mar-14	5.784	€ 1.395,95	
apr-14	4.830	€ 1.160,99	
mag-14	5.297	€ 1.284,95	
giu-14	4.480	€ 1.079,74	
lug-14	4.118	€ 997,49	
ago-14	2.326	€ 532,64	
set-14	4.852	€ 1.172,96	
ott-14	6.116	€ 1.456,95	
nov-14	6.561	€ 1.562,88	
dic-14	6.172	€ 1.471,12	
Totale	62.505	€ 14.837,96	

MESE	kWh	Tot fattura [€] (IVA INCLUSA)
gen-15	6.305	€ 1.376,77
feb-15	5.870	€ 1.298,92
mar-15	6.405	€ 1.413,35
apr-15	5.268	€ 1.170,60
mag-15	5.083	€ 1.131,69
giu-15	4.522	€ 1.007,95
lug-15	5.130	€ 1.130,50
ago-15	2.440	€ 566,58
set-15	4.785	€ 1.081,69
ott-15	5.968	€ 1.332,33
nov-15	5.856	€ 1.315,01
dic-15	5.499	€ 1.222,42
Totale	63.131	€ 14.047,81

Costo unitario medio (per gli anni 2014 e 2015) del vettore energia elettrica:

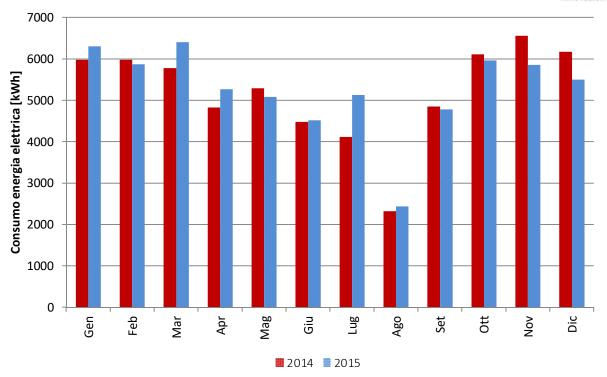


Figura 3 - Andamento mensile consumi elettrici relativi anni 2014 e 2015

Il trend dei consumi mensili di energia elettrica segue un tipico andamento da scuola d'infanzia con drastico calo dei consumi ad agosto con struttura chiusa.

I consumi elettrici sono dovuti principalmente a:

- illuminazione ambienti indoor;
- Pompe di circolazione dei circuiti idronici di riscaldamento
- Apparecchiature varie.

in sede di sopraluogo sono state identificate le seguenti apparecchiature alimentate elettricamente:

Asilo:

- in cucina un forno da 6 kW, un armadio frigo, una lavastoviglie ed una cappa di potenza indefinita;
- in lavanderia 4 lavatrici: una da 20,5 kW, una da 10,5 kW (con allaccio ACS, la più utilizzata, 5-6 lavaggi/giorno) e due da 1,85 kW;
- un montavivande ed un boyler elettrico da 1,2 kW nella cucinetta al piano rialzato;
- un ascensore oleodinamico da 18,4 kW;

ASL:

- boylers elettrici nei servizi igienici.

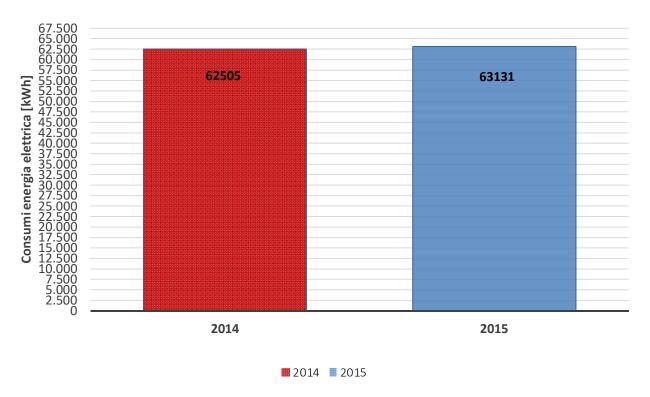


Figura 4 - Consumi elettrici annui 2014-2015

Complessivamente, tra il 2014 e il 2015 si registra una minima differenza nei consumi elettrici.

Come noto, per la legge economica della domanda-offerta, il valore dell'energia elettrica varia al variare del momento del consumo. L'Autorità per l'Energia Elettrica e il Gas con decorrenza 1 gennaio 2007, ha definito le seguenti fasce orarie:

- Fascia F1 (ore di punta): dal lunedì al venerdì: dalle ore 8.00 alle ore 19.00, escluse le festività nazionali;
- Fascia F2 (ore intermedie): dal lunedì al venerdì: dalle ore 7.00 alle ore 8.00 e dalle ore 19.00 alle ore 23.00, escluse le festività nazionali. Il sabato: dalle ore 7.00 alle ore 23.00, escluse le festività nazionali;
- Fascia F3 (ore fuori punta): dal lunedì al sabato: dalle ore 00.00 alle ore 7.00 e dalle ore 23.00 dalle ore 24.00. La domenica e festivi: tutte le ore della giornata.

Nei seguenti grafici si analizza il consumo di energia elettrico suddiviso per fasce.

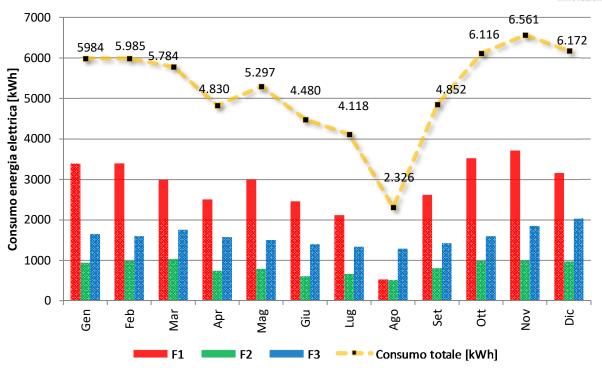


Figura 5 - Consumi mensili di energia elettrica suddiviso per fasce - Anno 2014

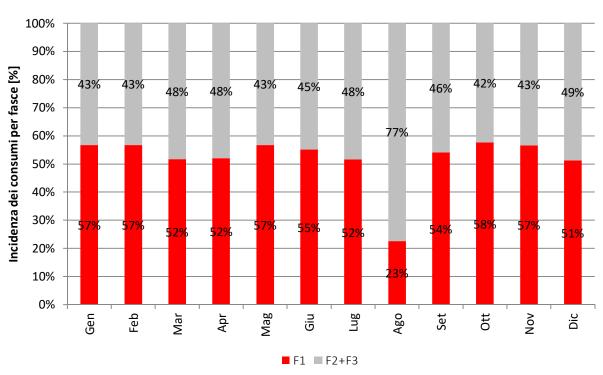


Figura 6 - Incidenza dei consumi per fasce - Anno 2014

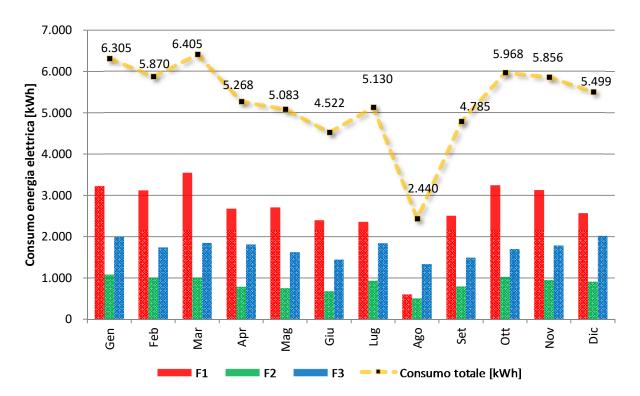


Figura 7 - Consumi mensili di energia elettrica suddiviso per fasce - Anno 2015

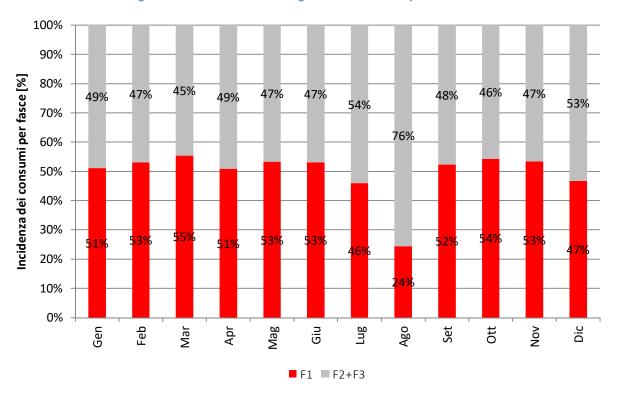


Figura 8 - Incidenza dei consumi per fasce - Anno 2015

L'importanza di un'analisi per fasce è dovuta al fatto di verificare se durante le ore non lavorative i consumi di energia calino oppure no. Nei grafici precedenti si può osservare come la differenza tra i consumi in fascia F1 e quelli in fascia F2 ed F3 sia abbastanza marcata, soprattutto nel periodo invernale; inoltre si può riscontrare come i consumi in fascia F3 risultano sempre superiori ai consumi in fascia F2 e nei mesi estivi si

avvicinano a quelli di fascia F1. Infine se si sommano i dati delle fasce F2 e F3, si nota come i consumi cumulati siano praticamente analoghi >(tranne il mese di agosto) a quelli della fascia F1.

L'analisi per fasce lascia presupporre che alcune utenze elettriche (come ad esempio l'impianto d'illuminazione interno ed esterno, le fotocopiatrici/stampanti, alcuni computer o specifici utilizzatori di energia elettrica) rimangano accese la sera/notte e durante il fine settimana, e non esista una regolazione automatica delle accensioni e degli spegnimenti in funzione delle reali necessità.

Per quanto riguarda gli impianti di illuminazione interna, in sede di sopralluogo è stata rilevata, ove possibile, la disposizione delle apparecchiature di illuminazione interna di alcuni locali tipo (aula, corridoio, palestra, ecc.).

Le apparecchiature di illuminazione interna sono costituite essenzialmente da plafoniere e/o apparecchiature ad incasso dotate di sorgenti luminose a tubi fluorescenti con alimentatori elettromagnetici e/o elettronici.

Di seguito si riporta l'elenco delle apparecchiature dei locali tipo esaminati e il relativo calcolo della potenza specifica installata.

STATO DI FATTO							
ZONA	ZONA ILLUMINAZIONE POTENZA						
Locale Superficie utile [m²]		n° delle lampade	n° dei bulbi	Potenza [W]	Potenza installata [W]	Potenza specifica [W/m²]	
19 AULE ASILO p.1°	106,2	20	1	26	520	4,9	
31 WC ASILO p.1°	28,6	6	1	36	216	7,6	
9 ATRI ASL p.t.	80,7	15	1	36	540	6,7	
11 WC ASL p.t.	12,2	3	1	18	54	4,4	

3.4. Analisi dei consumi termici

L'edificio possiede un PDR unico:

PDR	09951207813484
IDK	09951207813484

I consumi analizzati derivano da lettura stagionale del contatore:

Consumo metano gest. 2012/2013	Consumo metano gest. 2013/2014	Consumo metano gest. 2014/2015	
mc	mc	mc	
49132	44627	44502	

60.000

50.000

40.000

49.132

44.627

44.502

Figura 9 - Consumi di metano ultime tre stagioni di riscaldamento

■ 2012/2013 **■** 2013/2014 **■** 2014/2015

I Gradi Giorno reali (fonte ARPA) delle 3 stagioni termiche sono:

GG 2012/2013 GG 2013/2014		GG 2014/2015	GG Torino MEDI rilevati
2.502	2.136	2.161	2.266

I consumi normalizzati risultano essere:

	Stagione termica 2012/'13	Stagione termica 2013/'14	Stagione termica 2014/'15
Consumi normalizzati (Smc)	44.507	47.353	46.674
Consumo Specifico (Smc/mc risc.)	5,11	5,44	5,36

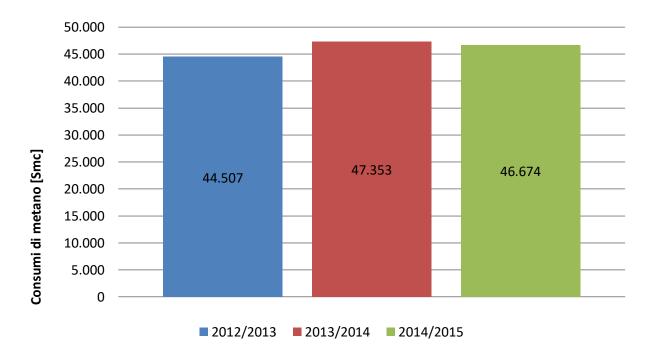


Figura 10 - Consumi di metano normalizzati ultime tre stagioni di riscaldamento

Il grafico ci restituisce un andamento dei consumi di gas all'incirca simile per ogni periodo.. Il consumo medio riferito al periodo in analisi è di **46.178 Smc**.

Il costo complessivo di approvvigionamento del combustibile, utilizzato per le simulazioni, è pari a:

0,68 €/Smc IVA ESCLUSA

3.5.Risultati dell'analisi dei consumi

In questo paragrafo sono presentati i risultati principali dell'analisi dei consumi, mentre si rimanda al capitolo 4 per il dettaglio dell'analisi. Le informazioni qui riportate sono: la ripartizione del fabbisogno energetico distinguendo tra vettori energetici.

	Smc	TEP
Consumo medio metano	46.087	35,8
	kWh	TEP
Consumo medio En. El.	62.818	11,7

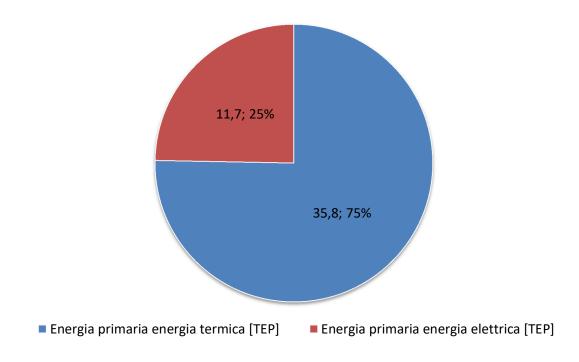


Figura 11 - Ripartizione dei consumi in energia primaria [TEP]

Il grafico evidenzia che i consumi di energia primaria per la produzione di energia termica costituiscono la gran parte dei consumi dell'edificio.

Di seguito sono riportate le spese medie sostenute per il consumo di gas metano ed energia elettrica:

Servizio	€/anno	%
Spesa media per usi termici	31.624,90	69%

Spesa media per usi elettrici	14.442,89	31%
Totale	46.067,78	100%

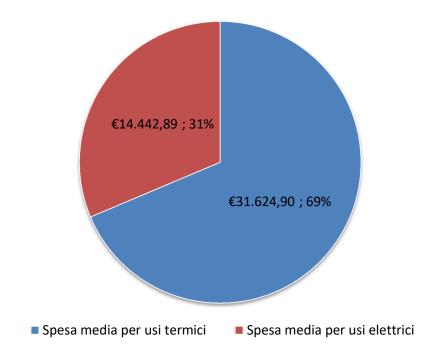


Figura 12 - Ripartizione della spesa energetica

4. Descrizione dell'edificio

4.1.Informazioni sul sito

Comune	Torino		
Nome edificio	Asilo nido e Consultorio medico		
Indirizzo	Via Ghedini, 22		
Destinazione d'uso	E.7 - Edifici adibiti ad attività scolastiche e assimilabili		
Contesto urbano	Quartiere Regio Parco Circoscrizione 6		
Anno di costruzione	1930		
Descrizione generale Asilo nido e Consultorio medico			
Dati di occupazione	Numero di utenti: 77 alunni Presenza della mensa scolastica, utilizzata da 77 utenti giornalieri, pasti preparati internamente alla scuola da una ditta esterna di ristorazione e lavaggio delle stoviglie interno.		

4.2. Inquadramento territoriale

L'edificio è situato in una zona semi-periferica a Nord di Torino.

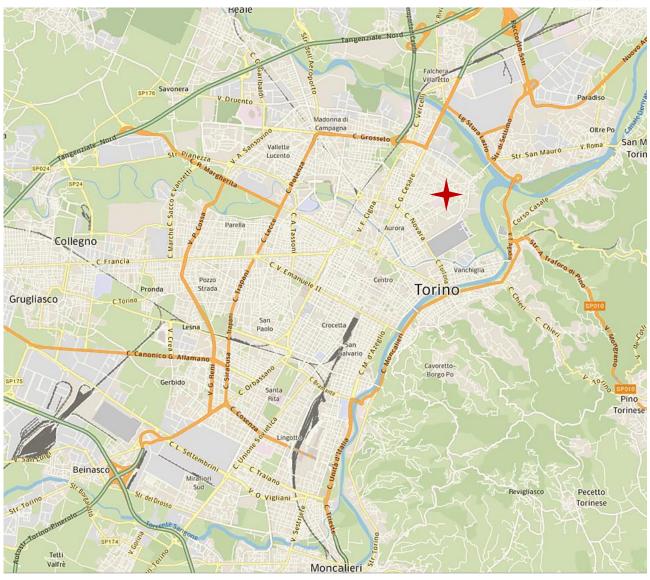


Figura 13 – Localizzazione dell'edificio nel territorio comunale

4.3.Foto del sito

Figura 14 – inquadramento aerofotogrammetrico dell'edificio

4.4.Dati geografici e climatici

Zona climatica e GG	Zona climatica E Gradi Giorno 2617 ai sensi della UNI 10349	
Durata convenzionale del periodo di riscaldamento	15 aprile – 15 ottobre	
Temperatura esterna di progetto	-8 °C	
Temperatura interna di progetto	20°C	
Altitudine s.l.m.	239 m	
Latitudine	45,09121 N	
Longitudine	7,71047 E	

Il parametro più interessante ai fini dell'analisi sono i Gradi Giorno (GG), ovvero un parametro che definisce l'andamento delle temperature in una stagione termica. I GG indicano la somma annuale delle sole differenze positive giornaliere tra la temperatura convenzionale fissata a 20°C, e la temperatura media esterna giornaliera per la stagione del riscaldamento. I GG definiti dalla norma UNI 10349 vengono

convenzionalmente utilizzati per il calcolo del fabbisogno termico di un edificio e rappresentano il dato medio su 40 anni.

I valori di irradianza sono desunti dalla norma UNI 10349/2016.

L'analisi della variabilità delle condizioni climatiche è il presupposto di qualsiasi valutazione del comportamento energetico di un edificio. In primo luogo, infatti, i consumi termici di un edificio variano al variare delle condizioni climatiche, pertanto ogni variazione non riconducibile all'aumento o alla diminuzione della temperatura esterna dipende da fattori legati all'uso ed alla manutenzione dell'edificio.

Per questo motivo i consumi forniti per gli ultimi 3 anni sono stati analizzati confrontandoli con i gradi giorno dell'anno relativo e successivamente normalizzati secondo i gradi giorno medi reali del sito.

4.5. Caratteristiche tecniche generali e dimensionali

Piani riscaldati	Superficie utile riscaldata (m²)	Superficie disperdente involucro edilizio (m²)	Volume lordo riscaldato (m³)	Rapporto S/V (m ⁻¹)
4	1972,14	3.672,33	8.712,15	0,42

L'edificio si sviluppa per la maggior superficie su 2 piani fuori terra, con un'emergenza a 3 piani fuori terra nello spigolo est dell'edificio, per un'altezza al filo di gronda di 9 metri circa. Le coperture sono parte con tetto a falde e parte piane con terrazze praticabili.

Si riporta di seguito una descrizione dell'edificio in oggetto:

Presenza di intercapedine continuo attorno alle porzioni abitabili e riscaldate del piano seminterrato, che risulta quindi in tal caso disperdente direttamente verso l'esterno.

Struttura portante verosimilmente in pilastri di cls e solai in latero cemento.

Murature perimetrali di chiusura in laterizio (ipotizzato semipieno spess. 12 cm) a cassavuota, verosimilmente priva di isolamento, spessore complessivo 48 cm.

Sono presenti sottofinestra ridotti in spessore (17 cm).

Copertura prevalentemente con tetto a due o più falde con presenza di sottotetto non agibile e riscaldato, in parte (corpo di fabbrica est) con tetto piano su locali riscaldati costituito da solaio laterocemento e soprastante massetto di pendenza e impermeabilizzazione in bitume, verosimilmente priva di isolamento.

I serramenti sono costituiti generalmente da telaio in legno, in parte con vetro singolo 3 ed in parte a doppio vetro 8/6/4.

Sono anche presenti serramenti con telaio in ferro e vetro singolo 3 e serramenti con telaio in alluminio, in parte con vetro singolo 4 ed in parte a doppio vetro 4/12/4.

Tutte le vetrature risultano prive di trattamento bassoemissivo e riempimento in gas nobili.

Schermature solari esterne con avvolgibili.

Impianto di riscaldamento

La scuola è servita da un impianto di riscaldamento così composto:

- 2 caldaie tradizionali "Ravasio TRS 200", a basamento, alimentate a metano, di potenza utile nominale 232,6 kW cadauna, operanti in parallelo.
- La distribuzione primaria del fluido termovettore per ogni circuito è garantita da una coppia di pompe di circolazione, di cui una equivalente utilizzata come backup.
 La distribuzione ai terminali avviene per mezzo di una rete di trasporto del fluido vettore posta in orizzontale al piano interrato con diramazioni a colonne montanti. Le pompe di circolazione sono a giri fissi per tutti i circuiti.
- Terminali di emissione: radiatori in ghisa senza valvole termostatiche.
- Regolazione con compensazione climatica in centrale termica.
- 4 circuiti di distribuzione: circuito aule, circuito ASL, circuito custode e circuito ACS (limitato all'asilo).
- Accensione impianto (dato fornitoci dal responsabile IREN per gli impianti termici): circuito aule e
 ASL lunedì 04:00 20:00 e dal martedì al venerdì 06:00 20:00; circuito custode tutti i giorni 06:00 22:00.

L'impianto viene telecontrollato in remoto.

Impianto di produzione acqua calda sanitaria

- La produzione dell'acs avviene per l'asilo su di un accumulo da 800 l con presenza di rete di ricircolo.
- La porzione destinata a consultorio è dotata di boyler elettrici autonomi ad accumulo.
- La residenza del custode al 2° piano è dotata di boyler istantaneo a gas metano.

Impianto di ventilazione

• Non presente. Areazione permanente dei disimpegni scale area filtro al piano primo.

4.6.Planimetrie

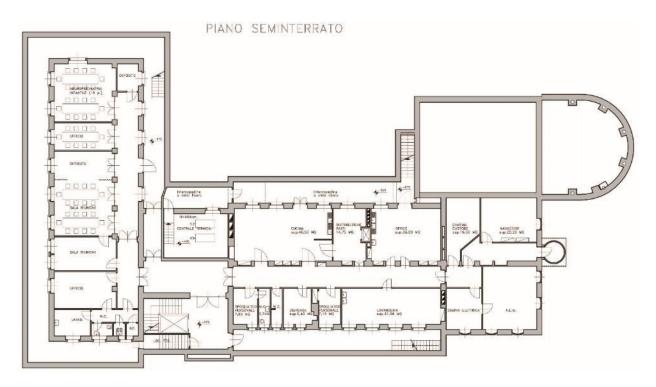


Figura 15 - Pianta piano seminterrato

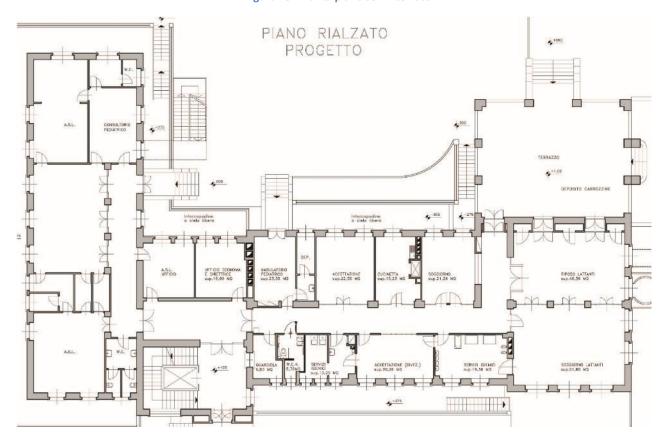


Figura 16 - Pianta piano rialzato

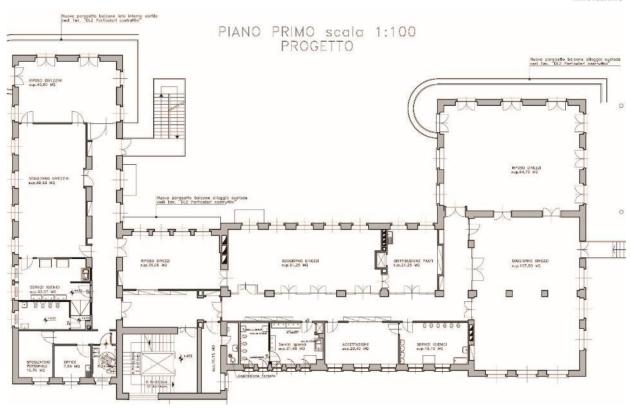


Figura 17 - Pianta piano primo

Non disponibile

Figura 18 - Pianta piano secondo

4.1. Considerazioni generali sull'edificio

L'edificio si presenta in discrete condizioni di mantenimento.

4.1.Considerazioni sull'uso dell'edificio rilevate attraverso interviste

Nella parte relativa alle "criticità legate alle condizioni di confort termoigrometrico segnalate dagli utenti della struttura" della scheda fornitici, non vengono indicate criticità.

5. Modello termico

5.1. Modellazione involucro edilizio

Per la costruzione del modello energetico del complesso sito in Via Ghedini 22 (Torino), si è individuata un'unica zona termica servita dalla stessa caldaia.

Il modello è stato eseguito utilizzando il software Edilclima EC 700.

Le stratigrafie murarie, non potendo effettuare carotaggi, sono state ipotizzate sulla base dei dati reperiti durante il sopralluogo e l'analisi documentale.

In allegato vengono riportate le caratteristiche fisiche e termo-igrometriche dei componenti di involucro utilizzati nel modello al fine di definire il fabbisogno di energia termica dell'edificio.

Dispersioni per componente

INTERA STAGIONE

					Perdite trasmis	ssione	Perdite extraf	lusso	Apporti sola	ari
Cod.	Tipo	Descrizione	U [W/m²K]	Sup. Tot [m²]	Qh,tr [kWh]	%	Qh,r [kWh]	%	Qsol,k [kWh]	%
M1	Т	M1 E Muro perim 48cm su ESTERNO	1,231	1301,16	89225	30,9	14597	37,7	19157	26,9
M2	U	M2 E Muro 48cm su LNR	1,167	73,70	2395	8,0	-	-	-	-
М3	U	M3 E Muro 30cm su LNR	1,399	27,64	1077	0,4	-	-	-	-
M4	Т	M4 E Cassonetto 48cm su ESTERNO	2,134	101,38	12051	4,2	1977	5,1	710	1,0
M5	Т	M5 E Sottofinestra muro 17cm su EST	2,029	118,66	13415	4.7	2159	5,6	2567	3,6
M6	Т	M6 E Sottofinestra doppialamiera4cm s	2,531	2,58	364	0,1	67	0,2	119	0,2
M7	Т	M7 E Sottofinestra doppialamiera2cml	1,626	2,53	229	0,1	21	0,1	31	0,0
M8	U	M8 E Porta REI su LNR	1,211	2,35	79	0,0	-	-	-	-
М9	Т	M9 E Porta REI su ESTERNO	1,280	5,81	414	0,1	37	0,1	65	0,1
P1	G	P1 Pavim piano interrato su TERREN	0,389	562,51	12199	4,2	-	-	-	-
P4	U	P4 EP Pavimento su LNR	1,332	282,91	10495	3,6	-	-	-	-
S2	Т	S2 EP Soffitto tetto piano su ESTERNO	1,406	237,00	18559	6,4	7969	20,6	6973	9,8
S3	U	S3 E Soffitto tetto inclinato su LNR sot	1,856	602,78	49852	17,3	-	-	-	
			Totali	3321,01	210355	72,9	26827	69,4	29624	41.6

					Perdite trasmis	ssione	Perdite extrafl	usso	Apporti sola	ari
Cod.	Tipo	Descrizione	U [W/m²K]	Sup. Tot [m²]	Qh,tr [kWh]	%	Qh,r [kWh]	%	Qsol,k [kWh]	%
W1	Т	W1 E Fin120x210 Legno VS	3,517	163,80	32093	11,1	5442	14,1	18510	26,
W2	Т	W2 E Fin160x210 Legno VS	3,583	60,48	12073	4,2	2013	5,2	8061	11,
W3	Т	W3 E Porta115x285 Ferro VS	4,951	4,03	1111	0,4	191	0,5	935	1,
W4	Т	W4 E Porta115x285 Legno VD	2,383	2,68	355	0,1	61	0,2	251	0,
W5	Т	W5 E Fin70x210 Legno VS	3,495	22,05	4292	1,5	612	1,6	1152	1,
W6	Т	W6 E Porta160x285 Legno VS	2,626	13,68	2001	0,7	232	0,6	759	1,7
W7	Т	W7 E Porta160x285 Legno VS	3,395	9,12	1725	0,6	200	0,5	1195	1,
W8	Т	W8 E Porta160x285 Legno VS	3,243	4,56	824	0,3	95	0,2	502	0,
W9	Т	W9 E Porta160x285 Legno VS	3,243	4,56	824	0,3	141	0,4	241	0,
W10	Т	W10 E Fin60x85 Ferro VS	5,104	7,65	2175	8,0	373	1,0	660	0,
W11	Т	W11 E Porta120x295 Ferro VS	5,353	3,54	1056	0,4	181	0,5	660	0,
W12	Т	W12 E Porta115x260 Alluminio VS	5,368	3,45	1032	0,4	87	0,2	275	0,
W13	Т	W13 E Fin115x170 Alluminio VD	4,797	1,96	522	0,2	44	0,1	100	0,
W14	Т	W14 E Fin115x170 Legno VS	3,601	48,88	9804	3,4	826	2,1	2204	3,
W15	Т	W15 E porta115x260 Legno VS	3,123	2,99	521	0,2	44	0,1	153	0,
W16	Т	W16 E Porta150x290 Legno VD	2,628	30,45	4458	1,5	765	2,0	4048	5,
W17	Т	W17 E 160x215 Legno VD	2,612	7,20	1047	0,4	180	0,5	416	0,
W18	Т	W18 E porta115x280 Legno VS	3,575	6,45	1284	0.4	220	0,6	1121	1,
W19	Т	W19 E porta115x230 Legno VS	3,273	2,64	482	0,2	83	0,2	143	0
W20	Т	W20 E Fin70x170 Legno VS	3,520	1,19	233	0,1	40	0,1	77	0
W21	Т	W21 E Fin65x100 Legno VS	3,432	0,65	125	0,0	21	0,1	103	0
			Totali	402.01	78039	27,1	11850	30,6	41567	58.4

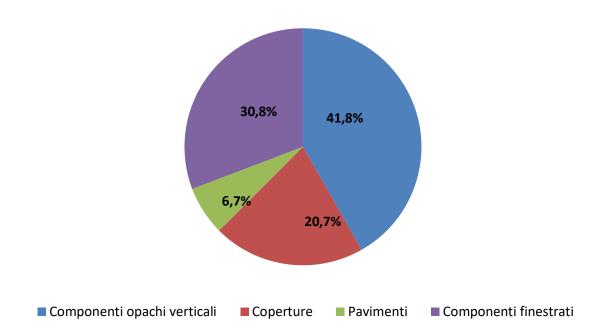


Figura 19 - %, per componente, di dispersioni per trasmissione ed extraflusso

Fabbisogno di energia utile

Dispersioni, apporti e fabbisogno di energia utile:

		Dispersioni		Арр	orti	Fabbisogno
Mese	QH,tr,vetr	QH,tr,op	Q _{H,ve}	Q _{sol,k}	Qint	QH,nd
	kWh	kWh	kWh	kWh	kWh	kWh
Ottobre	-3.588,82	-8.063,18	-3.395,00	4.387,00	3.219,00	10.626,00
Novembre	-11.521,97	-25.887,03	-9.423,00	4.993,00	5.680,00	41.865,00
Dicembre	-17.919,75	-40.261,25	-14.163,00	4.805,00	5.869,00	67.528,00
Gennaio	-17.673,96	-39.709,04	-13.986,00	4.810,00	5.869,00	67.628,00
Febbraio	-15.438,19	-34.685,81	-12.553,00	6.572,00	5.301,00	56.261,00
Marzo	-10.750,43	-24.153,57	-9.649,00	9.962,00	5.869,00	37.518,00
Aprile	-2.807,73	-6.308,27	-3.110,00	6.040,00	2.840,00	8.042,00
	-79.700,85	-179.068,15	-66.279,00	41.569,00	34.647,00	289.468,00
	25%	55%	20%	55%	45%	

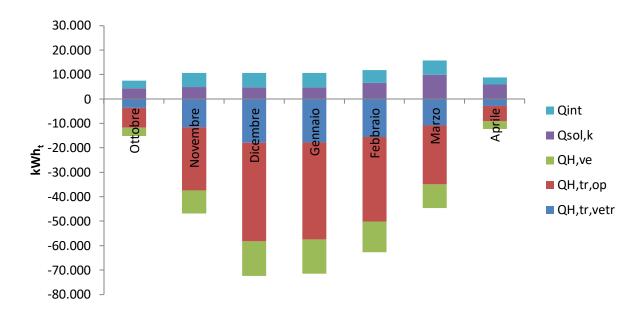


Figura 20 - Andamento mensile dispersioni ed apporti edificio

5.2. Modellazione impianto termico

Di seguito si riassumono i valori caratteristici degli elementi costituenti l'impianto termico.

Caratteristiche sottosistema di EMISSIONE:

Tipo di terminale di erogazione Radiatori su parete esterna non isolata (U > 0.8 W/m2K)

Temperatura di mandata di progetto 80,0 °C

Rendimento di emissione % 91,0

Caratteristiche sottosistema di REGOLAZIONE:

Tipo **Climatica**

(In caso di regolazione climatica il rendimento Rendimento di regolazione 100,0 %

dipende dal fattore di utilizzo degli apporti e dal

rapporto apporti/perdite)

Caratteristiche sottosistema di DISTRIBUZIONE UTENZA:

Centralizzato con montanti non isolati correnti in traccia Tipo di impianto

nel lato interno delle pareti esterne

92,0-% Rendimento di distribuzione utenza 99,0

Caratteristiche sottosistema di GENERAZIONE:

Dati generali:

Servizio Riscaldamento e acqua calda sanitaria

Tipo di generatore 2 Caldaie tradizionali

Potenza utile nominale 465,2 kW $\Phi_{gn,Pn}$

Caratteristiche:

Rendimento utile a potenza nominale % 92,0 $\eta_{gn,Pn}$ Rendimento utile a potenza intermedia 92,7 % $\eta_{gn,Pint}$

Ambiente di installazione:

Ambiente di installazione Centrale termica

Temperatura dell'acqua del generatore di calore:

°C Generatore a temperatura di mandata fissa 80,0

Tipo di circuito Collegamento con portata indipendente

Legenda simboli

Temperatura media del generatore di calore θ gn,avg Temperatura di mandata del generatore di calore θ gn,flw

Vettore energetico:

Tipo *Metano*

Potere calorifico inferiore H_i **9,6** kWh/Sm³

Nella tabella seguente si riportano i valori relativi ai rendimenti dei singoli sottosistemi del modello impiantistico:

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	ηн,е	91,0	%
Rendimento di regolazione	η _{H,rg}	89,9	%
Rendimento di distribuzione utenza	η _{H,du}	92,4	%
Rendimento di generazione	η _{H,gn}	81,1	%
Rendimento globale medio stagionale	ηн,д	62,9	%

5.3. Confronto tra Consumo Operativo e Consumo Effettivo

Si riportano, di seguito i dati stagionali di consumo in (Smc di gas metano) registrati nelle precedenti tre stagioni termiche con i relativi Gradi Giorno invernali. I gradi giorno presenti in tabella, rappresentano la media dei dati rilevati presso le stazioni meteorologiche presenti sul territorio del comune di Torino e sono stati desunti dal sito web di Arpa Piemonte:

Periodo	Smc Consumo	GG
Dati 2012/13	35000	2502
Dati 2013/14	47000	2136
Dati 2014/15	38000	2161

Se ne determinano i seguenti consumi normalizzati:

	Smc norm.
Consumo effettivo 2012/13 normalizzato	44.507
Consumo effettivo 2013/2014 normalizzato	47.353
Consumo effettivo 2014/2015 normalizzato	46.674

Si individua la media dei consumi termici normalizzati come valore di consumo effettivo dell'edificio:

	Smc
Consumo effettivo	46.178

D'altra parte il modello ha restituito i seguenti valori di consumo:

Fabbisogno ambiente	Q _{H,nd} [kWh]	291.024
Energia del combustibile risc.	Q _{H,gn,in} [kWh]	439.222
Energia del combustibile ACS	$Q_{W,gn,in}$ [kWh]	27.838

Consumo operativo METANO [Smc]	
	48.652
Scostamento	5%

Il modello risulta essere veritiero e ben tarato in quanto lo scostamento tra consumo effettivo e consumo operativo è inferiore al range di accettabilità previsto del 10%.

5.4. Indici di prestazione energetica

Dall'analisi dei consumi si ricavano a questo punto gli indicatori di prestazione energetica (tabelle sottostanti). Questi indicatori rappresentano il benchmark di riferimento, rispetto al quale comparare il consumo energetico di un edificio con un set di altri edifici similari. Inoltre hanno lo scopo di fornire gli elementi tecnici oggettivi per verificare le prestazioni relative allo stato di fatto dell'edificio, attraverso il quale, è possibile individuare e poi valutare le possibili azioni di efficientamento energetico.

	Un rapporto molto alto indica uno scarso utilizzo degli spazi della scuola che comporterebbe
DENSITA' DI UTILIZZO	anche spreco energetico e costi aggiuntivi per manutenzione, pulizie etc. Sarebbe dunque
[m²/alunno]	necessario un piano di ottimizzazione degli spazi. L'indicatore viene calcolato in riferimento
	alla superficie utile rispetto ai dati di occupazione forniti da IREN
CONSUMI TERMICI	Indica il consumo di energia termica in base alla superficie riscaldata. Attraverso questo
[kWh _t /m ²]	rapporto si valuta l'efficienza della scuola dal punto di vista termico. L'indicatore è calcolato
[Kvvnt/m]	sulla media dei consumi termici delle stagioni 2012/2013, 2013/2014 e 2014/2015.
	Indica il consumo di energia elettrica in base alla superficie utile dell'edificio studiato. Nel caso
	di un edificio scolastico, questo dato diventa significativo perché ci riporta i consumi per
CONSUMI ELETTRICI	l'illuminazione, che sono i consumi elettrici principali. Qualora questo indice risulti troppo
[kWhe/m ²]	basso bisognerebbe verificare che gli ambienti non risultino sotto-illuminati. L'indicatore è
	calcolato in riferimento alla media dei consumi elettrici delle stagioni 2014 e 2015 rispetto alla
	superficie utile dell'edificio.

Gli indicatori analizzati per l'edificio in analisi sono i seguenti:

INDICATORE	BENCHMARK	EDIFICIO IN ANALISI
Densità di utilizzo [m²/alunno]	8 m²/alunno	25,6
Consumi termici [kWht/m²]	150 [kWh _t /m ²]	224,8
Consumi elettrici [kWhe/m²]	20 - 25 kWh/m²	27,9

I dati di benchmark per gli edifici scolastici sono stati desunti dagli atti del convegno tenutosi a Rivoli su "L'analisi dei consumi energetici del comune di Rivoli".

Il consumo specifico di energia elettrica dedotto dalle bollette è di **27,9 kWh/m²anno**. Questi consumi risultano leggermente superiori ai valori di letteratura (convegno di Rivoli). Per quanto riguarda il consumo di energia termica **per la climatizzazione invernale e/o produzione di acqua calda sanitaria** da combustibile, è di **224,8 kWh/m²anno**, valore decisamente superiore rispetto all'indice di riferimento.

Viene inoltre calcolato un ulteriore indice di prestazione normalizzato rispetto ai gradi giorno standard (UNI 10349) utilizzando i seguenti dati di partenza:

Consumo termico effettivo normalizzato [kWh]	443.312
Volume lordo riscaldato [m³]	8.712,15
GG per utilizzati per la normalizzazione	2266

EP _(i+w) [Wh/m ³ GG]	22 5
Li (i+w) [VVII/III GG]	22,3

6. Proposte di intervento

Alla luce dell'analisi fin qui svolta, e di quanto rilevato durante il sopralluogo, si esamina la fattibilità tecnico economica dei seguenti interventi di efficientamento energetico dell'edificio in esame:

- 1. Sostituzione generatore di calore + posa valvole termostatiche
- 2. Isolamento sottotetto e solaio cantina
- 3. Sostituzione serramenti
- 4. Cappotto esterno

6.1. Generatore di calore a condensazione e valvole termostatiche

Si propone la sostituzione del generatore di calore tradizionale con uno nuovo a condensazione con le seguenti caratteristiche:

- Funzionamento a temperatura scorrevole;
- Bruciatore ad aria soffiata;
- Regolazione climatica guidata da sonda esterna di temperatura;
- Valvole termostatiche sui singoli terminali.

Dalle simulazioni di calcolo si ottengono i seguenti risultati:

	Generatore di calore a 1 condensazione + valvole + regolazione climatica	Consumo ante	48.652	smc		
		ηΗ,g ante	0,640			
		ηH,g post	1,063			
		condensazione + valvole +	Consumo post	30.004	smc	
				Risparmio	38%	
			Costo intervento	43.748		
			Risparmio	12.681	Euro/anno	
		РВ	3,4	anni		

6.2. Isolamento solaio sottotetto

L'intervento prevede la posa all'estradosso di 16 cm di isolante del tipo fibra di roccia con conducibilità pari a 0,039 (W/mK)

Descrizione elemento	U ante	U post	Sup.
	[W/m²K]	[W/m ² K]	[m²]
Soletta Vs sottotetto	1,856	0,215	602,78

Dalle simulazioni di calcolo si ottengono i seguenti risultati:

	Isolamento sottotetto	Consumo ante	48.652	smc		
		Consumo post	42.349	smc		
2		Isolamento sottotetto	Isolamento sottotetto	Risparmio	13%	
				Costo intervento	24.111	
		Risparmio	4.286	Euro/anno		
		PB	5,6	anni		

6.3. Sostituzione serramenti

L'intervento prevede la sostituzione dei vecchi serramenti con nuovi serramenti dalle medesime forme e dimensione con telaio in PVC e doppio vetro con camera da 16 mm di spessore.

Descrizione elemento	U ante	U post	Sup.
Descrizione elemento	[W/m²K]	[W/m²K]	[m²]
W2	4,316	1,5	60,48
W3	5,875	1,5	4,03
W4	2,542	1,5	2,68
W5	4,186	1,5	22,05
W6	2,916	1,5	13,68
W7	4,079	1,5	9,12
W8	3,818	1,5	4,56
W9	3,818	1,5	4,56
W10	6,042	1,5	7,65
W11	6,096	1,5	3,54
W12	6,161	1,5	3,45
W13	4,962	1,5	1,96
W14	4,341	1,5	48,88

W15	3,642	1,5	2,99
W16	2,874	1,5	30,45
W17	2,866	1,5	7,2
W18	4,304	1,5	6,45
W19	3,861	1,5	2,64
W20	4,224	1,5	1,19
W21	4,094	1,5	0,65

Dalle simulazioni di calcolo si ottengono i seguenti risultati:

		Consumo ante	48.652	smc	
	Serramenti	Consumo post	41.329	smc	
3		Serramenti	Risparmio	15%	
3			Costo intervento	180.900	
		Risparmio	4.980	Euro/anno	
		PB	36,3	anni	

6.4. Cappotto

L'intervento prevede la posa di 14 cm di isolante del tipo EPS con conducibilità pari a 0,040 (W/m K) sul lato esterno della parete disperdente dell'edificio.

Descrizione elemento	U ante [W/m²K]	U post [W/m²K]	Sup. [m²]
M1 E Muro perim 48cm su ESTERNO	0,600	0,232	1.319,56
M4 E Cassonetto 48cm su ESTERNO	2,017	2,134	101,38
M5 E Sottofinestra muro17cm su ESTERNO		0,25	118,66

Dalle simulazioni di calcolo si ottengono i seguenti risultati:

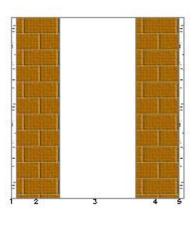
		Consumo ante	48.652	smc
		Consumo post	37.761	smc
4	Cappotto	Risparmio	22%	
		Сарросто	Costo intervento	153.960
		Risparmio	7.406	Euro/anno
		PB	20,8	anni

6.5. Conclusioni

Di seguito la sintesi degli interventi proposti:

Interventi	Investimento		Risparmio		
	€	%	Smc	€/anno	anni
Generatore di calore a condensazione + valvole + regolazione climatica	43748	38%	18648	12681	3
Isolamento sottotetto	24111	13%	6303	4286	6
Serramenti	180900	15%	7323	4980	36
Cappotto	153960	22%	10891	7406	21

In conclusione si osserva che l'intervento più vantaggioso e che comporta il più alto grado di efficientamento energetico è la sostituzione del generatore di calore.


Per tutti gli altri interventi si consiglia di eseguirli nell'ambito di eventuali lavori di ristrutturazione futuri (es. rifacimento intonaco facciata) per ammortizzare i costi fissi ed abbassare i PB.

7. Allegati

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

<u>Descrizione della struttura:</u> M1 E Muro perim 48cm su ESTERNO

Trasmittanza termica		1,230	W/m ² K
Spessore		480	mm
Temperatura (calcolo potenza invei	esterna rnale)	-8,0	°C
Permeanza		80,972	10 ⁻¹² kg/sm ² Pa
Massa (con intonaci)	superficiale	410	kg/m²
Massa (senza intonaci)	superficiale	362	kg/m²
Trasmittanza periodic	a	0,364	W/m ² K
Fattore attenuazione		0,296	-
Sfasamento onda terr	mica	-9,8	h

Codice: M1

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130		-	-
1	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
2	Mattone semipieno	120,00	0,632	0,190	1508	0,84	9
3	Intercapedine non ventilata Av<500 mm²/m	210,00	1,167	0,180	-	-	-
4	Mattone semipieno	120,00	0,632	0,190	1508	0,84	9
5	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

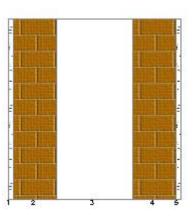
Descrizione della struttura: M2 E Muro 48cm su LNR

Trasmittanza termica **1,167** W/m²K

Spessore 480 mm

Temperatura esterna (calcolo potenza invernale) 6,0 °C

Permeanza **80,972** 10⁻¹²kg/sm²Pa


Massa superficiale 410 kg/m²

(con intonaci)

Massa superficiale senza intonaci) 362 kg/m²

Trasmittanza periodica **0,301** W/m²K

Fattore attenuazione **0,258** - Sfasamento onda termica **-10,1** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130			
1	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
2	Mattone semipieno	120,00	0,632	0,190	1508	0,84	9
3	Intercapedine non ventilata Av<500 mm²/m	210,00	1,167	0,180	-	-	-
4	Mattone semipieno	120,00	0,632	0,190	1508	0,84	9
5	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

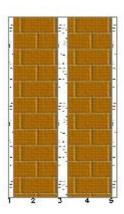
Descrizione della struttura: M3 E Muro 30cm su LNR

Trasmittanza termica **1,399** W/m²K

Spessore 300 mm

Temperatura esterna (calcolo potenza invernale) 6,0 °C

Permeanza **72,464** 10⁻¹²kg/sm²Pa


Massa superficiale 458 kg/m²

(con intonaci)

Massa superficiale senza intonaci) 362 kg/m²

Trasmittanza periodica **0,348** W/m²K

Fattore attenuazione **0,249** - Sfasamento onda termica **-9,9** h

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	1	-	0,130	-		
1	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
2	Mattone semipieno	120,00	0,632	0,190	1508	0,84	9
3	Intonaco di calce e sabbia	30,00	0,800	0,038	1600	1,00	10
4	Mattone semipieno	120,00	0,632	0,190	1508	0,84	9
5	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
-	Resistenza superficiale esterna	-	_	0,130	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

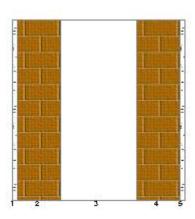
<u>Descrizione della struttura:</u> M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica **2,134** W/m²K

Spessore 480 mm

Temperatura esterna (calcolo potenza invernale) -8,0 °C

Permeanza 162,60 2 10⁻¹²kg/sm²Pa


Massa superficiale 410 kg/m^2

Massa superficiale 362 kg/m²

(senza intonaci)

Trasmittanza periodica **1,446** W/m²K

Fattore attenuazione **0,678** - Sfasamento onda termica **-4,4** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	ı	1	0,130	-	1	-
1	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
2	Mattone semipieno	120,00	0,632	0,190	1508	0,84	9
3	Intercapedine fortemente ventilata Av>1500 mm²/m	210,00	-	-	-	-	-
4	Mattone semipieno	120,00	0,632	1	1508	0,84	-
5	Intonaco di calce e sabbia	15,00	0,800	1	1600	1,00	-
-	Resistenza superficiale esterna	-		0,086			-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

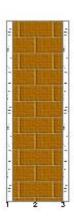
<u>Descrizione della struttura:</u> M5 E Sottofinestra muro17cm su ESTERNO

2,027 W/m²K Trasmittanza termica

170 Spessore mm

Temperatura esterna -8,0 °C (calcolo potenza invernale)

128,20 10⁻¹²kg/sm²Pa Permeanza


Massa superficiale 240 kg/m²

(con intonaci)

Massa superficiale 192 kg/m² (senza intonaci)

1,299 W/m²K Trasmittanza periodica

0,641 Fattore attenuazione Sfasamento onda termica -5,1 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	
1	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
2	Mattone semipieno	140,00	0,583	0,240	1371	0,84	9
3	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> M6 E Sottofinestra doppialamiera4cm su ESTERNO

Codice: M6

2,526 W/m²K Trasmittanza termica 40 Spessore mm Temperatura esterna ٥C **-8,0** (calcolo potenza invernale) Permeanza **0,010** 10⁻¹²kg/sm²Pa Massa superficiale 16 kg/m² (con intonaci) superficiale 16 kg/m² (senza intonaci) **2,525** W/m²K Trasmittanza periodica 1,000 Fattore attenuazione

-0,2 h

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-	-	-
1	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
2	Intercapedine non ventilata Av<500 mm²/m	38,00	0,211	0,180	-	-	-
3	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

<u>Descrizione della struttura:</u> M7 E Sottofinestra doppialamiera2cmISOL su ESTERNO

Trasmittanza termica **1,624** W/m²K

Spessore 20 mm

Temperatura esterna (calcolo potenza invernale) -8,0 °C

Permeanza **0,010** 10⁻¹²kg/sm²Pa

Massa superficiale **16** kg/m²

(con intonaci)

Trasmittanza periodica **1,623** W/m²K

Fattore attenuazione 0,999 Sfasamento onda termica -0,2 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
2	Polistirene espanso sint. (alleggerim. strutture)	18,00	0,045	0,400	15	1,45	30
3	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
-	Resistenza superficiale esterna	_	_	0,086	-	-	_

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: M8 E Porta REI su LNR

1,211 W/m²K Trasmittanza termica *32* Spessore mm Temperatura esterna 6,0 °C (calcolo potenza invernale) **0,010** 10⁻¹²kg/sm²Pa Permeanza Massa superficiale **16** kg/m² (con intonaci) Massa superficiale **16** kg/m² (senza intonaci) **1,209** W/m²K Trasmittanza periodica 0,999 Fattore attenuazione

-0,2 h

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
2	Fibra di vetro - Feltro resinato	30,00	0,053	0,566	11	1,03	1
3	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
-	Resistenza superficiale esterna	_	_	0,130	_	_	_

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: M9 E Porta REI su ESTERNO

1,279 W/m²K Trasmittanza termica Spessore **32** mm Temperatura esterna -8,0 °C (calcolo potenza invernale) **0,010** 10⁻¹²kg/sm²Pa Permeanza Massa superficiale **16** kg/m² (con intonaci) Massa superficiale **16** kg/m² (senza intonaci) **1,278** W/m²K Trasmittanza periodica 0,999 Fattore attenuazione

-0,2 h

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130		-	-
1	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
2	Fibra di vetro - Feltro resinato	30,00	0,053	0,566	11	1,03	1
3	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
-	Resistenza superficiale esterna	_	_	0,086	_	_	_

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

<u>Descrizione della struttura:</u> M10 E Muro perim 48cm su TERRENO

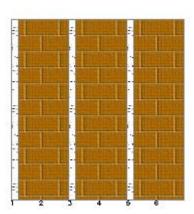
1,274 W/m²K **0,000** W/m²K

Spessore 480 mm

Temperatura esterna (calcolo potenza invernale) -8,0 °C

Permeanza **45,662** 10⁻¹²kg/sm²Pa

Massa superficiale 852 kg/m 2


(con intonaci)

Massa superficiale (senza intonaci) 756 kg/m²

Trasmittanza periodica **0,124** W/m²K

Fattore attenuazione +Infini to

Sfasamento onda termica -14,9 h

Stratigrafia:

Trasmittanza termica

Trasmittanza controterra

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	1		-
1	Intonaco di calce e sabbia	20,00	0,800	0,025	1600	1,00	10
2	Mattone pieno	140,00	0,778	0,180	1800	0,84	9
3	Intonaco di calce e sabbia	20,00	0,800	0,025	1600	1,00	10
4	Mattone pieno	140,00	0,778	0,180	1800	0,84	9
5	Intonaco di calce e sabbia	20,00	0,800	0,025	1600	1,00	10
6	Mattone pieno	140,00	0,778	0,180	1800	0,84	9
-	Resistenza superficiale esterna	-	-	0,040			-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

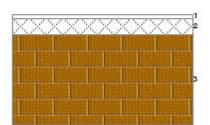
Descrizione della struttura: P1 Pavim piano interrato su TERRENO vespaio areato

Codice: P1

Trasmittanza	termica	1,661	W/m²K
Trasmittanza	controterra	0,389	W/m^2K

305 Spessore mm Temperatura esterna **-8,0** °C (calcolo potenza invernale)

0,002 10⁻¹²kg/sm²Pa Permeanza


Massa superficiale 545 kg/m² (con intonaci)

Massa superficiale

545 kg/m² (senza intonaci)

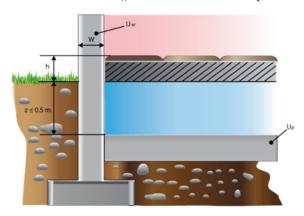
0,467 W/m²K Trasmittanza periodica

1,199 Fattore attenuazione Sfasamento onda termica **-9,4** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170		-	1
1	Piastrelle in ceramica (piastrelle)	10,00	1,300	0,008	2300	0,84	9999999
2	Sottofondo di cemento magro	45,00	0,700	0,064	1600	0,88	20
3	Mattone pieno	250,00	0,781	0,320	1800	0,84	9
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-


CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370

Pavimento su spazio aerato:

P1 Pavim piano interrato su TERRENO vespaio areato

Co	<u>dice:</u>	P1

Area del pavimento	<i>565,</i>	00	m²
Perimetro disperdente del pavimento	141,	70	m
Spessore pareti perimetrali esterne	4	80	mm
Conduttività termica del terreno	2,	00	W/mK
Altezza del pavimento dal terreno	h 0,	00	m
Trasmittanza pareti dello spazio aerato	U _W 0,	00	W/m²K
Trasmittanza pavimento dello spazio aerato	U _P 2,	<i>83</i>	W/m²K
Area aperture ventilazione/m di perimetro	ε 0 ,	00	m²/m
Coefficiente di protezione dal vento	f _W 0,	05	

<u>Descrizione della struttura:</u> P2 Pavim tra vespaio areato e TERRENO

Codice: P2

Trasmittanza termica **2,834** W/m²K
Trasmittanza controterra **0,036** W/m²K

Spessore 100 mm

Temperatura esterna (calcolo potenza invernale) -8,0 °C

Permeanza 100,00 0 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) superficiale kg/m^2

Massa superficiale **160** kg/m²

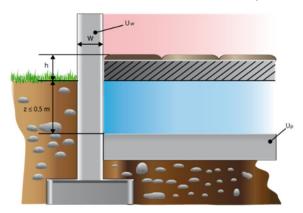
Trasmittanza periodica **2,466** W/m²K

Fattore attenuazione 68,678 Sfasamento onda termica -2,6 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	·	1	0,170	ı	ı	-
1	Sottofondo di cemento magro	100,00	0,700	0,143	1600	0,88	20
-	Resistenza superficiale esterna	-	1	0,040	i	ı	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-


CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370

Pavimento su spazio aerato:

P2 Pavim tra vespaio areato e TERRENO

Codice: P2

Area del pavimento		<i>565,00</i>	m²
Perimetro disperdente del pavimento		141,70	m
Spessore pareti perimetrali esterne		480	mm
Conduttività termica del terreno		2,00	W/mK
Altezza del pavimento dal terreno	h	0,00	m
Trasmittanza pareti dello spazio aerato	U_W	0,00	W/m²K
Trasmittanza pavimento dello spazio aerato	U_P	0,00	W/m²K
Area aperture ventilazione/m di perimetro	ε	0,00	m²/m
Coefficiente di protezione dal vento	f_W	0,05	

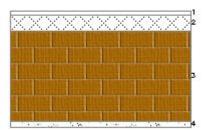
Descrizione della struttura: P3 EP Pavimento interpiano su LR

Codice: P3

1,332 W/m²K Trasmittanza termica

320 Spessore mm

0,002 10⁻¹²kg/sm²Pa Permeanza


Massa superficiale *5*69 kg/m²

(con intonaci)

Massa superficiale **545** kg/m² (senza intonaci)

Trasmittanza periodica **0,221** W/m²K

0,166 Fattore attenuazione Sfasamento onda termica **-11,0** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	10,00	1,300	0,008	2300	0,84	9999999
2	Sottofondo di cemento magro	45,00	0,700	0,064	1600	0,88	20
3	Mattone pieno	250,00	0,781	0,320	1800	0,84	9
4	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
-	Resistenza superficiale esterna	-	-	0,170	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

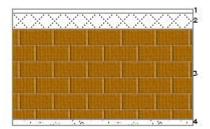
Descrizione della struttura: P4 EP Pavimento su LNR

Codice: P4

Trasmittanza termica	1,332	W/m²K
----------------------	-------	-------

320 Spessore mm Temperatura esterna 6,0 °C (calcolo potenza invernale)

0,002 10⁻¹²kg/sm²Pa Permeanza


Massa superficiale *569* kg/m²

(con intonaci)

Massa superficiale **545** kg/m² (senza intonaci)

0,221 W/m²K Trasmittanza periodica

0,166 Fattore attenuazione **-11,0** h Sfasamento onda termica

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170		-	-
1	Piastrelle in ceramica (piastrelle)	10,00	1,300	0,008	2300	0,84	9999999
2	Sottofondo di cemento magro	45,00	0,700	0,064	1600	0,88	20
3	Mattone pieno	250,00	0,781	0,320	1800	0,84	9
4	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
-	Resistenza superficiale esterna	_	_	0,170	_	_	_

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

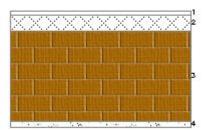
Descrizione della struttura: S1 EP Soffitto interpiano su LR

Codice: 51

1,637 W/m²K Trasmittanza termica

320 Spessore mm

0,002 10⁻¹²kg/sm²Pa Permeanza


Massa superficiale **569** kg/m²

(con intonaci)

Massa superficiale **545** kg/m² (senza intonaci)

Trasmittanza periodica **0,400** W/m²K

0,244 Fattore attenuazione Sfasamento onda termica **-10,2** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,100	-	-	-
1	Piastrelle in ceramica (piastrelle)	10,00	1,300	0,008	2300	0,84	9999999
2	Sottofondo di cemento magro	45,00	0,700	0,064	1600	0,88	20
3	Mattone pieno	250,00	0,781	0,320	1800	0,84	9
4	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
-	Resistenza superficiale interna	_	-	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: S2 EP Soffitto tetto piano su ESTERNO

Codice: S2

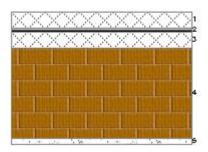
Trasmittanza termica **1,404** W/m²K

Spessore **365** mm

Temperatura esterna -8,0 °C

(calcolo potenza invernale)

Permeanza **0,106** 10⁻¹²kg/sm²Pa


Massa superficiale 630 kg/m²

(con intonaci)

Massa superficiale 606 kg/m²

Trasmittanza periodica **0,249** W/m²K

Fattore attenuazione **0,177** - Sfasamento onda termica **-11,8** h

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	1	-	0,086	-	1	
1	Sottofondo di cemento magro	45,00	0,700	0,064	1600	0,88	20
2	Impermeabilizzazione con bitume	10,00	0,170	0,059	1200	1,00	188000
3	Sottofondo di cemento magro	45,00	0,700	0,064	1600	0,88	20
4	Mattone pieno	250,00	0,781	0,320	1800	0,84	9
5	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	=

Descrizione della struttura: S3 E Soffitto tetto inclinato su LNR sottotetto

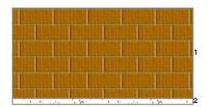
Codice: 53

Trasmittanza termica **1,856** W/m²K

Spessore **265** mm

Temperatura esterna (calcolo potenza invernale) **-2,4** °C

Permeanza **83,333** 10⁻¹²kg/sm²Pa


Massa superficiale 474 kg/m²

(con intonaci)

Massa superficiale 450 kg/m²

Trasmittanza periodica **0,633** W/m²K

Fattore attenuazione **0,341** - Sfasamento onda termica **-8,4** h

Stratigrafia:

	N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
	-	Resistenza superficiale esterna	-	-	0,100	-	1	-
	1	Mattone pieno	250,00	0,781	0,320	1800	0,84	9
ſ	2	Intonaco di calce e sabbia	15,00	0,800	0,019	1600	1,00	10
	-	Resistenza superficiale interna	-	-	0,100	-	-	-

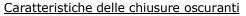
S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W1 E Fin120x210 Legno VS

Codice: W1

Caratteristiche del serramento


Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,509 W/m²K Trasmittanza solo vetro U_g 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento

Larghezza 120,0 cm Altezza 170,0 cm Altezza sopraluce 40,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	2,00	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	2,520	m^2
Area vetro	A_g	1,479	m^2
Area telaio	A_f	1,041	m^2
Fattore di forma	F_f	0,59	-
Perimetro vetro	L_g	13,400	m
Perimetro telaio	L_f	6,600	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

s	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

Caratteristiche del modulo

Trasmittanza termica del modulo U **3,210** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H $_{cass}$ 30,0 cm Profondità P $_{cass}$ 30,0 cm Area frontale 0,36 m 2

Muro sottofinestra

Struttura opaca associata M5 M5 E Sottofinestra muro17cm su ESTERNO

Trasmittanza termica U 2,027 W/m²K Altezza H_{sott} 80,0 cm Area 0,96 m²

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W2 E Fin160x210 Legno VS

Codice: W2

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,575 W/m²K Trasmittanza solo vetro U_q 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento

Larghezza 160,0 cm Altezza 170,0 cm Altezza sopraluce 40,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	2,00	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	<i>3,360</i>	m^2
Area vetro	A_g	2,058	m^2
Area telaio	A_{f}	1,302	m^2
Fattore di forma	F_f	0,61	-
Perimetro vetro	L_g	17,960	m
Perimetro telaio	L_f	7,400	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m^2K/W

Trasmittanza termica del modulo U **3,253** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H $_{cass}$ 30,0 cm Profondità P $_{cass}$ 30,0 cm Area frontale 0,48 m 2

Muro sottofinestra

Struttura opaca associata M5 M5 E Sottofinestra muro17cm su ESTERNO

Trasmittanza termica U 2,027 W/m 2 K Altezza H $_{sott}$ 80,0 cm Area 1,28 m 2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W3 E Porta115x285 Ferro VS

Codice: W3

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w **4,940** W/m²K Trasmittanza solo vetro U_g **4,469** W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza 115,0 cm Altezza 135,0 cm Altezza sopraluce 40,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	7,00	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	2,013	m^2
Area vetro	A_{g}	1,638	m^2
Area telaio	A_f	<i>0,375</i>	m^2
Fattore di forma	F_f	0,81	-
Perimetro vetro	L_g	9,900	m
Perimetro telaio	L_f	5,800	m

Stratigrafia del pacchetto vetrato

Descrizione strato	s	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	8,0	1,00	0,008
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

Trasmittanza termica del modulo U **4,024** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m²K Altezza H_{cass} 30,0 cm Profondità P_{cass} 30,0 cm Area frontale 0,34 m²

Muro sottofinestra

Struttura opaca associata M6 M6 E Sottofinestra doppialamiera4cm su ESTERNO

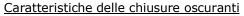
Trasmittanza termica U 2,526 W/m 2 K Altezza H_{sott} 112,0 cm Area 1,29 m 2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W4 E Porta115x285 Legno VD

Codice: W4

Caratteristiche del serramento


Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w **2,381** W/m²K Trasmittanza solo vetro U_g **2,819** W/m²K

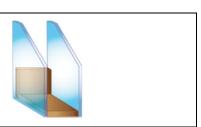
Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento


Larghezza 115,0 cm Altezza 188,0 cm Altezza sopraluce 45,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,06	W/mK
Area totale	A_w	<i>2,679</i>	m^2
Area vetro	A_{g}	1,031	m^2
Area telaio	A_f	1,648	m^2
Fattore di forma	F_f	0,38	-
Perimetro vetro	L_g	8,440	m
Perimetro telaio	L_f	6,960	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	8,0	1,00	0,008
Intercapedine	-	-	0,127
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm

 λ Conduttività termica \$W/mK\$ R Resistenza termica $$m^2K/W$$

Caratteristiche del modulo

Trasmittanza termica del modulo U **2,596** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H $_{cass}$ 30,0 cm Profondità P $_{cass}$ 30,0 cm Area frontale 0,34 m 2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W5 E Fin70x210 Legno VS

Codice: W5

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,487 W/m²K Trasmittanza solo vetro U_g 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza **70,0** cm Altezza **210,0** cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	2,00	W/m^2K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	1,470	m^2
Area vetro	\mathbf{A}_{g}	0,850	m^2
Area telaio	A_f	0,620	m^2
Fattore di forma	F_f	0,58	-
Perimetro vetro	L_g	6,400	m
Perimetro telaio	L_{f}	5,600	m

Stratigrafia del pacchetto vetrato

Descrizione strato	s	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m²K/W

Trasmittanza termica del modulo U 3,195 W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H $_{cass}$ 30,0 cm Profondità P $_{cass}$ 30,0 cm Area frontale 0,21 m 2

Muro sottofinestra

Struttura opaca associata M5 M5 E Sottofinestra muro17cm su ESTERNO

Trasmittanza termica U 2,027 W/m 2 K Altezza H_{sott} 80,0 cm Area 0,56 m 2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W6 E Porta160x285 Legno VS

Codice: W6

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w **2,623** W/m²K Trasmittanza solo vetro U_a **4,571** W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza **160,0** cm Altezza **285,0** cm

Trasmittanza termica del telaio U_{f} 2,00 W/m²K K distanziale **0,00** W/mK K_d Area totale **4,560** m² A_w Area vetro **1,105** m² A_a Area telaio **3,455** m² A_f Fattore di forma F_f 0,24 -Perimetro vetro **10,300** m Perimetro telaio **8,900** m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

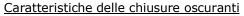
Trasmittanza termica del modulo U **2,623** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W7 E Porta160x285 Legno VS

Codice: W7

Caratteristiche del serramento


Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,387 W/m²K Trasmittanza solo vetro U_g 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento

Larghezza 160,0 cm Altezza 245,0 cm Altezza sopraluce 40,0 cm

Trasmittanza termica del telaio U_{f} **1,80** W/m²K K distanziale **0,00** W/mK K_d Area totale **4,560** m² A_w Area vetro **2,611** m² A_q Area telaio **1,949** m² A_f **0,57** -Fattore di forma F_f Perimetro vetro **18,120** m L_{a} Perimetro telaio **8,900** m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad W/\text{mK} \\ R \quad \text{Resistenza termica} \qquad m^2 \text{K/W}$

Trasmittanza termica del modulo U **3,387** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

<u>Descrizione della finestra:</u> W8 E Porta160x285 Legno VS

Codice: W8

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,236 W/m²K Trasmittanza solo vetro U_q 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza **160,0** cm Altezza **285,0** cm

Trasmittanza termica del telaio	U_f	2,00	W/m^2K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	4,560	m^2
Area vetro	A_g	2,192	m^2
Area telaio	A_f	2,368	m^2
Fattore di forma	F_f	0,48	-
Perimetro vetro	L_g	17,040	m
Perimetro telaio	L_f	8,900	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

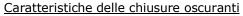
Trasmittanza termica del modulo U **3,236** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W9 E Porta160x285 Legno VS

Codice: W9

Caratteristiche del serramento


Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,236 W/m²K Trasmittanza solo vetro U_q 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza **160,0** cm Altezza **285,0** cm

Trasmittanza termica del telaio	U_f	2,00	W/m^2K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	4,560	m^2
Area vetro	\mathbf{A}_{g}	2,192	m^2
Area telaio	A_f	2,368	m^2
Fattore di forma	F_f	0,48	-
Perimetro vetro	L_g	17,040	m
Perimetro telaio	L_f	8,900	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

Trasmittanza termica del modulo U **3,236** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W10 E Fin60x85 Ferro VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w **5,093** W/m²K Trasmittanza solo vetro U_a **4,571** W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \qquad \textbf{0,837} \quad \text{-}$ Fattore tendaggi (invernale) $f_{c \text{ inv}} \qquad \textbf{1,00} \quad \text{-}$ Fattore tendaggi (estivo) $f_{c \text{ est}} \qquad \textbf{1,00} \quad \text{-}$ Fattore di trasmittanza solare $g_{gl,n} \qquad \textbf{0,850} \quad \text{-}$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza **60,0** cm Altezza **85,0** cm

Trasmittanza termica del telaio U_{f} **7,00** W/m²K K distanziale **0,00** W/mK K_d Area totale **0,510** m² A_w Area vetro **0,400** m² A_a Area telaio **0,110** m² A_f Fattore di forma F_f **0,79** -Perimetro vetro **2,580** m Perimetro telaio **2,900** m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad W/\text{mK} \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Trasmittanza termica del modulo U **5,093** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W11 E Porta120x295 Ferro VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_{w} **5,345** W/m²K Trasmittanza solo vetro Uα 4,469 W/m²K

Dati per il calcolo degli apporti solari

Emissività **0,837** -Fattore tendaggi (invernale) $f_{c inv}$ 1,00 -Fattore tendaggi (estivo) $f_{c\ est}$ 1,00 -Fattore di trasmittanza solare 0,850 $g_{gl,n}$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W

f shut 0,6

Dimensioni del serramento

Larghezza **120,0** cm Altezza **295,0** cm

Trasmittanza termica del telaio U_{f} **7,00** W/m²K K distanziale **0,00** W/mK K_d Area totale **3,540** m² A_w Area vetro **2,315** m² A_a Area telaio **1,225** m² A_f Fattore di forma F_f 0,65 -Perimetro vetro **13,160** m Perimetro telaio **8,300** m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	8,0	1,00	0,008
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm λ Conduttività termica W/mK m²K/W R Resistenza termica

Trasmittanza termica del modulo U **5,345** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W12 E Porta115x260 Alluminio VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w **5,359** W/m²K Trasmittanza solo vetro U_g **4,550** W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza 115,0 cm Altezza 100,0 cm Altezza sopraluce 50,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	7,00	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_w	1,725	m^2
Area vetro	A_g	1,156	m^2
Area telaio	A_f	0,569	m^2
Fattore di forma	F_f	0 ,67	-
Perimetro vetro	L_g	6,280	m
Perimetro telaio	Lf	5,300	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

Trasmittanza termica del modulo U **3,779** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Muro sottofinestra

Struttura opaca associata M7 M7 E Sottofinestra doppialamiera2cmISOL su ESTERNO

Trasmittanza termica U 1,624 W/m²K Altezza H_{sott} 110,0 cm Area 1,26 m²

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W13 E Fin115x170 Alluminio VD

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Dati per il calcolo degli apporti solari

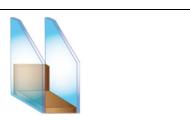
Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento


Larghezza **115,0** cm Altezza **170,0** cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	7,00	W/m^2K
K distanziale	K_d	0,02	W/mK
Area totale	A_{w}	1,955	m^2
Area vetro	\mathbf{A}_{g}	0,994	m^2
Area telaio	A_f	0,961	m^2
Fattore di forma	F_f	0,51	-
Perimetro vetro	L_g	7,080	m
Perimetro telaio	L_{f}	5,700	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	1,00	0,004
Intercapedine	-	-	0,173
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

Trasmittanza termica del modulo U 3,707 W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m²K Altezza H_{cass} 0,0 cm Profondità P_{cass} 0,0 cm Area frontale 0,00 m²

Muro sottofinestra

Struttura opaca associata M5 M5 E Sottofinestra muro17cm su ESTERNO

Trasmittanza termica U 2,027 W/m²K Altezza H $_{sott}$ 110,0 cm Area 1,26 m²

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W14 E Fin115x170 Legno VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,592 W/m²K Trasmittanza solo vetro U_g 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza 115,0 cm Altezza 130,0 cm Altezza sopraluce 40,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	2,00	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	1,955	m^2
Area vetro	A_{g}	1,211	m^2
Area telaio	A_f	0,744	m^2
Fattore di forma	F_f	0,62	-
Perimetro vetro	L_g	<i>8,700</i>	m
Perimetro telaio	L_f	5,700	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

Trasmittanza termica del modulo U **3,217** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H $_{cass}$ 30,0 cm Profondità P $_{cass}$ 30,0 cm Area frontale 0,34 m 2

Muro sottofinestra

Struttura opaca associata M5 M5 E Sottofinestra muro17cm su ESTERNO

Trasmittanza termica U 2,027 W/m²K Altezza H_{sott} 80,0 cm Area 0,92 m^2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W15 E porta115x260 Legno VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,117 W/m²K Trasmittanza solo vetro U_a 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

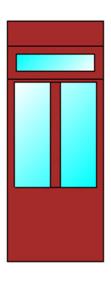
Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento

Larghezza 115,0 cm Altezza 220,0 cm Altezza sopraluce 40,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio U_{f} **2,00** W/m²K K distanziale **0,00** W/mK K_d Area totale **2,990** m² A_w Area vetro **1,299** m² A_q Area telaio **1,691** m² A_f 0,43 -Fattore di forma F_f Perimetro vetro **9,100** m L_{a} Perimetro telaio **7,500** m Lf


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Trasmittanza termica del modulo U **3,236** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

<u>Descrizione della finestra:</u> W16 E Porta150x290 Legno VD

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w **2,625** W/m²K Trasmittanza solo vetro U_g **2,819** W/m²K

Dati per il calcolo degli apporti solari

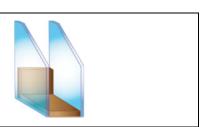
Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

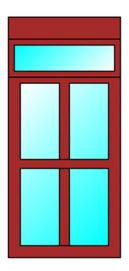
f shut **0,6** -

Dimensioni del serramento


Larghezza 150,0 cm Altezza 240,0 cm Altezza sopraluce 50,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,06	W/mK
Area totale	A_w	4,350	m^2
Area vetro	\mathbf{A}_{g}	2,598	m^2
Area telaio	A_f	1,752	m^2
Fattore di forma	F_f	0,60	-
Perimetro vetro	L_g	<i>15,720</i>	m
Perimetro telaio	L_f	8,800	m


Stratigrafia del pacchetto vetrato

Descrizione strato	s	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	8,0	1,00	0,008
Intercapedine	-	-	0,127
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm

 λ Conduttività termica W/mK R Resistenza termica $m^2 K/W$

Caratteristiche del modulo

Trasmittanza termica del modulo U 2,779 W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H $_{cass}$ 30,0 cm Profondità P $_{cass}$ 30,0 cm Area frontale 0,45 m 2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W17 E 160x215 Legno VD

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w **2,608** W/m²K Trasmittanza solo vetro U_g **2,819** W/m²K

Dati per il calcolo degli apporti solari

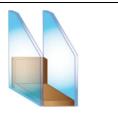
Emissività $\epsilon \qquad \textbf{0,837} \quad \text{-}$ Fattore tendaggi (invernale) $f_{c \text{ inv}} \qquad \textbf{1,00} \quad \text{-}$ Fattore tendaggi (estivo) $f_{c \text{ est}} \qquad \textbf{1,00} \quad \text{-}$ Fattore di trasmittanza solare $g_{gl,n} \qquad \textbf{0,750} \quad \text{-}$

Caratteristiche delle chiusure oscuranti

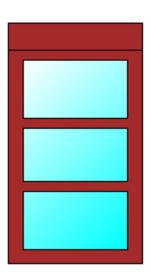
Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento


Larghezza **150,0** cm Altezza **240,0** cm

Trasmittanza termica del telaio U_{f} **1,80** W/m²K K distanziale **0,06** W/mK K_d Area totale **3,600** m² A_w Area vetro **2,218** m² A_a Area telaio **1,382** m² A_f Fattore di forma F_f 0,62 -Perimetro vetro **10,840** m Perimetro telaio **7,800** m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	8,0	1,00	0,008
Intercapedine	-	-	0,127
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad W/\text{mK} \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Trasmittanza termica del modulo U **2,793** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H $_{cass}$ 30,0 cm Profondità P $_{cass}$ 30,0 cm Area frontale 0,45 m 2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W18 E porta115x280 Legno VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,567 W/m^2K Trasmittanza solo vetro U_g 4,571 W/m^2K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \qquad \textbf{0,837} \quad \text{-}$ Fattore tendaggi (invernale) $f_{\text{c inv}} \qquad \textbf{1,00} \quad \text{-}$ Fattore tendaggi (estivo) $f_{\text{c est}} \qquad \textbf{1,00} \quad \text{-}$ Fattore di trasmittanza solare $g_{gl,n} \qquad \textbf{0,850} \quad \text{-}$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza 115,0 cm Altezza 240,0 cm Altezza sopraluce 40,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio U_{f} **2,00** W/m²K K distanziale **0,00** W/mK K_d Area totale **3,220** m² A_w Area vetro **1,962** m² A_q Area telaio **1,258** m² A_f Fattore di forma 0,61 - F_f Perimetro vetro **13,820** m L_{a} Perimetro telaio **7,900** m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad W/\text{mK} \\ R \quad \text{Resistenza termica} \qquad m^2 \text{K/W}$

Trasmittanza termica del modulo U **3,635** W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H_{cass} 30,0 cm Profondità P_{cass} 30,0 cm Area frontale 0,34 m^2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W19 E porta115x230 Legno VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,266 W/m²K Trasmittanza solo vetro U_q 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

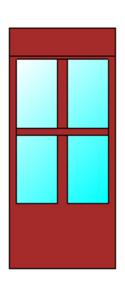
f shut **0,6** -

Dimensioni del serramento

Larghezza 115,0 cm Altezza 230,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	2,00	W/m^2K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	2,645	m^2
Area vetro	\mathbf{A}_{g}	1,302	m^2
Area telaio	A_f	1,343	m^2
Fattore di forma	F_f	0,49	-
Perimetro vetro	L_g	9,440	m
Perimetro telaio	L_{f}	6,900	m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Trasmittanza termica del modulo U 3,382 W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m²K Altezza H_{cass} 30,0 cm Profondità P_{cass} 30,0 cm Area frontale 0,34 m^2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

<u>Descrizione della finestra:</u> W20 E Fin70x170 Legno VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,512 W/m²K Trasmittanza solo vetro U_g 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza **70,0** cm Altezza **170,0** cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	2,00	W/m^2K
K distanziale	K_d	0,00	W/mK
Area totale	A_w	1,190	m^2
Area vetro	A_g	0,700	m^2
Area telaio	A_f	0,490	m^2
Fattore di forma	F_f	0,59	-
Perimetro vetro	L_g	4,800	m
Perimetro telaio	L_f	4,800	m

Stratigrafia del pacchetto vetrato

Descrizione strato	s	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m²K/W

Trasmittanza termica del modulo U 3,169 W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m 2 K Altezza H $_{cass}$ 30,0 cm Profondità P $_{cass}$ 30,0 cm Area frontale 0,21 m 2

Muro sottofinestra

Struttura opaca associata M5 M5 E Sottofinestra muro17cm su ESTERNO

Trasmittanza termica U 2,027 W/m 2 K Altezza H_{sott} 80,0 cm Area 0,56 m 2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: W21 E Fin65x100 Legno VS

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 3,424 W/m²K Trasmittanza solo vetro U_a 4,571 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \qquad \textbf{0,837} \quad \text{-}$ Fattore tendaggi (invernale) $f_{c \text{ inv}} \qquad \textbf{1,00} \quad \text{-}$ Fattore tendaggi (estivo) $f_{c \text{ est}} \qquad \textbf{1,00} \quad \text{-}$ Fattore di trasmittanza solare $g_{gl,n} \qquad \textbf{0,850} \quad \text{-}$

Caratteristiche delle chiusure oscuranti

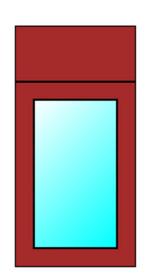
Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza **65,0** cm Altezza **100,0** cm

Trasmittanza termica del telaio U_{f} 2,00 W/m²K K distanziale **0,00** W/mK K_d Area totale **0,650** m² A_w Area vetro **0,360** m² A_a Area telaio **0,290** m² A_f Fattore di forma F_f **0,55** -Perimetro vetro **2,500** m Perimetro telaio **3,300** m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	3,0	1,00	0,003
Resistenza superficiale esterna	-	-	0,086

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Trasmittanza termica del modulo U 3,619 W/m²K

Cassonetto

Struttura opaca associata M4 M4 E Cassonetto 48cm su ESTERNO

Trasmittanza termica U 2,134 W/m²K Altezza H_{cass} 30,0 cm Profondità P_{cass} 30,0 cm Area frontale 0,19 m²