MINISTERO DELLE INFRASTRUTTURE E DELLA MOBILITÀ SOSTENIBILI STRUTTURA TECNICA DI MISSIONE

COMUNE DI TORINO

METROPOLITANA AUTOMATICA DI TORINO LINEA 2 – TRATTA POLITECNICO – REBAUDENGO

PROGETTAZIONE DEFINITIVA Lotto Costruttivo 2: Bologna - Politecnico

PROGETTO	DEFINITIVO	-												
DIRETTORE PROGETTAZIONE Responsabile integrazione discipline specialistiche	IL PROGETTISTA	PROGETTO STRUTTURALE – STAZIONI SPECIALI STAZIONE POLITECNICO RELAZIONE DI CALCOLO STRUTTURE INTERNE STAZIONE					PORTI S.r.l.							
Ing. R. Crova Ordine degli Ingegneri della Provincia di Torino n. 6038S	Ing. F. Rizzo Ordine degli Ingegneri della Provincia di Torino n. 9337K													
		ELABORATO REV. SCALA DAT						DATA						
BIM MANAGER Geom. L. D'Accardi			L2	T1	A2	D	STR	SPO	R	003	0	1	-	18/11/2022

AGGIORNAMENTI

Fg. 1 di 1

REV.	DESCRIZIONE	DATA	REDATTO	CONTROLLATO	APPROVATO	VISTO
0	EMISSIONE	31/03/22	LSA	ECA	FRI	RCR
1	EMISSIONE FINALE A SEGUITO DI VERIFICA PREVENTIVA	18/11/22	LSA	ECA	FRI	RCR
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

LOTTO 2	CARTELLA	9.3.1	3	MTL2T1A2D	STRSPOR003
---------	----------	-------	---	-----------	------------

STAZIONE APPALTANTE

DIRETTORE DI DIVISIONE INFRASTRUTTURE E MOBILITÀ Ing. R. Bertasio

RESPONSABILE UNICO DEL PROCEDIMENTO Ing. A. Strozziero

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Relazione di calcolo strutture interne stazione

3_MTL2T1A2DSTRSPOR003-0-1.DOCX

INDICE

1.	PREMESSA	17
2.	DOCUMENTI E NORMATIVE DI RIFERIMENTO	18
2.1	NORMATIVE DI RIFERIMENTO	18
2.2	PROGRAMMI DI CALCOLO	21
3.	CARATTERISTICHE DEI MATERIALI	22
3.1	CALCESTRUZZO PER DIAFRAMMI: C25/30	22
3.2	STRUTTURE INTERNE: C30/37	22
3.3	ACCIAIO DA CEMENTO ARMATO: B450C	22
3.4	COPRIFERRO MINIMO E COPRIFERRO NOMINALE: DIAFRAMMI	23
3.5	COPRIFERRO MINIMO E COPRIFERRO NOMINALE: STRUTTURE INTERNE	24
3.6	ACCIAIO PER CARPENTERIA: S355J0 — (STRUTTURE PROVVISIONALI)	26
3.7	BARRE IN VETRORESINA	26
4.	DESCRIZIONE DELLE OPERE	27
5.	CARATTERIZZAZIONE GEOTECNICA	30
5.1	CONTESTO GEOLOGICO E IDROGEOLOGICO	30
5.2	PARAMETRI GEOTECNICI DI RIFERIMENTO	34
6.	CARATTERIZZAZIONE SISMICA	36
6.1	VALUTAZIONE DELL'AZIONE SISMICA DI BASE	36
6.2	FATTORE DI AMPLIFICAZIONE DELLO SPETTRO DI RISPOSTA ELASTICO	37
6.3	CATEGORIA DI SOTTOSUOLO	37
6.4	VALUTAZIONE DELL'AZIONE SISMICA DI PROGETTO	38
7.	CRITERI DI CALCOLO DELLE OPERE	40
7.1	CENNI NORMATIVI	41
7.2	CRITERI DI ANALISI DELLA SICUREZZA	42
7.3	ORIGINE DEL CODICE DI CALCOLO E SUA VALIDAZIONE	44

Relazione di calcolo strutture interne stazione

7.4	CARICHI APPLICATI ALLE STRUTTURE	50
7.4.1	PESO PROPRIO	50
7.4.2	PERMANENTI PORTATI STRUTTURALI G ₁	50
7.4.3	PERMANENTI PORTATI NON STRUTTURALI G2	50
7.4.4	SPINTA DEL TERRENO	51
7.4.5	SPINTA DELL'ACQUA	51
7.4.6	Azioni variabili Q	52
7.5	AZIONE SISMICA E	53
7.5.1	SPINTA DEL TERRENO IN FASE SISMICA	56
7.6	AZIONI TERMICHE	56
7.7	EFFETTI DOVUTI AL RITIRO	57
7.8	MODELLAZIONE DELLE AZIONI	58
7.9	INTERAZIONE TERRENO-STRUTTURA	63
8.	STRUTTURA INTERRATA	65
8.1	MODELLAZIONE DELLA STRUTTURA	65
8.2	MODELLAZIONE DELLE AZIONI — TEMPO INFINITO	72
8.2.1	SOLETTONE DI COPERTURA	73
8.2.2	PIANO ATRIO (-1)	74
8.2.3	PIANO MEZZANINO (-2)	77
8.2.4	PIANO MEZZANINO (-3)	79
8.2.5	PIANO BANCHINA	82
8.2.6	Platea di fondazione e cunicoli	84
8.2.7	CARICHI ORIZZONTALI	87
8.2.8	RITIRO	89
8.3	MODELLAZIONE DELLE AZIONI — TEMPO ZERO	89
8.3.1	SOLETTONE DI COPERTURA	91
8.3.2	PIANO ATRIO (-1)	92
8.3.3	PIANO MEZZANINO (-2)	92
8.3.4	PLATEA DI FONDAZIONE	93
9.	VERIFICA DI RIGIDEZZA – SLO	94
10.	VERIFICA DI RESISTENZA – SLD	101
11.	VERIFICA SOLETTONE DI COPERTURA	101
11.1	VERIFICA STATI LIMITE ULTIMI — SLU E SLV	101
11.1.1	SOLLECITAZIONI	101
11.1.2	VERIFICHE STRUTTURALI	106

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

11.2.1	VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE	122 122
11.2.2	STATO LIMITE DI PENGNIAZIONE	123
11.2.3	STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO	126
12.	VERIFICA TRAVI RIBASSATE	131
12.1	SOLLECITAZIONI	132
12.2	VERIFICHE STRUTTURALI	137
12.2.1	Travi 200x160	137
12.2.2	Travi 180x160	143
13.	VERIFICA PIANO ATRIO	147
13.1	VERIFICA STATI LIMITE ULTIMI – SLU E SLV	147
13.1.1	SOLLECITAZIONI	147
13.1.2	VERIFICHE STRUTTURALI	152
13.2	VERIFICA STATI LIMITE DI ESERCIZIO - SLE	162
13.2.1	STATO LIMITE DI DEFORMAZIONE	162
13.2.2	STATO LIMITE DI FESSURAZIONE	163
13.2.3	STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO	166
14.	VERIFICA PIANO MEZZANINO (-2)	171
14. 14.1	VERIFICA PIANO MEZZANINO (-2) VERIFICA STATI LIMITE ULTIMI – SLU E SLV	171 171
14.1 14.1.1	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI	
14.1	VERIFICA STATI LIMITE ULTIMI – SLU E SLV	171
14.1 14.1.1	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI	171 171
14.1 14.1.1 14.1.2	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI	171 171 176
14.1 14.1.1 14.1.2 14.2	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE	171 171 176 186
14.1 14.1.1 14.1.2 14.2 14.2.1	VERIFICA STATI LIMITE ULTIMI — SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE	171 171 176 186 186
14.1 14.1.1 14.1.2 14.2 14.2.1 14.2.2	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE	171 171 176 186 186 187
14.1 14.1.1 14.1.2 14.2.1 14.2.1 14.2.2 14.2.3	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO	171 176 186 186 187 190
14.1 14.1.1 14.1.2 14.2.1 14.2.1 14.2.2 14.2.3	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO VERIFICA PIANO MEZZANINO (-3)	171 171 176 186 186 187 190
14.1 14.1.1 14.1.2 14.2 14.2.1 14.2.2 14.2.3 15.	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO VERIFICA PIANO MEZZANINO (-3) VERIFICA STATI LIMITE ULTIMI – SLU E SLV	171 171 176 186 186 187 190 194
14.1 14.1.1 14.1.2 14.2 14.2.1 14.2.2 14.2.3 15. 15.1	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO VERIFICA PIANO MEZZANINO (-3) VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI	171 171 176 186 186 187 190 194
14.1 14.1.1 14.1.2 14.2 14.2.1 14.2.2 14.2.3 15. 15.1 15.1.1 15.1.2	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO VERIFICA PIANO MEZZANINO (-3) VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI	171 171 176 186 186 187 190 194 194 194
14.1 14.1.1 14.1.2 14.2 14.2.1 14.2.2 14.2.3 15. 15.1 15.1.1 15.1.2	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO VERIFICA PIANO MEZZANINO (-3) VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO - SLE	171 171 176 186 186 187 190 194 194 197 207
14.1 14.1.1 14.1.2 14.2 14.2.1 14.2.2 14.2.3 15. 15.1 15.1.1 15.1.2 15.2	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO – SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO VERIFICA PIANO MEZZANINO (-3) VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI VERIFICA STATI LIMITE DI ESERCIZIO – SLE STATO LIMITE DI DEFORMAZIONE	171 171 176 186 186 187 190 194 194 197 207

Relazione di calcolo strutture interne stazione

16.1 16.1.1 16.1.2	VERIFICA STATI LIMITE ULTIMI — SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI	216 216 219
16.2 16.2.1 16.2.2 16.2.3	VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO	229 229 230 233
17.	VERIFICA PLATEA	238
17.1 17.1.1 17.1.2	VERIFICA STATI LIMITE ULTIMI – SLU E SLV SOLLECITAZIONI VERIFICHE STRUTTURALI	238 238 242
17.2 17.2.1 17.2.2 17.2.3	VERIFICA STATI LIMITE DI ESERCIZIO - SLE STATO LIMITE DI DEFORMAZIONE STATO LIMITE DI FESSURAZIONE STATO LIMITE DI LIMITAZIONE DELLE TENSIONI IN ESERCIZIO	252 252 253 256
18.	VERIFICA FODERE	260
18.1	SOLLECITAZIONI	261
18.2	VERIFICHE STRUTTURALI	263
19.	VERIFICA PILASTRI PIANO ATRIO	267
19.1	SOLLECITAZIONI	267
19.2	VERIFICHE STRUTTURALI	271
20.	VERIFICA DIAFRAMMI INTERNI PROVVISORI	274
20.1	SOLLECITAZIONI	274
20.2	VERIFICHE STRUTTURALI	277
21.	VERIFICA SCALONE DI ACCESSO PASSEGGERI	282
21.1	SOLLECITAZIONI	283
21.2	VERIFICHE STRUTTURALI	285
22.	ROBUSTEZZA STRUTTURALE	290
22.1	Incendio	290
22.2	SOVRARESISTENZA	295
23.	GIUDIZIO MOTIVATO DI ACCETTABILITA' DEI RISULTATI	296

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

INDICE DELLE FIGURE

Figura 1.	Key-plan linea 2 della Metropolitana di Torino	17
Figura 2.	Stazione "Politecnico" – estratto Google Maps	18
Figura 3.	Dimensioni minime spessore muro e copriferro in caso di incendio (UNI El	N 1992-1-
	2:2005)	24
Figura 4.	Planimetria piano Banchina	28
Figura 5.	Planimetria piano Mezzanino (-3)	28
Figura 6.	Planimetria piano Mezzanino (-2)	29
Figura 7.	Planimetria piano Atrio	29
Figura 8.	Sezione longitudinale	30
Figura 9.	Sezione trasversale	30
Figura 10.	Quadro strutturale tratto dal progetto CARG (Fonte: Forno M.G., 2012)	31
Figura 11.	Sezione geotecnica – Estratto elaborato MTL2T1A0DGEOSPOT 001	34
Figura 12.	Individuazione del sito	53
Figura 13.	Individuazione dei parametri di progettazione	54
Figura 14.	Spettro SLV	54
Figura 15.	Spettro SLD	55
Figura 16.	Spettro SLO	55
Figura 17.	Complessivo stazione – Modello FEM Vista 1	66
Figura 18.	Complessivo stazione – Modello FEM Vista 2	66
Figura 19.	Struttura interna	67
Figura 20.	Struttura interrata – Piano atrio	67
Figura 21.	Struttura interrata – Piano mezzanino (-2)	68
Figura 22.	Struttura interrata – Piano mezzanino (-3)	68
Figura 23.	Struttura interrata – Piano banchina	69
Figura 24.	Struttura interrata – Platea di fondazione e cunicoli	69
Figura 25.	Vincoli con il mondo esterno – Sezione trasversale	70
Figura 26.	Vincoli con il mondo esterno – Sezione longitudinale	71
Figura 27.	Dettaglio – Molle compression-only X/Y e Z	71
Figura 28.	Solettone di copertura – Carichi permanenti NON strutturali G ₂	73
Figura 29.	Solettone di copertura – Carico variabile veicolare	73
Figura 30.	Piano atrio (-1) – Carichi permanenti strutturali G ₁ – Scale	74
Figura 31.	Piano atrio (-1) – Carichi permanenti NON strutturali G ₂ – Scale	74
Figura 32.	Piano atrio (-1) – Carichi permanenti NON strutturali G ₂	75
Figura 33.	Piano atrio (-1) – Carico variabile Q cat.E – Zona Locali Tecnici	75
Figura 34.	Piano atrio (-1) – Carico variabile Q cat.C5 – Zona viaggiatori	76
Figura 35.	Piano mezzanino (-2) – Carichi permanenti strutturali G ₁ - Scale	77
Figura 36.	Piano mezzanino (-2) – Carichi permanenti NON strutturali G ₂ – Scale	77

Relazione di calcolo strutture interne stazione

Figura 3/.	Piano mezzanino (-2) – Carichi permanenti NON strutturali G ₂	78
Figura 38.	Piano mezzanino (-2) – Carico variabile Q cat.E	78
Figura 39.	Piano mezzanino (-3) – Carichi permanenti strutturali G ₁ - Scale	79
Figura 40.	Piano mezzanino (-3) – Carichi permanenti NON strutturali G ₂ – Scale	79
Figura 41.	Piano mezzanino (-3) – Carichi permanenti NON strutturali G ₂	80
Figura 42.	Piano mezzanino (-3) – Carico variabile Q cat.E – Zona Locali Tecnici	80
Figura 43.	Piano mezzanino (-3) – Carico variabile Q cat.C5 – Zona viaggiatori	81
Figura 44.	Piano banchina – Carichi permanenti strutturali G ₁ - Scale	82
Figura 45.	Piano banchina – Carichi permanenti NON strutturali G ₂	82
Figura 46.	Piano banchina – Carico variabile Q cat.E – Zona Locali Tecnici	83
Figura 47.	Piano banchina – Carico variabile Q cat.C5 – Zona viaggiatori	83
Figura 48.	Platea di fondazione – Carichi permanenti strutturali G ₁ – Scale	84
Figura 49.	Platea di fondazione – Carichi permanenti NON strutturali G ₂	84
Figura 50.	Platea di fondazione – Ballast	85
Figura 51.	Copertura cunicoli – Ballast	85
Figura 52.	Platea di fondazione – Carico variabile da treno	86
Figura 53.	Copertura cunicoli – Carico variabile da treno	86
Figura 54.	Spinta statica del terreno - Tipologico	87
Figura 55.	Spinta sovraccarico stradale - Tipologico	87
-	Sovraspinta sismica terreno - Tipologico	88
Figura 57.	Spinta idrostatica quota 231 m s.l.m. (-15.80 m da P.C.) - Tipologico	88
Figura 58.	Azione termica per effetto del ritiro	89
Figura 59.	Struttura verticale – Tempo infinito	90
Figura 60.	Struttura verticale – Tempo zero	90
Figura 61.	Solettone di copertura – Carichi permanenti NON strutturali G ₂	91
Figura 62.	Solettone di copertura – Carico variabile di cantiere	91
Figura 63.	Piano atrio (-1) – Carico variabile di cantiere	92
Figura 64.	Piano mezzanino (-2) – Carico variabile di cantiere	92
Figura 65.	Platea di fondazione – Carico variabile di cantiere	93
Figura 66.	Solettone di copertura – Massimo spostamento XY SLO	94
_	Solettone di copertura – Minimo spostamento XY SLO	95
Figura 68.	Piano atrio (-1) – Massimo spostamento XY SLO	95
Figura 69.	Piano atrio (-1) – Minimo spostamento XY SLO	96
Figura 70.	Piano mezzanino (-2) – Massimo spostamento XY SLO	96
Figura 71.	Piano mezzanino (-2) – Minimo spostamento XY SLO	97
Figura 72.	Piano mezzanino (-3) – Massimo spostamento XY SLO	97
Figura 73.	Piano mezzanino (-3) – Minimo spostamento XY SLO	98
Figura 74.	Piano banchina – Massimo spostamento XY SLO	98
Figura 75.	Piano banchina – Minimo spostamento XY SLO	99
Figura 76.	Platea di fondazione – Massimo spostamento XY SLO	99
Figura 77.	Platea di fondazione – Minimo spostamento XY SLO	100
Figura 78.	Solettone – Inviluppo momento flettente M_{xx} – Direzione X – Tempo infinito	102

Relazione di calcolo strutture interne stazione

Figura 79. Solettone – Inviluppo momento flettente M _{xx} – Direzione X – Tempo zero	102
Figura 80. Solettone – Inviluppo momento flettente M _{yy} – Direzione Y – Tempo infinito	103
Figura 81. Solettone – Inviluppo momento flettente M _{yy} – Direzione Y – Tempo zero	103
Figura 82. Solettone – Inviluppo taglio V _{xx} – Direzione X – Tempo infinito	104
Figura 83. Solettone – Inviluppo taglio V _{xx} – Direzione X – Tempo zero	104
Figura 84. Solettone – Inviluppo taglio V _{yy} – Direzione Y – Tempo infinito	105
Figura 85. Solettone – Inviluppo taglio V _{yy} – Direzione Y – Tempo zero	105
Figura 86. Solettone di copertura – Armatura superiore direzione D1	107
Figura 87. Solettone di copertura – Armatura inferiore direzione D1	107
Figura 88. Solettone di copertura – Armatura superiore direzione D2	108
Figura 89. Solettone di copertura – Armatura inferiore direzione D2	108
Figura 90. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D1	110
Figura 91. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D1 – Zor	
	110
Figura 92. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D1	111
Figura 93. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D2	112
Figura 94. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D2 – Zor	
Figura 95. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D2	112 113
Figura 96. Solettone di copertura – Tasso di lavoro faccia illienore – Direzione D2	113
Figura 97. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D1 – Zor	
rigura 37. Solettorie di copertara Prasso di lavoro raccia superiore Direzione D1 Zor	114
Figura 98. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D1	115
Figura 99. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D1 – Zone	
5	115
Figura 100. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D2	116
Figura 101. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D2	117
Figura 102. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D2 – Zone	<u> </u>
	117
Figura 103. Solettone di copertura – Resistenza a taglio Direzione X	120
Figura 104. Solettone di copertura – Resistenza a taglio Direzione Y	120
Figura 105. Solettone di copertura – Resistenza a taglio Direzione X	121
Figura 106. Solettone di copertura – Resistenza a taglio Direzione Y	121
Figura 107. Solettone di copertura – Massima deformazione	122
Figura 108. Solettone di copertura – Apertura delle fessure - Ratio Direzione 1	124
Figura 109. Solettone di copertura – Apertura delle fessure - Ratio Direzione 1 – Zone > 1	
Figura 110. Solettone di copertura – Apertura delle fessure - Ratio Direzione 2	125
Figura 111. Solettone di copertura – Apertura delle fessure - Ratio Direzione 2 – Zone > 1	
Figura 112. Solettone di copertura – Tensioni calcestruzzo - Ratio Direzione 1	127
Figure 111. Solettone di copertura – Tensioni calcestruzzo - Ratio Direzione 2	128
Figura 114. Solettone di copertura – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1	
Figura 115. Solettone di copertura – Tensioni armatura - Ratio Direzione 1	129
Figura 116. Solettone di copertura – Tensioni armatura - Ratio Direzione 1 – Zone > 1	129

Relazione di calcolo strutture interne stazione

Figura 117. Solettone di copertura – Tensioni armatura - Ratio Direzione 2	130
Figura 118. Travi ribassate solettone di copertura – Tempo infinito	131
Figura 119. Travi ribassate solettone di copertura – Tempo zero	132
Figura 120. Travi ribassate 200x160 – Inviluppo M _y tempo infinito	133
Figura 121. Travi ribassate 200x160 – Inviluppo M _y tempo zero	133
Figura 122. Travi ribassate 200x160 − Inviluppo V _z tempo infinito	134
Figura 123. Travi ribassate 200x160 − Inviluppo V _z tempo zero	134
Figura 124. Travi ribassate 180x160 – Inviluppo M _y tempo infinito	135
Figura 125. Travi ribassate 180x160 – Inviluppo M _y tempo zero	135
Figura 126. Travi ribassate 180x160 − Inviluppo V _z tempo infinito	136
Figura 127. Travi ribassate 180x160 − Inviluppo V _z tempo zero	136
Figura 128. Travi ribassate – Verifica trave TR200x160	138
Figura 129. Travi ribassate – Verifica trave TR200x160 tempo zero	139
Figura 130. Travi ribassate – Verifica trave TR200x160 appoggio SX	140
Figura 131. Travi ribassate – Verifica trave TR200x160 appoggio DX	141
Figura 132. Travi ribassate – Verifica trave TR180x160 MAX M _{NEG}	144
Figura 133. Travi ribassate – Verifica trave TR180x160 MAX M _{POS}	145
Figura 134. Piano atrio (-1) – Inviluppo momento flettente M_{xx} – Direzione X – Tempo infir	nito
	148
Figura 135. Piano atrio (-1) – Inviluppo momento flettente Mxx – Direzione X – Tempo zer	ro148
Figura 136. Piano atrio (-1) – Inviluppo momento flettente M_{yy} – Direzione Y – Tempo infin	nito
	149
Figura 137. Piano atrio (-1) – Inviluppo momento flettente Myy – Direzione Y – Tempo zer	
Figura 138. Piano atrio (-1) – Inviluppo taglio V_{xx} – Direzione X – Tempo infinito	150
Figura 139. Piano atrio (-1) – Inviluppo taglio V_{xx} – Direzione X – Tempo zero	150
Figura 140. Piano atrio (-1) – Inviluppo taglio V_{yy} – Direzione Y – Tempo infinito	151
Figura 141. Piano atrio (-1) – Inviluppo taglio Vyy – Direzione Y – Tempo zero	151
Figura 142. Piano atrio (-1) – Armatura superiore direzione D1	153
Figura 143. Piano atrio (-1) – Armatura inferiore direzione D1	153
Figura 144. Piano atrio (-1) – Armatura superiore direzione D2	154
Figura 145. Piano atrio (-1) – Armatura inferiore direzione D2	154
Figura 146. Piano atrio (-1) – Tasso di lavoro faccia superiore – Direzione D1	156
	156
Figura 148. Piano atrio (-1) – Tasso di lavoro faccia inferiore – Direzione D1	157
Figura 149. Piano atrio (-1) – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1	157
Figura 150. Piano atrio (-1) – Tasso di lavoro faccia superiore – Direzione D2	158
	158
Figura 152. Piano atrio (-1) – Tasso di lavoro faccia inferiore – Direzione D2	159
Figura 153. Piano atrio (-1) – Tasso di lavoro faccia inferiore– Direzione D2 – Zone > 1	159
Figura 154. Piano atrio (-1) – Resistenza a taglio Direzione X	161
Figura 155. Piano atrio (-1) – Resistenza a taglio Direzione Y	161
Figura 156. Piano atrio (-1) – Massima deformazione	162

Relazione di calcolo strutture interne stazione

Figura 157. Piano atrio (-1) – Apertura delle fessure - Ratio Direzione 1	164
Figura 158. Piano atrio (-1) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1	164
Figura 159. Piano atrio (-1) – Apertura delle fessure - Ratio Direzione 2	165
Figura 160. Piano atrio (-1) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1	165
Figura 161. Piano atrio (-1) – Tensioni calcestruzzo - Ratio Direzione 1	167
Figura 162. Piano atrio (-1) – Tensioni calcestruzzo - Ratio Direzione 1 – Zone > 1	167
Figura 163. Piano atrio (-1) – Tensioni calcestruzzo - Ratio Direzione 2	168
Figura 164. Piano atrio (-1) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1	168
Figura 165. Piano atrio (-1) – Tensioni armatura - Ratio Direzione 1	169
Figura 166. Piano atrio (-1) – Tensioni armatura - Ratio Direzione 1 – Zone > 1	169
Figura 167. Piano atrio (-1) – Tensioni armatura - Ratio Direzione 2	170
Figura 168. Piano atrio (-1) – Tensioni armatura - Ratio Direzione 2 – Zone > 1	170
Figura 169. Mezzanino (-2) – Inviluppo momento flettente M_{xx} – Direzione X – Tempo ir	ıfinito172
Figura 170. Mezzanino (-2) – Inviluppo momento flettente Mxx – Direzione X – Tempo z	
Figura 171. Mezzanino (-2) – Inviluppo momento flettente M _{yy} – Direzione Y – Tempo ir	
Figura 172. Mezzanino (-2) – Inviluppo momento flettente M _W – Direzione Y – Tempo zo	
Figura 173. Mezzanino (-2) – Inviluppo taglio V _{xx} – Direzione X – Tempo infinito	174
Figura 174. Mezzanino (-2) – Inviluppo taglio Vxx – Direzione X – Tempo infinito – Tem	
	174
Figura 175. Mezzanino (-2) – Inviluppo taglio V _{yy} – Direzione Y – Tempo infinito	175
Figura 176. Mezzanino (-2) – Inviluppo taglio V _{yy} – Direzione Y – Tempo zero	175
Figura 177. Piano mezzanino (-2) – Armatura superiore direzione D1	177
Figura 178. Piano mezzanino (-2) – Armatura inferiore direzione D1	177
Figura 179. Piano mezzanino (-2) – Armatura superiore direzione D2	178
Figura 180. Piano mezzanino (-2) – Armatura inferiore direzione D2	178
Figura 181. Piano mezzanino (-2) – Tasso di lavoro faccia superiore – Direzione D1	180
Figura 182. Piano mezzanino (-2) – Tasso di lavoro faccia superiore – Direzione D1 – Zo	
	180
Figura 183. Piano mezzanino (-2) – Tasso di lavoro faccia inferiore – Direzione D1	181
Figura 184. Piano mezzanino (-2) – Tasso di lavoro faccia inferiore – Direzione D1 – Zor	ne > 1
	181
Figura 185. Piano mezzanino (-2) – Tasso di lavoro faccia superiore – Direzione D2	182
Figura 186. Piano mezzanino (-2) – Tasso di lavoro faccia inferiore – Direzione D2	183
Figura 187. Piano mezzanino (-2) – Tasso di lavoro faccia inferiore– Direzione D2 – Zon	e > 1183
Figura 188. Piano mezzanino (-2) – Resistenza a taglio Direzione X	185
Figura 189. Piano mezzanino (-2) – Resistenza a taglio Direzione Y	185
Figura 190. Piano mezzanino (-2) – Massima deformazione	186
Figura 191. Piano mezzanino (-2) – Apertura delle fessure - Ratio Direzione 1	188
Figura 192. Piano mezzanino (-2) – Apertura delle fessure - Ratio Direzione 1 – Zone >	
Figura 193. Piano mezzanino (-2) – Apertura delle fessure - Ratio Direzione 2	189
Figura 194. Piano mezzanino (-2) – Apertura delle fessure - Ratio Direzione 2 – Zone >	
Figura 195. Piano mezzanino (-2) – Tensioni calcestruzzo - Ratio Direzione 1	191
Figura 196. Piano mezzanino (-2) – Tensioni calcestruzzo - Ratio Direzione 1 – Zone > 1	

Relazione di calcolo strutture interne stazione

Figure 107 Piece analysis (2) Transitudi salasaharan Petis Piecetan 2	
Figura 197. Piano mezzanino (-2) – Tensioni calcestruzzo - Ratio Direzione 2	192
Figura 198. Piano mezzanino (-2) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1	192
Figura 199. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 1	193
Figura 200. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 1 – Zone > 1	193
Figura 201. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 2	194
Figura 202. Piano mezzanino (-3) – Inviluppo momento flettente M_{xx} – Direzione X	195
Figura 203. Piano mezzanino (-3) – Inviluppo momento flettente M _{yy} – Direzione Y	195
Figura 204. Piano mezzanino (-3) – Inviluppo taglio V_{xx} – Direzione X	196
Figura 205. Piano mezzanino (-3) – Inviluppo taglio V _{yy} – Direzione Y	196
Figura 206. Piano mezzanino (-3) – Armatura superiore direzione D1	198
Figura 207. Piano mezzanino (-3) – Armatura inferiore direzione D1	198
Figura 208. Piano mezzanino (-3) – Armatura superiore direzione D2	199
Figura 209. Piano mezzanino (-3) – Armatura inferiore direzione D2	199
Figura 210. Piano mezzanino (-3) – Tasso di lavoro faccia superiore – Direzione D1	201
Figura 211. Piano mezzanino (-3) – Tasso di lavoro faccia superiore – Direzione D1 – Zon	e > 1
	201
Figura 212. Piano mezzanino (-3) – Tasso di lavoro faccia inferiore – Direzione D1	202
Figura 213. Piano mezzanino (-3) – Tasso di lavoro faccia inferiore – Direzione D1 – Zone	> 1
	202
Figura 214. Piano mezzanino (-2) – Tasso di lavoro faccia superiore – Direzione D2	203
Figura 215. Piano mezzanino (-3) – Tasso di lavoro faccia superiore – Direzione D2 – Zon	e > 1
	203
Figura 216. Piano mezzanino (-3) – Tasso di lavoro faccia inferiore – Direzione D2	204
Figura 217. Piano mezzanino (-3) – Tasso di lavoro faccia inferiore– Direzione D2 – Zone	> 1204
Figura 218. Piano mezzanino (-3) – Resistenza a taglio Direzione X	206
Figura 219. Piano mezzanino (-3) – Resistenza a taglio Direzione Y	206
Figura 220. Piano mezzanino (-3) – Massima deformazione	
rigura 220.1 iano mezzanino (3) Prassima deformazione	207
•	
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1	207 209
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1	207 209 209
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2	207 209 209 210
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1	207 209 209 210 210
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1 Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1	207 209 209 210 210 212
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1 Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2	207 209 209 210 210 212 213
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1 Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1	207 209 209 210 210 212 213 213
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1 Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1 Figura 228. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1	207 209 209 210 210 212 213 213 214
Figura 221. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 1 — Zone > 1 Figura 223. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 2 — Zone > 1 Figura 225. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 2 — Zone > 1 Figura 228. Piano mezzanino (-3) — Tensioni armatura - Ratio Direzione 1 Figura 229. Piano mezzanino (-3) — Tensioni armatura - Ratio Direzione 1 — Zone > 1	207 209 209 210 210 212 213 213 214 214
Figura 221. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 1 — Zone > 1 Figura 223. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 2 — Zone > 1 Figura 225. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 2 — Zone > 1 Figura 228. Piano mezzanino (-3) — Tensioni armatura - Ratio Direzione 1 Figura 229. Piano mezzanino (-3) — Tensioni armatura - Ratio Direzione 2 Figura 230. Piano mezzanino (-2) — Tensioni armatura - Ratio Direzione 2	207 209 209 210 210 212 213 213 214 214 215
Figura 221. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 1 — Zone > 1 Figura 223. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) — Apertura delle fessure - Ratio Direzione 2 — Zone > 1 Figura 225. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) — Tensioni calcestruzzo - Ratio Direzione 2 — Zone > 1 Figura 228. Piano mezzanino (-3) — Tensioni armatura - Ratio Direzione 1 Figura 229. Piano mezzanino (-3) — Tensioni armatura - Ratio Direzione 1 — Zone > 1 Figura 230. Piano mezzanino (-2) — Tensioni armatura - Ratio Direzione 2 Figura 231. Piano mezzanino (-3) — Tensioni armatura - Ratio Direzione 2 — Zone > 1	207 209 209 210 210 212 213 213 214 214 215 215
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1 Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1 Figura 228. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1 Figura 229. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1 – Zone > 1 Figura 230. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 2 Figura 231. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 2 – Zone > 1 Figura 232. Piano banchina – Inviluppo momento flettente M _{xx} – Direzione X	207 209 209 210 210 212 213 213 214 214 215 215 217
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1 Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1 Figura 228. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1 Figura 229. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1 – Zone > 1 Figura 230. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 2 Figura 231. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 2 – Zone > 1 Figura 232. Piano banchina – Inviluppo momento flettente M _{xx} – Direzione X Figura 233. Piano banchina – Inviluppo momento flettente M _{yy} – Direzione Y	207 209 209 210 210 212 213 213 214 214 215 215 217
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1 Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 2 – Zone > 1 Figura 228. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1 Figura 230. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 2 Figura 231. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 2 Figura 232. Piano banchina – Inviluppo momento flettente M _{xx} – Direzione X Figura 233. Piano banchina – Inviluppo momento flettente M _{yy} – Direzione Y Figura 234. Piano banchina – Inviluppo taglio V _{xx} – Direzione X	207 209 209 210 210 212 213 213 214 214 215 215 217 217 218
Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1 Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1 Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1 Figura 226. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 Figura 227. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1 Figura 228. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1 Figura 229. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1 – Zone > 1 Figura 230. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 2 Figura 231. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 2 – Zone > 1 Figura 232. Piano banchina – Inviluppo momento flettente M _{xx} – Direzione X Figura 233. Piano banchina – Inviluppo momento flettente M _{yy} – Direzione Y	207 209 209 210 210 212 213 213 214 214 215 215 217

Relazione di calcolo strutture interne stazione

Figura 237. Piano banchina – Armatura inferiore direzione DI	220
Figura 238. Piano banchina – Armatura superiore direzione D2	221
Figura 239. Piano banchina – Armatura inferiore direzione D2	221
Figura 240. Piano banchina – Tasso di lavoro faccia superiore – Direzione D1	223
Figura 241. Piano banchina – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1	223
Figura 242. Piano banchina – Tasso di lavoro faccia inferiore – Direzione D1	224
Figura 243. Piano banchina – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1	224
Figura 244. Piano banchina – Tasso di lavoro faccia superiore – Direzione D2	225
Figura 245. Piano banchina – Tasso di lavoro faccia superiore – Direzione D2 – Zone > 1	225
Figura 246. Piano banchina – Tasso di lavoro faccia inferiore – Direzione D2	226
Figura 247. Piano banchina – Resistenza a taglio Direzione X	228
Figura 248. Piano banchina – Resistenza a taglio Direzione Y	228
Figura 249. Piano banchina – Massima deformazione	229
Figura 250. Piano banchina – Apertura delle fessure - Ratio Direzione 1	231
Figura 251. Piano banchina – Apertura delle fessure - Ratio Direzione 1 – Zone > 1	231
Figura 252. Piano banchina – Apertura delle fessure - Ratio Direzione 2	232
Figura 253. Piano banchina – Apertura delle fessure - Ratio Direzione 2 – Zone > 1	232
Figura 254. Piano banchina – Tensioni calcestruzzo - Ratio Direzione 1	234
Figura 255. Piano banchina – Tensioni calcestruzzo - Ratio Direzione 1 – Zone > 1	234
Figura 256. Piano banchina – Tensioni calcestruzzo - Ratio Direzione 2	235
Figura 257. Piano banchina – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1	235
Figura 258. Piano banchina – Tensioni armatura - Ratio Direzione 1	236
Figura 259. Piano banchina – Tensioni armatura - Ratio Direzione 1 – Zone > 1	236
Figura 260. Piano banchina – Tensioni armatura - Ratio Direzione 2	237
Figura 261. Piano banchina – Tensioni armatura - Ratio Direzione 2 – Zone > 1	237
Figura 262. Platea – Inviluppo momento flettente M _{xx} – Direzione X	239
Figura 263. Platea – Inviluppo momento flettente M _{yy} – Direzione Y	240
Figura 264. Platea – Inviluppo taglio V _{xx} – Direzione X	241
Figura 265. Platea – Inviluppo taglio V _{yy} – Direzione Y – Tempo infinito	241
Figura 267. Platea – Armatura superiore direzione D1	243
Figura 268. Platea – Armatura inferiore direzione D1	243
Figura 269. Platea – Armatura superiore direzione D2	244
Figura 270. Platea – Armatura inferiore direzione D2	244
Figura 271. Platea – Tasso di lavoro faccia superiore – Direzione D1	246
Figura 272. Platea – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1	246
Figura 273. Platea – Tasso di lavoro faccia inferiore – Direzione D1	247
Figura 274. Platea – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1	247
Figura 275. Platea – Tasso di lavoro faccia superiore – Direzione D2	248
Figura 276. Platea – Tasso di lavoro faccia inferiore – Direzione D2	249
Figura 277. Platea – Tasso di lavoro faccia inferiore – Direzione D2 – Zone > 1	249
Figura 278. Platea – Resistenza a taglio Direzione X	251
Figura 279. Platea – Resistenza a taglio Direzione Y	251

Relazione di calcolo strutture interne stazione

Figura 280. Platea – Massima deformazione	252
Figura 281. Platea – Apertura delle fessure - Ratio Direzione 1	254
Figura 282. Platea – Apertura delle fessure - Ratio Direzione 1 – Zone > 1	254
Figura 283. Platea – Apertura delle fessure - Ratio Direzione 2	255
Figura 284. Platea – Apertura delle fessure - Ratio Direzione 2 – Zone > 1	255
Figura 285. Platea – Tensioni calcestruzzo - Ratio Direzione 1	257
Figura 286. Platea – Tensioni calcestruzzo - Ratio Direzione 2	257
Figura 287. Platea – Tensioni armatura - Ratio Direzione 1	258
Figura 288. Platea – Tensioni armatura - Ratio Direzione 1 – Zone > 1	258
Figura 289. Platea – Tensioni armatura - Ratio Direzione 2	259
Figura 290. Platea – Tensioni armatura - Ratio Direzione 2 – Zone > 1	259
Figura 291. Fodere – Schema statico – Tipologico	260
Figura 292. Fodere longitudinali – Inviluppo momento flettente M _y – Tipologico	262
Figura 293. Fodere longitudinali – Inviluppo taglio V _z – Tipologico	262
Figura 294. Fodere longitudinali – Tasso di lavoro M _y – Tipologico	264
Figura 295. Fodere longitudinali – Tasso di lavoro V _z – Tipologico	264
Figura 296. Fodere longitudinali – Tabella riassuntiva verifiche	265
Figura 297. Fodere longitudinali – Verifica fodera sp. 80cm	266
Figura 298. Pilastri – Vista 3D	267
Figura 299. Pilastri – Inviluppo momento flettente M _y	268
Figura 300. Pilastri – Inviluppo momento flettente M _z	268
Figura 301. Pilastri – Inviluppo taglio V _z	269
Figura 302. Pilastri – Inviluppo taglio V _y	269
Figura 303. Pilastri – Inviluppo sforzo normale N	270
Figura 304. Pilastri – Sezione di verifica	271
Figura 305. Pilastri – Verifica sezione più sollecitata	272
Figura 306. Diaframmi interni provvisori – Vista 3D	274
Figura 307. Diaframmi – Momento flettente M _{xx}	275
Figura 308. Diaframmi – Taglio agente V _{xx}	275
Figura 309. Diaframmi – Sforzo normale F _{xx}	276
Figura 310. Diaframmi – Armatura verticale	277
Figura 311. Diaframmi – Armatura orizzontale	278
Figura 312. Diaframmi – Tasso di lavoro armatura verticale	279
Figura 313. Diaframmi – Tasso di lavoro armatura verticale – Zone > 1	279
Figura 314. Diaframmi – Tasso di lavoro armatura orizzontale	280
Figura 315. Diaframmi – Tasso di lavoro armatura orizzontale – Zone > 1	280
Figura 316. Scalone di accesso passeggeri - Sezione	282
Figura 317. Scalone di accesso passeggeri – Schema statico	283
Figura 318. Scalone di accesso passeggeri – Inviluppo momento M _y - SLU	284
Figura 319. Scalone di accesso passeggeri – Inviluppo taglio V_z - SLU	284
Figura 320. Scalone di accesso passeggeri – Inviluppo sforzo normale N - SLU	285
Figura 321. Scalone di accesso passeggeri – Tasso di lavoro flessione M _v – SLU	286

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Figura 322. Scalone di accesso passeggeri – Tasso di lavoro taglio V _z – SLU	287
Figura 323. Scalone di accesso passeggeri – Tabella riassuntiva verifiche – SLU	287
Figura 324. Scalone di accesso passeggeri – Tabella riassuntiva verifiche – SLE	288
Figura 325. Scalone di accesso passeggeri – Verifica soletta	289

INDICE DELLE TABELLE

Tabella 1.	Classi di esposizione e copriferro impiegati	25
Tabella 2.	Parametri di resistenza e deformabilità per le unità geotecniche di riferimento	33
Tabella 3.	Modello geotecnico	34
Tabella 4.	Parametri geotecnici caratteristici	35
Tabella 5.	Parametri Jet Grouting caratteristici	35
Tabella 6.	Sintesi dei parametri di pericolosità sismica di base	39
Tabella 7.	Sintesi delle azioni sismiche di progetto	40
Tabella 8.	Rispetto dei requisiti nei confronti degli SL	41
Tabella 9.	Coefficienti parziali per le azioni	42
Tabella 10.	Tipi di analisi	45
Tabella 11.	Tipologia di elementi finiti disponibili	46
Tabella 12.	Tipologia di materiali e sezioni disponibili	47
Tabella 13.	Tipologia di vincoli disponibili	48
Tabella 14.	Tipologia di condizioni di carico disponibili	49
Tabella 15.	Rigidezze Diaframmi/Fodere	51
Tabella 16.	Spinta orizzontale terreno	51
Tabella 17.	Spinta orizzontale sovraccarico stradale	52
Tabella 18.	Sovraspinta sismica orizzontale terreno	56
Tabella 19.	Deformazione da ritiro per essiccamento	57
Tabella 20.	Casi di carico CDC	59
Tabella 21.	Coefficienti combinazioni di carico CMB	61
Tabella 22.	Tipologia combinazioni	62
Tabella 23.	Caratteristiche modello FEM	65
Tabella 24.	Caratteristiche sezioni modello FEM	72
		106
Tabella 26.	Verifica taglio – Solettone di copertura	119
Tabella 27.	Controllo armatura minima e passo minimo staffe - Travi	137
Tabella 28.	Verifica taglio – TR200x160	142
Tabella 29. Y	Verifica taglio – TR180x160	146
Tabella 30.	Armatura minima	152
Tabella 31.	Verifica taglio – Piano atrio (-1)	160
Tabella 32.	Armatura minima	176
		184
Tabella 34.	Armatura minima	197

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Tabella 35. Verifica taglio – Piano mezzanino (-3)	205
Tabella 36. Armatura minima	219
Tabella 37. Verifica taglio – Piano banchina	227
Tabella 38. Armatura minima	242
Tabella 39. Verifica a taglio – Platea di fondazione	250
Tabella 40. Armatura minima	263
Tabella 41. Verifica a taglio – Platea di fondazione	273
Tabella 42. Armatura minima	286
Tabella 43. Resistenza al fuoco – Solette piene/solai	291
Tabella 44. Resistenza al fuoco – Travi	292
Tabella 45. Resistenza al fuoco – Pilastri	293
Tabella 46. Resistenza al fuoco – Pareti/Setti	294
Tabella 47. Copriferri a freddo	294
Tabella 48. Confronto reazioni vincolari	296

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

1. PREMESSA

La presente relazione tecnica ha per oggetto la Progettazione Definitiva delle strutture della stazione Politecnico alla PK 6+200 circa, della linea 2 della Metropolitana di Torino. Saranno trattate le analisi strutturali e le relative verifiche di sicurezza delle strutture interrate della stazione.

Il tracciato urbano della Linea 2 della Metropolitana di Torino, si sviluppa per circa 14.50 km dal settore Nord/Est al settore Sud/Ovest della città di Torino e cioè dalla nuova stazione Rebaudengo del passante ferroviario, si inserisce nell'ex scalo ferroviario Vanchiglia, utilizzando la trincea tra le vie Gottardo e Sempione, percorre corso Regio Parco, attraversa il fiume Dora, i Giardini Reali, piazza castello, devia verso via Roma, interseca la linea 1 esistente nella stazione di Porta Nuova e, attraversando prima la stazione ferroviaria di Porta Nuova e successivamente corso Stati Uniti, devia su Corso Trento, percorre corso Duca degli Abruzzi per immettersi lungo corso Orbassano fino al cimitero parco (per maggiori dettagli si riporta nella figura seguente il key-plan della linea in questione).

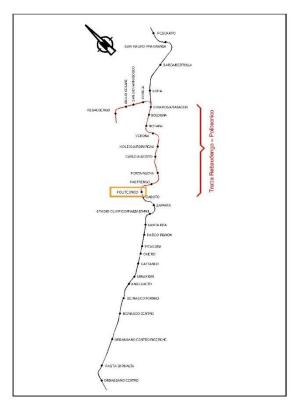


Figura 1. Key-plan linea 2 della Metropolitana di Torino

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

Figura 2. Stazione "Politecnico" – estratto Google Maps

Nella presente relazione saranno trattati i seguenti argomenti:

- documenti e normative di riferimento per la progettazione definitiva delle opere;
- descrizione delle opere e delle caratteristiche dei materiali impiegati per la realizzazione;
- descrizione del contesto geologico, idrogeologico e caratterizzazione geotecnica;
- caratterizzazione sismica dell'area di riferimento;
- criteri di calcolo delle opere, dimensionamento e verifica delle stesse.

2. DOCUMENTI E NORMATIVE DI RIFERIMENTO

2.1 Normative di riferimento

La progettazione definitiva delle opere sarà condotta in accordo alle sequenti norme:

- [1] Legge n. 1086 del 05/11/1971: "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- [2] DM 17 gennaio 2018: Aggiornamento delle "Norme Tecniche per le costruzioni" NTC2018 (GU n.42 del 20/02/2018).
- [3] Circolare esplicativa del Ministero delle infrastrutture e dei trasporti del 21 gennaio 2019, n.7 del Consiglio superiore del Lavori Pubblici recante "Istruzioni per l'applicazione dell'Aggiornamento delle Norme tecniche per le costruzioni, di cui al decreto ministeriale 17 gennaio 2018" (GU Serie Generale n.35 del 11-02-2019 Suppl. Ordinario n. 5).
- [4] D.M. 21/10/2015: "Approvazione della regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio delle metropolitane".
- [5] UNI 9503-2007: "Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi in acciaio".

TO	CITTA'	DI	FORINO

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

- [6] D.M. 16/02/2007 Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione.
- [7] UNI EN 206:2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità".
- [8] UNI 11104-2016, "Calcestruzzo: specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206".
- [9] UNI EN 1090-1:2012 "Esecuzione di strutture di acciaio e di alluminio Parte 1: Requisiti per la valutazione di conformità dei componenti strutturali".
- [10] Stucchi M., et al., 2004 Pericolosità sismica di riferimento per il territorio nazionale MPS04. Istituto Nazionale di Geofisica e Vulcanologia. (https://doi.org/10.13127/sh/mps04/ag).
- [11] Azioni sismiche Spettri di risposta ver.1.03 (Software sperimentale disponibile dal sito del CSLLPP, http://cslp.mit.gov.it).
- [12] Legge 2 febbraio 1974, n. 64: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"
- [13] D.G.R. 30 Dicembre 2019, n. 6-887: "Presa d'atto e approvazione dell'aggiornamento della classificazione sismica del territorio della Regione Piemonte"
- [14] D.G.R. 26 Novembre 2021, n. 10-4161: "Approvazione delle nuove procedure di semplificazione attuative di gestione e controllo delle attività urbanistico-edilizie ai fini della prevenzione del rischio sismico".

Quando necessario, sono state altresì assunti a riferimento i Codici Normativi Europei nella loro ultima revisione) sottoelencati:

- [15] Eurocode 0 Criteri generali di progettazione strutturale
- [16] UNI EN 1990:2006 Criteri generali di progettazione strutturale
- [17] Eurocodice 1 Azioni sulle strutture
- [18] UNI EN 1991-1-1:2004 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici
- [19] UNI EN 1991-1-2:2004 Parte 1-2: Azioni in generale Azioni sulle strutture esposte al fuoco
- [20] UNI EN 1991-1-3:2015 Parte 1-3: Azioni in generale Carichi da neve
- [21] UNI EN 1991-1-4:2010 Parte 1-4: Azioni in generale Azioni del vento
- [22] UNI EN 1991-1-5:2004 Parte 1-5: Azioni in generale Azioni termiche
- [23] UNI EN 1991-1-6:2005 Parte 1-6: Azioni in generale Azioni durante la costruzione
- [24] UNI EN 1991-1-7:2014 Parte 1-7: Azioni in generale Azioni eccezionali
- [25] UNI EN 1991-2:2005 Parte 2: Carichi da traffico sui ponti
- [26] UNI EN 1991-3:2006 Parte 3: Azioni indotte da gru e da macchinari
- [27] UNI EN 1991-4:2006 Parte 4: Azioni su silos e serbatoi
- [28] Eurocodice 2 Progettazione delle strutture in calcestruzzo
- [29] UNI EN 1992-1-1:2015 Parte 1-1: Regole generali e regole per gli edifici

The state of the s	CITTA	DΙΊ	ORINO

Relazione di calcolo strutture interne stazione

- [30] UNI EN 1992-1-2:2005 Parte 1-2: Regole generali Progettazione strutturale contro l'incendio
- [31] UNI EN 1992-2:2006 Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi
- [32] UNI EN 1992-3:2006 Parte 3: Strutture di contenimento liquidi
- [33] Eurocodice 3 Progettazione delle strutture in acciaio
- [34] UNI EN 1993-1-1:2014 Parte 1-1: Regole generali e regole per gli edifici
- [35] UNI EN 1993-1-2:2005 Parte 1-2: Regole generali Progettazione strutturale contro l'incendio
- [36] UNI EN 1993-1-3:2007 Parte 1-3: Regole generali Regole supplementari per l'impiego dei profilati e delle lamiere sottili piegati a freddo
- [37] UNI EN 1993-1-4:2015 Parte 1-4: Regole generali Regole supplementari per acciai inossidabili
- [38] UNI EN 1993-1-5:2017 Parte 1-5: Elementi strutturali a lastra
- [39] UNI EN 1993-1-6:2017 Parte 1-6: Resistenza e stabilità delle strutture a guscio
- [40] UNI EN 1993-1-7:2007 Parte 1-7: Strutture a lastra ortotropa caricate al di fuori del piano
- [41] UNI EN 1993-1-8:2005 Parte 1-8: Progettazione dei collegamenti
- [42] UNI EN 1993-1-9:2005 Parte 1-9: Fatica
- [43] UNI EN 1993-1-10:2005 Parte 1-10: Resilienza del materiale e proprietà attraverso lo spessore
- [44] UNI EN 1993-1-11:2007 Parte 1-11: Progettazione di strutture con elementi tesi
- [45] UNI EN 1993-1-12:2007 Parte 1-12: Regole aggiuntive per l'estensione della EN 1993 fino agli acciai di grado S 700
- [46] UNI EN 1993-2:2007 Parte 2: Ponti di acciaio
- [47] UNI EN 1993-3-1:2007 Parte 3-1: Torri, pali e ciminiere Torri e pali
- [48] UNI EN 1993-3-2:2007 Parte 3-2: Torri, pali e ciminiere Ciminiere
- [49] UNI EN 1993-4-1:2017 Parte 4-1: Silos
- [50] UNI EN 1993-4-2:2007 Parte 4-2: Serbatoi
- [51] UNI EN 1993-4-3:2007 Parte 4-3: Condotte
- [52] UNI EN 1993-5:2007 Parte 5: Pali e palancole
- [53] UNI EN 1993-6:2007 Parte 6: Strutture per apparecchi di sollevamento
- [54] Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo
- [55] UNI EN 1994-1-1:2005 Parte 1-1: Regole generali e regole per gli edifici
- [56] UNI EN 1994-1-2:2005 Parte 1-2: Regole generali Progettazione strutturale contro l'incendio
- [57] UNI EN 1994-2:2006 Parte 2: Regole generali e regole per i ponti
- [58] Eurocodice 5 Progettazione delle strutture in legno
- [59] UNI EN 1995-1-1:2014 Parte 1-1: Regole generali Regole comuni e regole per gli edifici
- [60] UNI EN 1995-1-2:2005 Parte 1-2: Regole generali Progettazione strutturale contro l'incendio
- [61] UNI EN 1995-2:2005 Parte 2: Ponti

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

- [62] Eurocodice 6 Progettazione delle strutture in muratura
- [63] UNI EN 1996-1-1:2013 Parte 1-1: Regole generali per strutture di muratura armata e non armata
- [64] UNI EN 1996-1-2:2005 Parte 1-2: Regole generali Progettazione strutturale contro l'incendio
- [65] UNI EN 1996-2:2006 Parte 2: Considerazioni progettuali, selezione dei materiali ed esecuzione delle murature
- [66] UNI EN 1996-3:2006 Parte 3: Metodi di calcolo semplificato per strutture di muratura non armata
- [67] Eurocodice 7 Progettazione geotecnica
- [68] UNI EN 1997-1:2013 Parte 1: Regole generali
- [69] UNI EN 1997-2:2007 Parte 2: Indagini e prove nel sottosuolo
- [70] Eurocodice 8 Progettazione delle strutture per la resistenza sismica
- [71] UNI EN 1998-1:2013 Parte 1: Regole generali, azioni sismiche e regole per gli edifici
- [72] UNI EN 1998-2:2011 Parte 2: Ponti
- [73] UNI EN 1998-3:2005 Parte 3: Valutazione e adeguamento degli edifici
- [74] UNI EN 1998-4:2006 Parte 4: Silos, serbatoi e condotte
- [75] UNI EN 1998-5:2005 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- [76] UNI EN 1998-6:2005 Parte 6: Torri, pali e camini

2.2 Programmi di calcolo

Per l'analisi delle strutture in c.a. e acciaio e le relative verifiche è stato utilizzato il seguente software:

Informazioni sul codice di calcolo				
Titolo:	Midas GEN			
Versione:	Gen 2022 (v1.1)			
Produttore-Distributore:	MIDAS Information Technology Co.,Ltd - South Korea			
Codice Licenza:	Licenza CFENGEN0002443			

Stazione Politecnico

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

3. CARATTERISTICHE DEI MATERIALI

3.1 Calcestruzzo per diaframmi: C25/30

Classe di esposizione: XC2

Resistenza caratteristica a compressione: $f_{ck} = 0.83*R_{ck} = 24.90 \text{ MPa}$

Resistenza media a compressione: $f_{cm} = f_{ck} + 8 = 32.90 \text{ MPa}$

Modulo Elastico: $E_{cm} = 22000*(f_{cm}/10)^{0.3} = 31447.16 \text{ MPa}$

Resistenza di calcolo a compressione: $f_{cd} = a_{cc} * f_{ck} / v_c = 0.85 * f_{ck} / 1.5 = 14.11 \text{ MPa}$

Resistenza a trazione media: $f_{ctm} = 0.3*f_{ck}^{2/3} = 2.55 \text{ MPa}$

Resistenza a trazione: $f_{ctk} = 0.7*f_{ctm} = 1.79 \text{ MPa}$

Resistenza a trazione di calcolo: $f_{ctd} = f_{ctk}/y_c = 1.19 \text{ MPa}$

3.2 Strutture interne: C30/37

Classe di esposizione strutture interne: XC3

Classe di esposizione sovrastruttura: XC1

Resistenza caratteristica a compressione: $f_{ck} = 0.83*R_{ck} = 30.71 \text{ MPa}$

Resistenza media a compressione: $f_{cm} = f_{ck} + 8 = 38.71 \text{ MPa}$

Modulo Elastico: $E_{cm} = 22000*(f_{cm}/10)^{0.3} = 33019.43 \text{ MPa}$

Resistenza di calcolo a compressione: $f_{cd} = a_{cc} * f_{ck} / \gamma_c = 0.85 * f_{ck} / 1.5 = 17.40 \text{ MPa}$

Resistenza a trazione media: $f_{ctm} = 0.3*f_{ck}^{2/3} = 2.94 \text{ MPa}$

Resistenza a trazione: $f_{ctk} = 0.7*f_{ctm} = 2.06 \text{ MPa}$

Resistenza a trazione di calcolo: $f_{ctd} = f_{ctk}/v_c = 1.37 \text{ MPa}$

3.3 Acciaio da cemento armato: B450C

Tensione di rottura caratteristica $f_{tk} \ge 540 \text{ MPa}$

Tensione di snervamento caratteristica $f_{vk} \ge 450 \text{ MPa}$

Tensione di snervamento di calcolo $f_{vd} = f_{vk}/v_s = f_{vk}/1.15 = 391.3 \text{ MPa}$

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Allungamento caratteristico $\geq 7.5\%$

Modulo elastico $E_s = 210000 \text{ MPa}$

3.4 Copriferro minimo e copriferro nominale: Diaframmi

Al fine di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro viene calcolato secondo le prescrizioni dell'Eurocodice 2 (UNI EN 1992-1-1, §4.4.1): il copriferro nominale è definito come il copriferro minimo (c_{min}) più un margine di progetto per gli scostamenti Δc_{dev} :

$$C_{nom} = C_{min} + \Delta C_{dev}$$

Il copriferro minimo (c_{min}) è pari a:

$$C_{min} = max (C_{min,b}; C_{min,dur} + \Delta C_{dur,\gamma} - \Delta C_{dur,st} - \Delta C_{dur,add}; 10 mm)$$

in cui:

- c_{min,b} è il copriferro minimo dovuto al requisito di aderenza e vale 26 mm (diametro massimo delle barre isolate);
- c_{min.dur} è il copriferro minimo dovuto alle condizioni ambientali (30 mm);
- Δc_{dur,γ} riduzione del copriferro per margine di sicurezza (0 mm);
- Δc_{dur,st} riduzione del copriferro per utilizzo di acciaio inossidabile (0 mm);
- $\Delta c_{dur,add}$ riduzione del copriferro per utilizzo di protezione aggiuntiva (0 mm).

Pertanto, si ha $c_{min} = 56$ mm. Nel caso in esame, sarà adotto un copriferro nominale pari a 75 mm per tutte le opere in oggetto (coerentemente con quanto indicato nel manuale di progettazione).

I rischi derivanti dagli incendi devono essere limitati progettando e realizzando le costruzioni in modo tale da garantire la resistenza e la stabilità degli elementi portanti, nonché da limitare la propagazione del fuoco e dei fumi. La resistenza al fuoco è il tempo durante il quale la struttura può resistere al fuoco. Per il caso in esame si considera una durata di progetto dell'incendio di 120 minuti (REI 120, riferito alla curva di incendio ISO 834).

Per la valutazione del copriferro da adottare si utilizza il metodo tabellare secondo quanto riportato al §5.4.2 della UNI EN 1992-1-2:2005; si riporta di seguito la tabella relativa allo spessore minimo da adottare per diaframma e copriferro.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Standard fire resistance	Minimum dimensions (mm) Wall thickness/axis distance for			
	μ _{fi} =	0,35	μ _{fi} =	= 0,7
	wall exposed on one side	wall exposed on two sides	wall exposed on one side	wall exposed on two sides
1	2	3	4	5
REI 30	100/10*	120/10*	120/10*	120/10*
REI 60	110/10*	120/10*	130/10*	140/10*
REI 90	120/20*	140/10*	140/25	170/25
REI 120	150/25	160/25	160/35	220/35
REI 180	180/40	200/45	210/50	270/55
REI 240	230/55	250/55	270/60	350/60
* Normally the cover required by EN 1992-1-1 will control.				
Note: For the definition of $\mu_{\rm fi}$ see 5.3.2 (3).				

Figura 3. Dimensioni minime spessore muro e copriferro in caso di incendio (UNI EN 1992-1-2:2005)

Il valore μ_{fi} rappresenta il rapporto tra N_{Ed} (sforzo normale agente) e N_{Rd} (sforzo normale resistente); nel caso in esame si considera – cautelativamente – μ_{fi} = 0.7.

Secondo quanto riportato in Figura 3 lo spessore minimo del muro (per REI 120) deve essere pari a 160 mm, mentre per il copriferro pari a 35 mm; entrambe le condizioni risultano dunque soddisfatte.

3.5 Copriferro minimo e copriferro nominale: Strutture interne

Al fine di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale". I valori dei copriferro sono calcolati in accordo alla tabella C4.1.6.1.3 della Circolare del 21 gennaio 2019 inerente alle Nuove Norme Tecniche per le Costruzioni.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

Tabella 1. Classi di esposizione e copriferro impiegati

Tipologia	Esposizione	Ambiente	Classe calcestruzzo	c _{min} [mm]	C _{utilizzato} [mm]
Diaframmi	XC2	Ordinario	C25/30	25+10*+10**=45	75
Solettone di copertura	copertura XC3		C30/37	20+10*+10**=40	50
Fodere	XC3	Ordinario	C30/37	20+10*+10**=40	50
Orizzontamenti	XC3	Ordinario	C30/37	20+10*+10**=40	40
Pilastri/Setti	XC3	Ordinario	C30/37	25+10*+10**=45	45
Platea di fondazione	XC3	Ordinario	C30/37	20+10*+10**=40	50

^{*} per costruzioni con vita nominale di 100 anni

Tabella C4.1.IV - Copriferri minimi in mm

			arre da c.a. enti a piastra		rre da c.a. ri elementi		ri da c.a.p. enti a piastra		ri da c.a.p. i elementi	
C _{min}	Co	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Sulla base delle classi di esposizione XC3 e XC1 considerate si assume un copriferro minimo pari a:

- 20 mm per gli elementi orizzontali;
- 25 mm per gli elementi verticali;

a tale valore va aggiunta la tolleranza di posa pari a 10 mm e, dato che la struttura ha vita nominale di 100 anni, si aggiungono ulteriormente altri 10 mm. Pertanto, il c_{min} risulta essere rispettivamente pari a:

$$c_{min} = 20 + 10 + 10 = 40 \text{ mm}$$

$$c_{min} = 25 + 10 + 10 = 45 \text{ mm}$$

^{**} per tolleranze di posa dell'armatura

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Il copriferro nominale è definito come il copriferro minimo (c_{min}) più un margine di progetto per gli scostamenti Δc_{dev} :

$$c_{nom} = c_{min} + \Delta c_{dev} = 40+10 = 50 \text{ mm}$$

Nel caso in esame sarà adottato un copriferro nominale pari a:

- 50 mm per il solettone di copertura e la platea di fondazione;
- 50 mm per le fodere di rivestimento diaframmi;
- 40 mm per i solai interni della stazione e la copertura della sovrastruttura zona locali tecnici;
- 45 mm per le strutture verticali.

3.6 Acciaio per carpenteria: S355J0 – (Strutture provvisionali)

Per spessori t ≤ 40 mm

Tensione di rottura caratteristica $f_{tk} \ge 510 \text{ MPa}$

Tensione di snervamento caratteristica $f_{yk} \ge 355 \text{ MPa}$

Per spessori 40 mm $< t \le 80$ mm

Tensione di rottura caratteristica $f_{tk} \ge 470 \text{ MPa}$

Tensione di snervamento caratteristica $f_{yk} \ge 335 \text{ MPa}$

Coefficienti di sicurezza

Resistenza delle sezioni di Classe 1-2-3-4 $\gamma_{M0} = 1.05$

Resistenza all'instabilità delle membrature $\gamma_{M1} = 1.05$

Resistenza nei riguardi della frattura $\gamma_{M2} = 1.25$

Modulo elastico $E_s = 210000 \text{ MPa}$

3.7 Barre in vetroresina

Resina tipo vinilestere

Densità $\rho = 1.9 \text{ g/cm}^3$

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Contenuto in vetro $\Delta_0 = 70\%$

Resistenza a trazione caratteristica: $f_{tk} > 850 \text{ MPa}$

Modulo elastico a trazione E = 40 GPa

4. DESCRIZIONE DELLE OPERE

La stazione è un manufatto a quattro livelli interrati con dimensioni in pianta di circa 74.0x30.0m e fondo scavo posto alla profondità di circa -32.00m rispetto al piano campagna; al suo interno sono presenti:

- platea di fondazione a spessore variabile 1.30/1.80m con estradosso a -28.25m rispetto al piano campagna, sagomata per ospitare i cunicoli impiantistici presenti sotto la via di corsa;
- soletta di banchina di spessore pari a 0.30m con estradosso a -25.15m rispetto al piano campagna;
- diaframmi laterali di spessore 1.20m continui lungo tutto il perimetro della stazione;
- diaframmi centrali temporanei di spessore 1.20m discontinui;
- solettoni intermedi di spessore pari a 1.00m con estradosso rispettivamente a:
 - o Piano Mezzanino (-3): -19.35m
 - o Piano Mezzanino (-2): -13.50m
 - Piano Atrio (-1): -7.65m
- solettone di copertura nervato di spessore pari a 0.80m con estradosso a -1.80m rispetto al piano campagna;
- setti interni centrali di spessore variabile 1.00/0.80m discontinui;
- pilastri circolari D1000mm presenti al piano atrio zona viaggiatori;
- fodere verticali di rivestimento dei diaframmi laterali di spessore variabile 1.00/0.80/0.60m.

In corrispondenza del piano atrio è presente la porzione di ingresso alla stazione, manufatto ad un livello interrato concepita come struttura indipendente dal corpo stazione, nel quale sono presenti:

- platea di fondazione di spessore 1.0m con estradosso a -7.65m rispetto al piano campagna;
- solettone di copertura di spessore pari a 0.80/0.50m con estradosso a -1.80/-2.70m rispetto al piano campagna;
- diaframmi laterali di spessore 0.80m lungo il perimetro;
- pilastri circolari D1000mm;
- fodere verticali di rivestimento dei diaframmi di spessore variabile 0.60m.

Le scale di accesso sono realizzate con cortina di micropali temporanea rivestita da un contromuro in c.a. dello spessore di 0.60m.

Lungo il perimetro del corpo stazione sono presenti le appendici di aerazione e calaggio materiali.

Per l'analisi dei diaframmi laterali si faccia riferimento al documento MTL2T1A1DSTRSGCR001 "Relazione di calcolo opere di sostegno stazione".

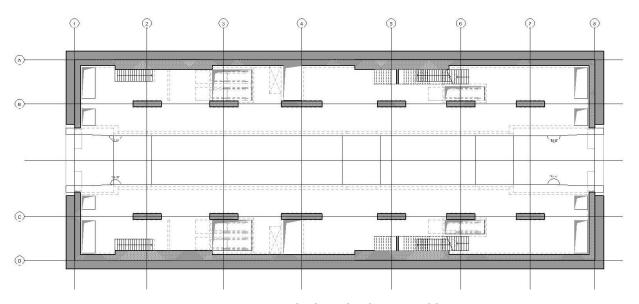


Figura 4. Planimetria piano Banchina

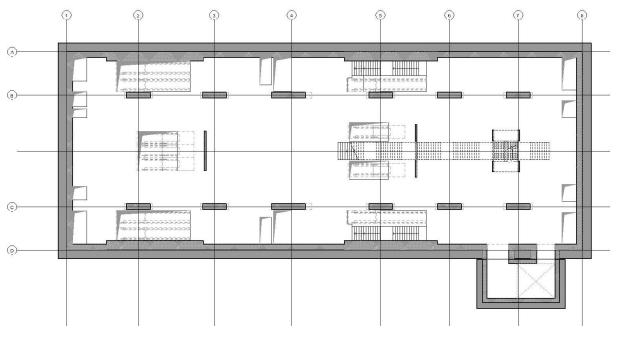


Figura 5. Planimetria piano Mezzanino (-3)

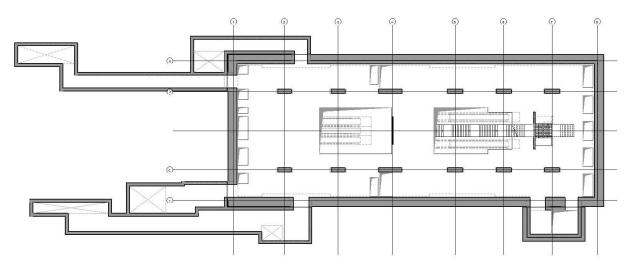


Figura 6. Planimetria piano Mezzanino (-2)

Figura 7. Planimetria piano Atrio

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

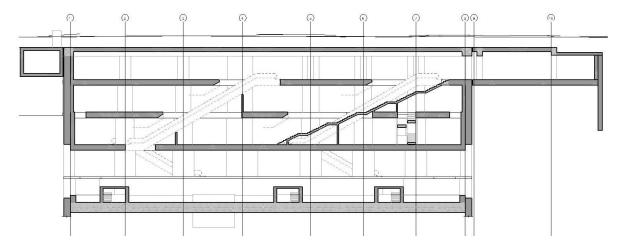


Figura 8. Sezione longitudinale

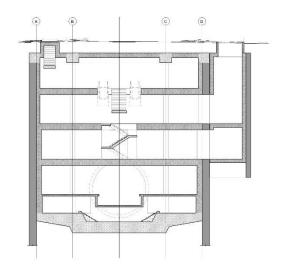


Figura 9. Sezione trasversale

5. CARATTERIZZAZIONE GEOTECNICA

5.1 Contesto geologico e idrogeologico

L'area lungo la quale si realizzerà la linea 2 della Metropolitana di Torino si ubica nella cosiddetta "pianura piemontese settentrionale" delimitata a delimitata a Nord-Ovest dalle Alpi e verso Sud-Est dai rilievi collinari della Collina di Torino e del Monferrato. Tale struttura è caratterizzata da una potente serie di età pliocenico superiore - olocenica formata dagli apporti successivi di due ampi conoidi fluvio-glaciali appartenenti al fiume Dora Riparia e torrente Stura di Lanzo. All'interno dei depositi fluvioglaciali, si rinvengono termini litologici legati ai litotipi del bacino idrografico di

alimentazione, per esempio serpentiniti e ultrabasiti del Massiccio Ultrabasico di Lanzo, gneiss e quarziti del Complesso del Dora Maira. I materiali di natura continentale sono sovrapposti ad una serie marina pliocenica composta da depositi sabbiosi, sabbioso-limosi fino a totalmente limosi. Ad ulteriore profondità si rinvengono formazioni marine di età terziaria di natura prevalentemente marnosa ed arenaceo-conglomeratica costituenti la Collina di Torino. Come si può osservare dalla figura sottostante, il fianco occidentale della Collina di Torino, con struttura anticlinalica con asse circa NE-SW, si immerge al di sotto dei depositi quaternari della pianura.

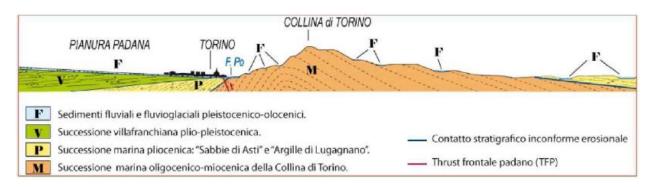


Figura 10. Quadro strutturale tratto dal progetto CARG (Fonte: Forno M.G., 2012)

I terreni presenti in superficie appartengono quindi all'ambiente continentale e risalgono al periodo Pleistocenico (Era Quaternaria); tali depositi sono formati in prevalenza da materiali ghiaiosi, sabbiosi e limosi all'interno dei quali si rinvengono localmente ciottoli silicatici, silicei e calcarei. I ciottoli possono avere dimensioni molto variabili (fino a pluridecimetriche, in media di 10-30 cm), e generalmente sono composti da quarziti, gneiss, serpentiniti e metagabbri. A minori profondità si possono incontrare lenti limoso-argillose attribuibili al fiume Po. La caratteristica principale dei depositi pleistocenici di origine fluvioglaciale è la presenza in forma discontinua e localizzata, di orizzonti e livelli con grado di cementazione (e/o addensamento) variabile. I livelli conglomeratici, dotati di maggior cementazione, sono caratteristici del sottosuolo di Torino e sono conosciuti con il nome di "puddinghe". I depositi fluvioglaciali possono presentare caratteristiche notevolmente variabili in termini di resistenza e deformabilità geotecnica in funzione del grado di cementazione ma anche dal punto di vista granulometrico.

A maggiori profondità, al di sotto dei depositi del Quaternario, si possono riscontrare i seguenti materiali geologici, dipendendo dalla zona della città in considerazione:

- depositi lacustri e fluviolacustri del Villafranchiano (Pleistocene inferiore-Pliocene superiore) che possono essere di due differenti tipologie:
 - o materiale di ambiente lacustre-palustre, caratterizzati da una granulometria predominante fine e costituiti da alternanza di limi e argille;
 - materiali di ambiente fluviale, più grossolani e rappresentati da livelli sabbiosoghiaiosi;

	CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazion	e di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

- la successione marina Pliocenica (composta da limi argillosi, limi sabbiosi e sabbie grigioazzurre con fossili);
- la successione marina Oligo-Miocenica della Collina di Torino (formata da marne, siltiti, arenarie e conglomerati marini).

In base agli studi idrogeologici realizzati nella città di Torino e considerando le esperienze previe di progetti similari, possono essere identificati due principali livelli idrogeologici:

- Complesso ghiaioso-sabbioso, sede dell'acquifero libero principale, è formato dai depositi grossolani del Quaternario (ciottoli, ghiaie, e sabbie in matrice sabbioso-limosa) con potenza tra i 30-40 m. In genere i depositi quaternari possono essere caratterizzati da una permeabilità maggiore a 1.0E-04 m/s (permeabilità da media ad alta) e localmente presentano un grado di permeabilità inferiore (permeabilità media, compresa tra 1.0E-06 m/s e 1.0E-04 m/s).
- Complesso argilloso-limoso-ghiaioso, sede di un acquifero profondo di tipo "multifalda" situato ad una profondità indicativa tra 40 e 200 m dal p.c. Questo acquifero è costituito da alternanze di depositi medio grossolani e fini appartenenti ai depositi fluviolacustri del Villafranchiano (con una permeabilità media, compresa tra 1.0E-06 m/s e 1.0E-04 m/s), chiusi al tetto da depositi argillosi (potenti fino a 20-30 m e con permeabilità medio-bassa, da 1.0E-08 m/s a 1.0E-06 m/s).

Si può concludere che i lavori della Linea 2 interferiranno esclusivamente con l'acquifero superficiale del complesso ghiaioso-sabbioso, con eccezione della tratta compresa tra le stazioni di Zappata e Caboto lungo la quale la soletta della galleria attraverserà i depositi del Villafranchiano. Con riferimento all'esperienza della Linea 1 della Metropolitana di Torino, la falda superficiale si colloca ad una profondità variabile tra i 14 m ed i 16 m dal piano campagna e l'oscillazione annuale può raggiungere un valore massimo di 2.0 m.

Con riferimento alla relazione Geotecnica, sono state individuate 7 unità geotecniche, caratterizzate da un comportamento meccanico-deformativo similare.

Nella seguente tabella si riportano gli intervalli di valori proposti per i parametri di resistenza e deformabilità delle unità geotecniche interessate dalla realizzazione delle opere in sotterraneo della linea 2 della Metropolitana di Torino. Considerando la quantità di prove di laboratorio eseguite sino a questa fase, ed una volta verificato che i materiali attraversati sono principalmente gli stessi, si è usato come riferimento la caratterizzazione geo-meccanica utilizzata nel contesto del progetto esecutiva della linea 1 della Metropolitana di Torino esistente.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

Tabella 2. Parametri di resistenza e deformabilità per le unità geotecniche di riferimento

	γnat	φ'	c'	Cu	E	v
Unità	[kN/m³]	[°]	[kPa]	[kPa]	[MPa]	[-]
U1	17-19	30-37	0	-	10-25	0.2-0.3
U2	18-21	32-40	0-20	-	140-170	0.3-0.4
U3	19-22	35-37	20-50	-	170-200	0.3-0.4
U4	19-22	36-42	50-140	-	200-260	0.3-0.4
U5	19-21	20-30	22-45	100-150	30-100	0.3-0.35
U6	18-20	26-36	10-35	70-310	60-120	0.3-0.35
U7	18-20	27-31	15-30	100-200	100-200	0.3-0.35

^{*}U1: Terreno superficiale; U2: Ghiaie e sabbie da sciolte a debolmente cementate; U3: Ghiaie e sabbie mediamente cementate; U4: Ghiaie e sabbie altamente cementate; U5: Limi argillosi ed argille limose; U6: Alternanza di sabbie finimedie debolmente limose e limi argillosi-sabbiosi; U7: Argille limose compatte e localmente litificate (marne di Sant'Agata).

dove:

 γ_{nat} : peso di volume unitario

 $\phi^{\prime} \text{:} \text{ angolo di attrito}$

c': coesione apparente c_u: coesione non drenata

E: modulo di Young del terreno

v: coefficiente di Poisson del terreno

Per ulteriori dettagli e/o approfondimenti in merito alla caratterizzazione geotecnica dei materiali si rimanda all'elaborato specialistico.

5.2 Parametri geotecnici di riferimento

Nella seguente immagine si riporta la sezione geotecnica di riferimento per la stazione Politecnico:

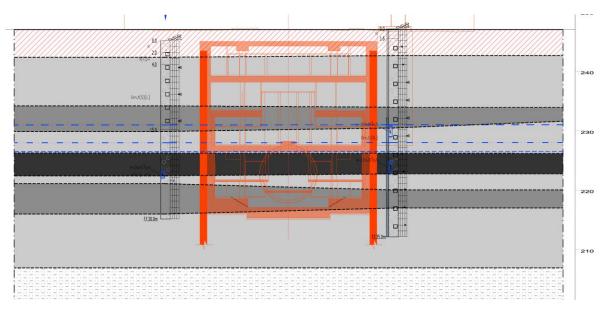


Figura 11. Sezione geotecnica – Estratto elaborato MTL2T1A0DGEOSPOT 001

Nella Tabella 2 è riportato il modello geotecnico di riferimento utilizzato per il dimensionamento della paratia di micropali. In Tabella 3 e Tabella 4 sono riportati i parametri geotecnici utilizzati nelle analisi. Per maggiori dettagli sulla caratterizzazione geotecnica si rimanda agli elaborati progettuali di riferimento.

Nelle seguenti tabelle vengono riportati la stratigrafia adottata e i parametri geotecnici adottati nella presente modellazione.

Quota superiore da p.c. Quota inferiore da p.c. Unità geotecnica [m] [m] 0.0 U1 - Terreno superficiale -4.5 U2 - Ghiaia e sabbia da sciolta a debolmente -4.5 -40.0 cementata U6 – Limo sabbioso -40.0 debolmente argilloso

Tabella 3. Modello geotecnico

Relazione di calcolo strutture interne stazione

Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico

Stazione i onteci

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

Tabella 4. Parametri geotecnici caratteristici

Unità geotecnica	γ [kN/m3]	φ [°]	c' [kPa]	cu [kPa]	E [MPa]	v [-]
U1	19	29	0	-	15	0.3
U2	19	36	10		150	0.3
U6	19	31	20	-	90	0.35

Nell'ambito della caratterizzazione geotecnica, gli strati riconducibili alle unità 3 e 4 sono stati debitamente esaminati (si veda la Relazione Geotecnica par.7.8.3 cod. MTL2T1A0DGEOGENR002) e raggruppati nella formazione AFR-INS come indicato al capitolo 7.3 della Relazione Geotecnica, cautelativamente si riconduce quindi alle caratteristiche geomeccaniche fornite per l'Unità 2.

I parametri utilizzati per la modellazione delle colonne di Jet grouting costituenti il tampone di fondo sono riassunti nella seguente tabella:

Tabella 5. Parametri Jet Grouting caratteristici

Unità geotecnica	γ	ф	c'	cu	E	v
Jinta geoteemea	[kN/m3]	[°]	[kPa]	[kPa]	[MPa]	[-]
Jet Grouting	22	36	150	-	450	0.3

Il livello della falda considerato è distinto per condizioni di breve periodo e lungo periodo considerando il livello di piano campagna è pari a:

Falda	m s.l.m.m.
Falda da letture piezometriche	226.50
Falda per analisi breve termine	228
Falda per analisi lungo termine	231

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico			
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX			

6. CARATTERIZZAZIONE SISMICA

La caratterizzazione sismica prevede:

- la definizione dell'accelerazione sismica di riferimento su substrato rigido di base;
- l'individuazione della classe di sottosuolo, per la valutazione dell'amplificazione stratigrafica;
- l'individuazione di un valore di riferimento per la magnitudo massima attesa.

6.1 Valutazione dell'azione sismica di base

La valutazione dell'azione sismica per il dimensionamento degli elementi delle infrastrutture, si basa sulla mappa di pericolosità sismica del territorio nazionale in cui la pericolosità è quantificata dall'accelerazione di picco (normalizzata rispetto all'accelerazione di gravità), a_g/g , in condizioni ideali di sottosuolo rigido e superficie orizzontale, associata a diverse probabilità di superamento in 50 anni. I valori di a_g/g sono dati su una griglia di punti equi-spaziati di 10km. Sulla stessa griglia sono dati anche in valori dei parametri caratteristici dello spettro di risposta elastico su substrato rigido (Cfr. §3.2 "azione sismica" delle NTC 2018 che, per i valori di a_g , F_o , T^*_C necessari per la determinazione delle azioni sismiche, si rimanda agli allegati A e B delle NTC 2008), per le probabilità di superamento associate agli stati limite di verifica previsti dalla normativa di riferimento.

L'azione sismica così individuata viene successivamente variata, nei modi chiaramente precisati dalle NTC, per tener conto delle modifiche prodotte dalle condizioni locali stratigrafiche del sottosuolo effettivamente presente nel sito di costruzione e dalla morfologia della superficie. Tali modifiche caratterizzano la risposta sismica locale.

La normativa delinea il processo di individuazione dell'azione sismica di progetto che prevede:

- la definizione della vita utile dell'opera, VR, sulla base della correlazione tra vita nominale V_N
 e classe d'uso C_U: V_R = V_N × C_U
- la stima del periodo di ritorno, T_R , sulla base delle probabilità di superamento, P_{VR} , associata agli stati limite di verifica, secondo la formula: $T_R = V_R / \ln (1-P_{RV})$
- la stima dei valori dei parametri caratteristici dello spettro di risposta elastico su suolo rigido (parametri d'azione) in funzione di T_R.

I parametri d'azione sono:

- a_q/g, accelerazione massima normalizzata, su sito di riferimento rigido orizzontale;
- F_o, moltiplicatore di a_g/g che quantifica l'amplificazione spettrale massima su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2.2;
- T*_C, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale su sito di riferimento rigido.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

- Gli stati limite di verifica previsti dalla NTC2018 sono elencati di seguito, con le corrispondenti probabilità di superamento in 50 anni:
 - Stato limite ultimo di collasso, SLC, P_{RV} = 5%;
 - Stato limite ultimo di vulnerabilità, SLV, P_{RV} = 10%;
 - Stato limite di esercizio, di danno, SLD, P_{RV} = 63%;
 - \circ Stato limite di esercizio, di operatività, SLO, $P_{RV} = 81\%$.

6.2 Fattore di amplificazione dello spettro di risposta elastico

In coerenza con le prescrizioni normative, l'accelerazione orizzontale massima in superficie, a_{max}/g , si ottiene moltiplicando l'accelerazione massima di base, a_g/g , per un fattore di amplificazione stratigrafica, S_s , ed uno di amplificazione topografica, S_T :

$$a_{max}/g = S_S \cdot S_T \cdot a_g/g$$

Il fattore di amplificazione stratigrafica dipende dalla classe di sottosuolo definita sulla base di indagini specifiche per la valutazione delle velocità di propagazione delle onde di taglio, V_S , nel sottosuolo di sedime delle singole opere, e si calcola secondo la formulazione riportata nella normativa di riferimento (paragrafo 3.2.3.2.1, Tabella 3.2.IV), in funzione ei parametri spettrali F_O ed a_q/q .

La classe di sottosuolo modifica anche il valore del periodo T_C di inizio del tratto a velocità costante dello spettro in accelerazione, attraverso il coefficiente C_C secondo la formulazione riportata in norma (paragrafo 3.2.3.2.1, Tabella 3.2.IV).

Nel caso specifico, l'andamento altimetrico dell'area attraversata dall'infrastruttura di progetto, prevalentemente pianeggiante, con rilievi di pendenza minore di 15°, giustifica l'assunzione di una categoria topografica T1, a cui corrisponde $S_T = 1$ (Tabella 3.2.III e Tabella 3.2.V).

6.3 Categoria di sottosuolo

Ai fini della definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie definite nella Tab. 3.2.II delle NTC2018, si può fare riferimento a un approccio semplificato che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio, V_s.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, $V_{S,eq}$ (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

dove:

 h_i = spessore dell'i-esimo strato;

V_{S,i} = velocità delle onde di taglio nell'i-esimo strato;

N = numero di strati;

 $H = profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da <math>V_S$ non inferiore a 800 m/s.

6.4 Valutazione dell'azione sismica di progetto

Sulla base delle caratteristiche delle opere in progetto, sono stati scelti i seguenti parametri:

- **Vita nominale: 100 anni** (Tipo di costruzione di categoria 3 grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica);
- **Classe d'uso: III** Costruzioni il cui uso preveda affollamenti significanti. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provoca situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso;
- **Coefficienti Cu: 1.5** (funzione della classe d'uso).

I parametri di pericolosità sismica di base sono stati elaborati a partire dalle coordinate del sito di riferimento. Con riferimento alle opere in oggetto:

Latitudine: 45.060267°
 Longitudine: 7.661127°

Sulla base di tali parametri di ingresso si ottengono i seguenti valori di pericolosità sismica:

Tabella 6. Sintesi dei parametri di pericolosità sismica di base

Parametri stati limite	u.m.	SLO	SLD	SLV
Probabilità di superamento (PvR)	%	81	63	10
Tempo di ritorno (T _R)	anni	90	151	1424
Accelerazione orizzontale massima su suolo rigido (ag)	g	0.035	0.040	0.070
Fattore di amplificazione dello spettro in accelerazione orizzontale (F ₀)	-	2.647	2.677	2.851
Tempo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale (T*c)	S	0.232	0.233	0.289

La categoria di sottosuolo è stata definita in funzione dei materiali naturali interessati dalle opere in progetto; in particolare nel caso in esame si adotta la categoria di sottosuolo **B** (*Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s).*

Per quanto riguarda le condizioni topografiche è stata attribuita alle opere in oggetto la categoria T1 (Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^\circ$).

Sulla base di quanto sopra esposto, i parametri sismici di progetto che saranno impiegate per le analisi delle opere in oggetto risultano:

Tabella 7. Sintesi delle azioni sismiche di progetto

Stato Limite	Coefficienti sismici	Depositi di paleofrana
	Ss	1.200
81.0	Сс	1.494
SLO	St	1.000
	a _{max} (g)	0.042
	Ss	1.200
	Сс	1.473
SLD	St	1.000
	a _{max} (g)	0.048
	Ss	1.200
	Cc	1.410
SLV	St	1.000
	a _{max} (g)	0.084

7. CRITERI DI CALCOLO DELLE OPERE

In ottemperanza con la normativa vigente, i calcoli sono condotti con il metodo semi-probabilistico agli stati limite, seguendo le prescrizioni riportate nel cap. 7 in quanto il sito di costruzione ricade in zona sismica 3.

Le verifiche di sicurezza relative agli stati limite ultimi (SLU) e le analisi relative alle condizioni di esercizio (SLE) sono state effettuate nel rispetto dei criteri delle NTC2018.

In generale, le analisi degli stati limite di esercizio (SLE) sono utilizzate per ottenere informazioni circa gli spostamenti attesi sotto i carichi di esercizio e per verificarne l'ammissibilità nei confronti della funzionalità dell'opera.

Le analisi agli stati limite ultimi (SLU) sono impiegate per le verifiche di resistenza degli elementi strutturali e per le verifiche geotecniche.

Tabella 8. Rispetto dei requisiti nei confronti degli SL

Tab. 7.3.III – Stati limite di elementi strutturali primari, elementi non strutturali e impianti

			content of the property of the							
CU I			CU II		CU III e IV					
STATI	LIMITE	ST	ST	NS	IM	ST	NS	IM(*)		
SLE	SLO					RIG		FUN		
SLE	SLD	RIG	RIG			RES				
CIII	SLV	RES	RES	STA	STA	RES	STA	STA		
SLU	SLC		DUT(**)			DUT(**)				

7.1 Cenni Normativi

I criteri per la verifica e il dimensionamento di seguito esposti si applicano a tutte le opere strutturali.

In accordo con quanto prescritto dalla Normativa vigente, per ogni Stato Limite Ultimo (SLU) deve essere rispettata la seguente condizione:

$$E_d < R_d$$

in cui E_d rappresenta il valore di progetto dell'azione o dell'effetto dell'azione, mentre R_d è il valore di progetto della resistenza. Per quanto concerne le azioni di progetto E_d , queste possono essere determinate applicando i coefficienti parziali sulle azioni caratteristiche, oppure, successivamente, sulle sollecitazioni prodotte dalle azioni caratteristiche.

Le azioni sulla costruzione possono essere suddivise in:

- Carichi permanenti G1: peso proprio degli elementi strutturali;
- Carichi permanenti G2: peso proprio degli elementi NON strutturali;
- Carichi variabili Q: sovraccarichi, azioni ambientali e azioni termiche
- Sismiche E: terremoti
- Azioni eccezionali A: incendi, esplosioni, urti e impatti.

Nelle verifiche possono essere adottati in alternativa, due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

I valori dei coefficienti parziali da assumersi per la determinazione degli effetti delle azioni nelle verifiche agli Stati Limite Ultimi sono riportati nella seguente tabella (Tab. 2.6.I delle NTC 2018):

Tabella 9. Coefficienti parziali per le azioni

		Coefficiente	EQU	A1	A2
		$\gamma_{\mathtt{F}}$			
Conichi accompani Co	Favorevoli	2/	0,9	1,0	1,0
Carichi permanenti Gı	Sfavorevoli	ΥG1	1,1	1,3	1,0
Contain and the contain and th	Favorevoli	2/	0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	ΥG2	1,5	1,5	1,3
Aniani maishili O	Favorevoli	2/	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	Ϋ́Qi	1,5	1,5	1,3

Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Per il calcolo e la verifica si devono considerare i seguenti stati limite ultimi:

SLU/SLV di tipo strutturale (STR)

accertando che le resistenze superino le azioni agenti nei diversi elementi strutturali e per ciascuno stato limite considerato.

La verifica strutturale è effettuata secondo l'approccio 2, con la Combinazione 1 (coefficienti A1) secondo la tabella sopra riportata.

Per le condizioni di esercizio, bisogna analizzare gli Stati Limite di Esercizio (SLE) per verificarne la presenza di:

- eventuali danneggiamenti locali che possano ridurre la durabilità della struttura (es. eccessiva fessurazione nel calcestruzzo);
- spostamenti/deformazioni eccessivi che possano limitare l'uso della costruzione, la sua efficienza e il suo aspetto.

7.2 Criteri di analisi della sicurezza

La verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici, applicando il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi viene effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

(traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

 $\mathbf{K} * \mathbf{u} = \mathbf{F}$ dove $\mathbf{K} = \text{matrice di rigidezza}$

u = vettore spostamenti nodali

F = vettore forze nodali

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

- Elemento tipo **TRUSS**
- Elemento tipo **BEAM**
- Elemento tipo **PLATE**
- Elemento tipo BOUNDARY
- Elemento tipo **STIFFNESS**

Tipo di analisi strutturali effettuate:

• Struttura interrata: Analisi NON Lineare Statica.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

7.3 Origine del codice di calcolo e sua validazione

L'analisi è stata sviluppata con il software Midas GEN 2022 v.1.1.

MIDAS IT Co., Ltd.

KOREA

MIDAS IT Tower - Pangyo Seven Venture Valley,

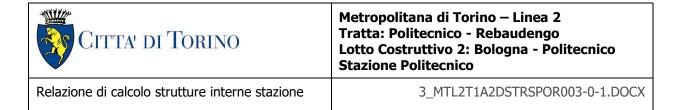
633 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400,

MIDAS IT Co., Ltd.

Modeling, Integrated Design & Analysis Software

Phone: +82-31-789-2000 E-mail: info@midasit.com http://www.MidasUser.com

I programmi per famiglie MIDAS producono risultati di analisi accurati basati su teorie e tecniche numeriche aggiornate pubblicate su riviste riconosciute. Il programma è stato verificato da migliaia di esempi e analisi comparative con altri S/W durante lo sviluppo.


Dallo sviluppo iniziale nel 1989, i programmi familiari MIDAS sono stati applicati in modo accurato ed efficace a oltre 5000 progetti nazionali e all'estero.

Un rigoroso processo di verifica del Computational Structural Engineering Institute of Korea ha esaminato i programmi della famiglia MIDAS

Midas Gen è stato sviluppato in Visual C++, un linguaggio di programmazione ad oggetti, in ambiente Windows. Il programma è straordinariamente veloce e può essere facilmente padroneggiato per applicazioni pratiche. Utilizzando la GUI (Graphic User Interface) le funzioni di visualizzazione grafica e, è possibile verificare un modello strutturale in ogni fase della realizzazione, con i risultati visualizzabili nella maniera più libera.

Di seguito si riportano i campi di impiego.

Tabella 10. Tipi di analisi

Simultaneously used	Gen /Civil	Linear	Eigenvalue	Response Spectrum	Time	History	D D-14-	Dunt-lin	Moving Load	Settlement
analysis types	Gen /Civil	Static			Linear	Nonlinear	P-Delta	Buckling		
Linear Static	1/1	√	V	√	√	√	√	√	V	V
Eigenvalue	V/V	√	√	√	√	√	√		√	√
Response Spectrum	√/√	√	√	√		1	√		√	√ √
Time History (Linear)	V/V	V	V		√	٧	√		V	٧
Time History	4/4	√	√		V	V	V		V	V
(Nonlinear)	1/1	ļ			V					
P-Delta	V/V	√ √	√	√	v	ļ×	٧	√ · · · · ·	√	√
Buckling		i			ļ,	ļ	ļ	Y		ļ
Moving Load	V/V	√ √	√	√.	√	√	√		٧.	√
Settlement	√/√		√,	√	√	√	√		Ą	V
Pushover	1/1	√	√	√	√	√	√1)		٧	√
Geometric Nonlinear	√/√	√			ļ	ļ	ļ			
Geometric Nonlinear (Init. Force for G.S.)	1/1	V								
Material Nonlinear	1/1	√			<u> </u>					
Construction Stage (Linear)	√/√	√	٧	√	٧	√	√ 2)	√ 3)	V	٧.
Construction Stage (Nonlinear)	4/4	√	√	√	٧	√		√ 3)	٧	√
Heat of Hydration	√/√									
PSC	/√	√ √	٧	√	√	√	√	√	√	√
Composite	11	√	√	√	√	V			4	√
Boundary Change Load Case	4/4	٧	٧	٧	√	٧		٧	٧	٧
AND THE RESERVE OF THE PARTY OF			Nonlinear		Constru	iction Stage		PSC ⁶⁾	Composite	Boundary
Simultaneously used analysis types	Pushover	Geometric	Geometric (Init. Force for G.S)	Material	Linear	Nonlinear (Indep.Acc um.)	Heat of (Tendon.	(Static)	Change Load Case	
Linear Static	V	V	V V	√.	√	√ V		√	√	V
Eigenvalue	√	İ	İ	l	√	√	İ	V	√	V
Response Spectrum	√	†			√	√ √	ļ	V	√	√
Time History						†·····				
(Linear)	٧				√	√		٧	√	٧
Time History (Nonlinear)	√				v	√		٧	√	√
P-Delta	√ 1)				√ 2)			√		
Buckling			l	1	√ 3)	√ 3)	l	√		√
Moving Load	V	Ì			√	✓		V	√	√
Settlement	√	1	İ	Î	√	√		√	√	√
Pushover	√	İ	İ	<u> </u>	√	√	İ	√		√
Geometric Nonlinear		√	٧	√ 5)	√ 3),4)	√ 3),4)		٧		√
Geometric Nonlinear (Init, Force for G.S.)		V	√		√ 3),4)	√ 3),4)		V		V
Material Nonlinear		√ 5)		J	√ 3),4)	√ 3),4)	<u></u>	√ 3)		V
Construction Stage		1	<u> </u>	†			ļ			†····
(Linear)	√	√ 3),4)	√ 3),4)	√ 3),4)	√	√		√		√
Construction Stage (Nonlinear)	√	√ 3),4)	√ 3),4)	√ 3),4)	٧	٧	ļ	4		٧
Heat of Hydration		ļ	Į		ļ	ļ	√			√
PSC Composite	√	√	√	√	√	√		√	√	√ √
Boundary Change	√	√	√	V	v	V	V	V	√	V

Tabella 11. Tipologia di elementi finiti disponibili

Applicable element		Linear Static	Eigenvalue	Response	Time History			_	Moving	
type for each analysis type	Gen /Civil			Spectrum	Linear	Nonlinear	P-Delta	Buckling	Load	Settlement
Truss	1/1	V	V	√	√	V	√	√	V	V
Tension Only	√/√	√	√ 2)	√ 2)	√ 2)	√ 2)			√ 2)	√ 2)
Hook	1/1	٧	√ 2)	√ 2)	√ 2)	√ 2)				
Cable	1/1	√ 1)	√ 2)	√ 2)	√ 2)	√ 2)			√ 2)	√ 2)
Compression Only	V/V	√	√ 2)	√ 2)	√ 2)	√ 2)			√ 2)	√ 2)
Gap	٧/٧	√	√ 2)	√ 2)	√ 2)	√ 2)				
General Beam	V/V	√	√	√	V	√	٧	√	٧	√
Tapered Beam	V/V	٧	٧	√	V	√ 3)	V	√	√	√
Plate-Thick	V/V	√	√	√	√	√ 4)	√ 4)	√	V	V
Plate-Thin	√/√	√	√	√	٧	√ 4)	√ 4)	√	√	√
Plane Stress	√/√	√	V	√	V	√ 4)	√ 4)	√ 4)	√	4
Solid	√/√	V	√	√	√	√ 4)	√ 4)	V	V	√
Wall-Membrane	4 /	√	√	√	√	√ 4)	√		√ 4)	√ 4)
Wall-Plate	√/	V	V	√	√	√ 4)	√		√ 4)	√ 4)
Plane Strain	√/√	V	√	√	√	√ 4)	•			•
Axisymmetric	1/1	√								***************************************
Applicable element	Pushover		Nonlinear		Constru	ction Stage		PSC ¹¹⁾ (Tendon, Static)	Composite ¹ (Static)	Boundary Change Load Case
type for each analysis type		Geometric	Geometric (Init. Force for G.S)	Material	Linear	Nonlinear (Indep. Accum.)	Heat of Hydration			
Truss	√	√	√	√	√	V	√	9)	√	V
Tension Only		V	V	√	√	√ 8)		9)	√ 10)	√
Hook		٧	√	√				9)		√
Cable	***************************************	√ 5)	√ 5)	√ 2)	√ 1)	√		9)	√ 10)	√
Compression Only		V	√	√	√	√ 8)		9)	√ 10)	√
Gap		V	V	√				9)		√
General Beam	√	√	√	√7)	√	√		√	√	√
Tapered Beam	√ 3)	√	√	√7)	√	√		√	√	√
Plate-Thick	√ 4)	√	√ 4)	√	√	√ 8)		9)	√	√
Plate-Thin	√ 4)	√ 6)	√ 4)	√6)	√	√ 8)		9)	√	√
Plane Stress	√ 4)	V	√ 4)	√	V	√ 8)		9)	√	√
Solid	√ 4)	√	√4)	√	√	√ 8)	√	9)	√	√
Wall-Membrane	√	√	√ 4)		V	√ 8)				√
Wall-Plate	√	V	√ 4)		√	√ 8)				√
Plane Strain			√ 4)	√	√	√ 8)				√
riano strain										

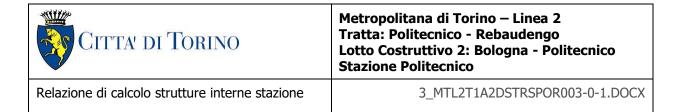


Tabella 12. Tipologia di materiali e sezioni disponibili

Applicable material &		Linear	Eigenvalue	Response Spectrum	Time History				Moving	
section for each analysis type	Gen /Civil	Static			Linear	Nonlinear	P-Delta	Buckling	Load	Settlement
Material	4/4	√	√	V	V	√	√	V	√	V
Time Dependent Material	4/4	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√1)	√ 1)	√ 1)
Section-DB/User	√/√	√	√	V	√	√	√	√	4	√
Section-Value	4/4	√	√	√	√	√	√	√	√	√
Section-SRC	√/√	√	√	√	√	√	4	4	√	√
Section-Combined	V/V	√	√	¥	√	√	√	√	√	√
Section-PSC	/√	√	√	√	√	√	√	√	√	√
Section-Tapered	√/√	√	√	√	√	√ 2)	√	√	√	√
Section-Composite	/√	√	√	√	٧	√	√	√	√	4
Thickness-Value	√/√	√	√	V	√	√	√ 3)	√	√	√
Thickness-Stiffened	V/V	√	√	√	√	√	√ 3)	√	.√	√
Applicable material & section for each analysis type	Pushover	Geometric	Geometric (Init. Force for G.S)	Material	Linear	Nonlinear (Indep. Accum.)	Heat of Hydration	PSC ⁵⁾ (Tendon, Static)	Composite ⁹⁾ (Static)	Boundary Change Load Case
Material	√	V	√	٧	٧.	√	V	V	√	√
Time Dependent Material	√ 1)	√ 1)	√ 1)	√ 1)	√	√ 4)	٧		√ 1)	•
Section-DB/User	√	√	√	√	√	√	√	√	√	√
Section-Value	√	√	V	√	√	√	√	√	V	√
Section-SRC	√	√	√		√	√	√	√	√	√
Section-Combined	√	√	√	√.	√	√	V	√	√	√
Section-PSC	٧	√	√	√	V	√	٧	V	V	٧
Section-Tapered	√ 2)	√	√	√	√	√	٧	√	V	√
Section-Composite	V	٧	V	√	٧	٧	√	√	√	٧
Thickness-Value	√	√ 5)	√ 5)	√ 5)	√	√ 6)		7)	√	V
Thickness-Stiffened	√	√	√	√	V	√6)		7)	√	√

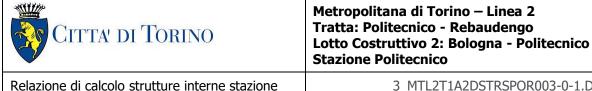


Tabella 13. Tipologia di vincoli disponibili

Applicable boundary		Linear		Response	Time	History			Moving	Store March	
condition for each analysis type	Gen /Civil	Static	Eigenvalue	Spectrum	Linear	Nonlinear	P-Delta	Buckling	Load	Settlement	
Point Spring (Linear)	1/1	٧	٧	٧	V	V	√	√	4	٧	
Point Spring (Nonlinear)	1/1	√	√ 2)	√ 2)	√ 2)	√ 2)	√ 2)	√ 2)	√ 2)	√ 2)	
General Spring	√/√	√	√	√	√	√	√	√	√	√	
Elastic Link-General	1/1	√	√	√	√	√	√	√	V	√	
Elastic Link-Rigid	√/√	√	√	V	V	√	√	√	√	√	
Elastic Link-Tension	√/√	٧	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	
Elastic Link-Comp.	V/V	√	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	
General Link (Element Type)	V/V	V 1)	√ 1)	√ 1)	√	√ 3)	√ 1)	√ 1)	√ 1)	√ 1)	
General Link	1/1	√ 1)	√ 1)	√ 1)	√ 1)	√	√ 1)	√ 1)	√ 1)	√ 1)	
(Force Type) Beam End Release	√/√	√	√	√	√	√	V	√	√	√	
Beam End Offset	√/√	V	√	√	√	V	V	V	V	√	
Plate End Release	V/V	· ·	· ·	V	√	7	V	√	√	√	
Rigid Link	V/V	· · ·	V	√	√	· · · · · · · · · · · · · · · · · · ·	√	√ ·	V	, √	
Node Local Axis	V/V	· ·	V	, , , , , , , , , , , , , , , , , , ,	√	, , , , , , , , , , , , , , , , , , ,	· ·	√	√	√	
Effective Width			<u> </u>	<u> </u>							
Scale Factor	/√	√	√	٧	٧	V	٧	٧	٧	√	
Section Stiff. Scale Factor	1/1	√	V	√	√	V	V	V	V	V	
Wall Stiff. Scale Factor	٧/	√	√	√	√	√	V	•	V	√	
Applicable boundary condition for each analysis type	Pushover	Pushover	Geometric	Geometric (Init. Force for G.S)	Material	Linear	Nonlinear (Indep. Accum.)	Heat of Hydration	PSC ⁶⁾ (Tendon, Static)	Composite ⁷⁾ (Static)	Boundary Change Load Case
Point Spring	4	4	4	4	4	4	4	4	4	4	
(Linear) Point Spring		4	4	4				4	4	4	
(Nonlinear)			Į	Į							
General Spring	4	4	4	4	4	4	4	4	4	4	
Elastic Link-General	4	4	4	4	4	4	4	4	4		
Elastic Link-Rigid	4	4	4	4	4	4	4	4	4		
Elastic Link-Tension		4	4	√ ŋ	4	4		4	4		
Elastic Link-Comp.		4	4	√1)	4	4		4	4		
General Link (Element Type)	√1)	A1)	41)	41)	√1)	√1)		41)	√1)	42)	
General Link (Force Type)	√1)	√1)	√1)	√1)	√1)	41)		41)	√1)	√5)	
Beam End Release	4				4	4		4	4	4	
	4	4	4	4	√4)	4 4)					
Beam End Offset		÷	İ		4	4			4		
Beam End Offset Plate End Release	4	1						······			
Plate End Release	4	7	4	4	44)	44)	4	4	4		
Plate End Release Rigid Link		4	4	4			4	4	4		
Plate End Release Rigid Link Node Local Axis Effective Width	4				4 44) 44)	4 44) 44)		į	į		
Plate End Release Rigid Link Node Local Axis	4	4	4	4	√4)	44)		4	4		

Tabella 14. Tipologia di condizioni di carico disponibili

Applicable load type	Gen /Civil	Linear	Eigenvalue	Response	Time	History	P-Delta	Buckling	Moving	Settlemen
for each analysis type	Genicivii	Static	Ligenvalue	Spectrum	Linear	Nonlinear	P-Della	bucking	Load	Settlement
Static Load Case	1/1	√					√.	V		
Self Weight	√/√	√					V	√		
Nodal Loads	√/√	√					√	√		
Specified Displacement	4/4	√	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)
Beam Load	4/4	√		Ì			V	√		
Floor Load	1/1	√		•			V	√		
Pressure Load	1/1	√					√	√		
System Temperature	4/4	√		•			√	√		
Nodal Temperature	4/4	√	•	\$			V	√		
Element Temperature	√/√	√				Î	√	√		
Temperature Gradient	√/√	√					V	√		
Beam Section	V/V	√		†			√	√		
Temperature	V/V	v					, v	V		
Prestress Beam Load	4/4	√					√	√		
Pretension Load	√/√	√					√	√		
Tendon Prestress	1/1	√					√	√		
Time Load for CS	4/4									
Static Wind Load	٧/	√					√	√		
Static Seismic Load	٧/	٧				Ì	√	√		
Initial Element Force	4/4	√	√	√	√	√	√	√	√	√
Initial Force for Geo. Stiffness	٧/٧					V				
Equilibrium Element Nodal Force	14									
			Nonlinear	1	Constru	iction Stage				
Applicable load type	Desta	-	Geometric			Nonlinear		PSC ⁸⁾	Composite ¹⁰⁾	Boundary
for each analysis type	Pushover	Geometric		Material	Linear	(Indep.Acc	Hydration	(Tendon, Static)	(Static)	Change Load Case
Static Load Case	√	√	√ √	√	√	√	√ 3)	√	√	√
Self Weight	√	√	√	√	√	√	√4)	√	√	√
Nodal Loads	√	√	√	√	√	√	√ 2)	√	√	√
Specified Displacement	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)	√ 1)		√ 1)	√ 1)	√ 1)
Beam Load	√	√.	√	√	√	√		√	√	√
Floor Load	√	√	√	V	√	√		√	√	√
Pressure Load	√	√	√	√	√	√	√ 3)		√	√
System Temperature	√ 2)	V	√		√	√		√	√	√
Nodal Temperature	√ 2)	· · · · · · · · · · · · · · · · · · ·	√	<u> </u>	√	√		√	√	√
Element Temperature	√ 2)	V	√		4	√		V	√	V
Temperature Gradient	√ 2)	V	√	ļ	4	√		√	√	√
Beam Section		<u> </u>		<u> </u>		·		ł		
Temperature	√ 2)	√	V		V	√		V	√	V
Prestress Beam Load	√	√	√	√	V	√	***************************************	√	√	V
Pretension Load	√	√	√	•	√	√	√ 3)	√		√
					√	√		√		√
Tendon Prestress					V	√ 8)				√
Tendon Prestress Time Load for CS				-1	√	√.		√	√	√
***************************************	√	√.	√	4						
Time Load for CS	4	√. √	7	V	√.	√		V	√	√
Time Load for CS Static Wind Load					√	√		1	V	·····
Time Load for CS Static Wind Load Static Seismic Load					√ √ 5)	√ √ 6,7)		V		

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

7.4 Carichi applicati alle strutture

7.4.1 Peso proprio

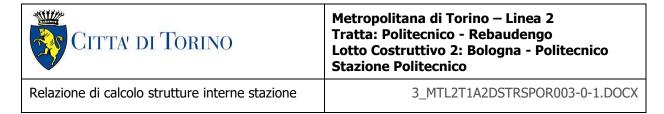
I pesi propri dei singoli elementi strutturali sono ottenuti in automatico dal programma di calcolo in funzione del materiale scelto e della tipologia/dimensioni della sezione.

7.4.2 Permanenti portati strutturali G₁

Per il calcolo delle strutture portanti sono stati utilizzati i seguenti carichi permanenti portati strutturali:

-	Banchina:	2.00 kN/m ²
-	Sottobanchina:	6.00 kN/m ²
-	Ballast:	50.40 kN/m ²
-	Murature interne:	2.00 kN/m ²
-	Sovrastruttura – Muratura perimetrale:	18.00 kN/m

7.4.3 Permanenti portati non strutturali G₂


Per il calcolo delle strutture portanti sono stati utilizzati i seguenti carichi permanenti portati NON strutturali:

uran		
-	Solettone di copertura:	
	Strato protettivo in cls (sp.0.15cm)	3.60 kN/m ²
	Rinterro (sp.1.80m)	36.00 kN/m ²
-	Piano Atrio (-1):	
	 Locali tecnici 	7.60 kN/m ²
	 Zona viaggiatori 	3.60/7.60 kN/m ²
-	Piano Mezzanino (-2):	
	 Locali tecnici – pav. galleggiante 	5.00 kN/m ²
	 Locali tecnici 	7.60 kN/m ²
-	Piano Mezzanino (-3):	
	 Locali tecnici – pav. galleggiante 	5.00 kN/m ²
	Zona viaggiatori	7.60 kN/m ²
-	Banchina:	6.40 kN/m ²
-	Sottobanchina:	7.20 kN/m ²
-	Ballast (sp. 3.60m):	86.40 kN/m ²
-	Murature interne (comprese nei carichi di piano)	4.00 kN/m ²
-	Scale di accesso:	2.00 kN/m ²
-	Carichi appesi:	0.50 kN/m ²

Valutazione dei carichi (fase di cantiere)

- Solettone di copertura: 15.00 kN/m²

7.4.4 Spinta del terreno

Per il calcolo della spinta del terreno sono stati utilizzati i seguenti parametri:

- Peso di volume unitario γ: 19.6 kN/m3

- Angolo di attrito: 32°

- Coefficiente di spinta a riposo K₀: 0.470

A favore di sicurezza, si è deciso di caricare le fodere adiacenti con una quota parte dell'azione del terreno agente sul diaframma esterno, in quanto la deformazione che subisce questo ultimo sotto la spinta laterale del terreno potrebbe interessare la fodera: le due strutture risultano adiacenti ma non collaborante per l'interposizione dello strato di impermeabilizzazione.

La spinta del terreno è stata ripartita proporzionalmente alle rigidezze delle due strutture.

Tabella 15. Rigidezze Diaframmi/Fodere

	MAT.	E [N/mm2]	fi	B [mm]	H [mm]	J [mm4]	К	Ratio
DIAFRAMMA	C25/30	31476	1	1000	1200	1.44E+11	4.53254E+15	0.62
FODERA	C30/37	32837	1	1000	1000	83333333333	2.73642E+15	0.38
FODERA	C30/37	32837	1	1000	800	42666666667	1.40105E+15	0.24
FODERA	C30/37	32837	1	1000	600	18000000000	5.91066E+14	0.12

Data la presenza della falda, per le porzioni sommerse, vengono calcolare le tensioni orizzontali efficaci.

Tabella 16. Spinta orizzontale terreno

FLOOD	0 []	σ_{HT}	rapporto inerzia		σ _{нт} [kN/m2]	
FLOOR	Q [m]	kN/m2	UP	DOWN	UP	DOWN
Solettone di copertura	2.2	20.27		0.12	0.00	2.43
Piano Atrio (-1)	8.15	75.09	0.12	0.12	9.01	9.01
Piano Mezzanino (-2)	14	128.99	0.12	0.24	15.48	30.96
Quota falda	16	147.42	0.24	0.24	35.38	35.38
Piano Mezzanino (-3)	19.85	164.79	0.24	0.24	39.55	39.55
Piano Banchina	25.3	189.39	0.24	0.38	45.45	71.97
Platea di fondazione	28.25	202.70	0.38		77.03	0.00

La quota si riferisce all'asse medio del piano considerato.

7.4.5 Spinta dell'acqua

Il livello di falda, fissato a 231 m s.l.m.(ossia -15.80 m dal piano camapgna), interessa le opere strutturali in oggetto.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

A favore di sicurezza, per i calcoli a lungo periodo, si trascura la presenza delle opere provvisionali quali diaframmi e tampone di fondo, applicando l'azione idrostatica come:

- spinta orizzontale sulle fodere con una percentuale del 100%;
- sottospinta sulla platea di fondazione con una percentuale del 100%.

7.4.6 Azioni variabili Q

Valutazione dei carichi di piano

Per il calcolo delle strutture portanti sono stati utilizzati i seguenti carichi variabili:

Laice	olo delle strutture portanti sono stati dillizzati i seguenti	Caricili variabili.
-	Solettone di copertura [veicolare]:	30.00 kN/m ²
-	Piano Atrio (-1):	
	 Locali tecnici di sistema [cat.E] 	20.00 kN/m ²
	Locali tecnici [cat.E]	10.00 kN/m ²
	Zona viaggiatori [cat.C5]	5.00 kN/m ²
-	Piano Mezzanino (-2):	
-	Locali tecnici [cat.E]	10.00 kN/m ²
-	Piano Mezzanino (-3):	
	Locali tecnici [cat.E]	10.00 kN/m ²
	Zona viaggiatori [cat.C5]	5.00 kN/m ²
-	Piano Banchina:	
	Locali tecnici [cat.E]	10.00 kN/m ²
	Zona viaggiatori [cat.C5]	5.00 kN/m ²
-	Sottobanchina [cat.E]:	10.00 kN/m ²
-	Convoglio:	7.90 kN/m2
-	Sovraccarico stradale controviali:	20.00 kN/m ²
-	Scale di accesso [cat. C5]:	5.00 kN/m ²

Come per la spinta del terreno, anche la spinta orizzontale dovuta al sovraccarico stradale è stata ripartita proporzionalmente alle rigidezze delle due strutture.

Tabella 17. Spinta orizzontale sovraccarico stradale

FLOOR	(m) O	$\sigma_{\sf HQ}$	rapporto inerzia		σ _{нQ} [kN/m2]	
FLOOR	Q [m]	kN/m2	UP	DOWN	UP	DOWN
Solettone di copertura	2.2	9.40		0.12	0.00	1.13
Piano Atrio (-1)	8.15	9.40	0.12	0.12	1.13	1.13
Piano Mezzanino (-2)	14	9.40	0.12	0.24	1.13	2.26
Piano Mezzanino (-3)	19.85	9.40	0.24	0.24	2.26	2.26
Piano Banchina	25.3	9.40	0.24	0.38	2.26	3.57
Platea di fondazione	28.25	9.40	0.38		3.57	0.00

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Valutazione dei carichi (fase di cantiere)

Solettone di copertura: 20.00 kN/m²
 Altre solette interrate: 10.00 kN/m²

Si trascurano i carichi verticali ed orizzontali associati al passaggio della TBM in quanto trattasi di sovraccarichi non dimensionanti. Analisi più dettagliate saranno condotte in fase di stesura del progetto esecutivo.

7.5 Azione sismica E

Per la verifica delle strutture, a favore di sicurezza, si considera una struttura a comportamento **NON DISSIPATIVO**, utilizzato un fattore di comportamento q allo SLV unitario.

Figura 12. Individuazione del sito

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

Figura 13. Individuazione dei parametri di progettazione

SLV

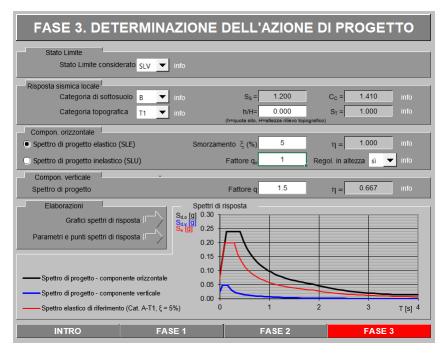


Figura 14. Spettro SLV

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

SLD

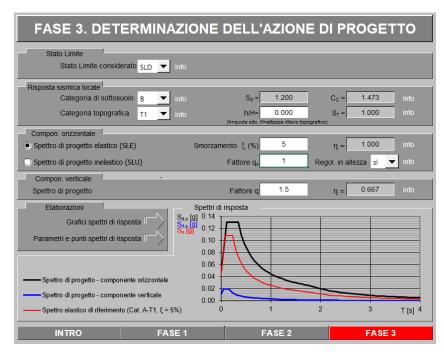


Figura 15. Spettro SLD

SLO

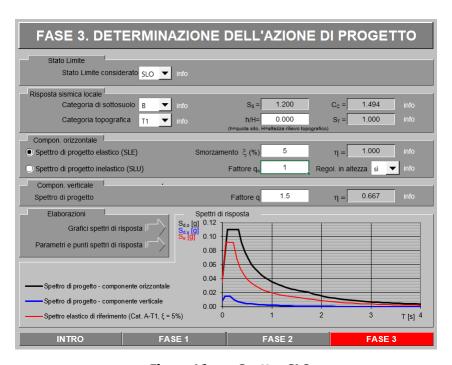
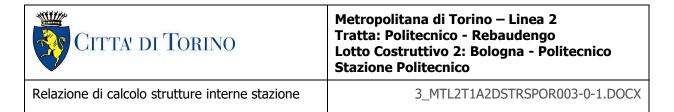



Figura 16. Spettro SLO

7.5.1 Spinta del terreno in fase sismica

Per la determinazione dell'incremento di spinta sismica da applicare sulle strutture interrate si utilizza la seguente espressione (Wood J.H., 1973):

$$\Delta P_d = \gamma \cdot k_h \cdot H^2$$

dove:

- ΔP_d è l'incremento di spinta del terreno dovuto al sisma;
- γ è la media pesate del peso di volume del terreno da p.c. a fondo scavo;
- k_h è il coefficiente sismico orizzontale;
- H è il dislivello tra la quota dei diversi orizzontamenti.

Come per la spinta del terreno statica, anche la porzione dovuta al sisma è stata ripartita proporzionalmente alle rigidezze delle due strutture.

ag/g	0.07
S	1.2
ag/g max	0.084

Tabella 18. Sovraspinta sismica orizzontale terreno

FLOOD	0 []	σ_{HT}	rapporto inerzia		σ _{нт} [kN/m2]	
FLOOR	Q [m]	kN/m2	UP	DOWN	UP	DOWN
Solettone di copertura	2.2	3.62		0.12	0.00	0.43
Piano Atrio (-1)	8.15	13.42	0.12	0.12	1.61	1.61
Piano Mezzanino (-2)	14	23.05	0.12	0.24	2.77	5.53
Piano Mezzanino (-3)	19.85	32.68	0.24	0.24	7.84	7.84
Piano Banchina	25.3	41.65	0.24	0.38	10.00	15.83
Platea di fondazione	28.25	46.51	0.38		17.67	

7.6 Azioni termiche

Dato che la struttura risulta completamente interrata, in fase di analisi non sono stati considerati gli effetti dovuti alle variazioni termica.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

7.7 Effetti dovuti al ritiro

Il ritiro che si genera durante la stagionatura del calcestruzzo è dovuto all'evaporazione dell'acqua di impasto presente nei fori della pasta di cemento, tale fenomeno genera un accorciamento nel manufatto, che se impedito porta alla generazione di stati di coazione e alla formazione di fessure.

In sede di progettazione strutturale il ritiro del calcestruzzo può essere valutato sulla base delle indicazioni di seguito fornite.

La deformazione totale da ritiro si può esprimere come:

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$$

Dove:

- ε_{cs} è la deformazione totale per ritiro;
- ε_{cd} è la deformazione per ritiro da essiccamento;
- ε_{ca} è la deformazione per ritiro autogeno.

Il valore medio a tempo infinito della deformazione per ritiro da essiccamento:

$$\varepsilon_{cd,\infty} = k_h \varepsilon_{c0}$$

può essere valutato mediante i seguenti valori in funzione della resistenza caratteristica a compressione, dell'umidità relativa e del parametro h_0 :

Tabella 19. Deformazione da ritiro per essiccamento

Tab. 11.2.Va – Valori di ε_{c0}

6.		Deformazione da ritiro per essiccamento (in ‰)													
f _{ck}	Umidità Relativa (in %)														
	20 40 60 80 90 100														
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00									
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00									
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00									
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00									

Tab. 11.2.**Vb** – Valori di k_h

h ₀ (mm)	k _h
100	1,00
200	0,85
300	0,75
≥ 500	0,70

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Il valore medio a tempo infinito della deformazione per ritiro autogeno $\epsilon_{ca,\infty}$ può essere valutato mediante l'espressione:

$$\varepsilon_{ca.\infty} = -2.5(f_{ck} - 10) \cdot 10^{-6}$$

Si calcola l'effetto del ritiro dopo un tempo pari a 5 anni; nel caso in oggetto abbiamo:

•	umidità relativa	70%;
•	f_{ck}	30.71 N/mm ² ;
•	ϵ_{c0}	-0.349‰
•	\mathbf{k}_{h}	0.7
•	Eca,∞	-0.0518‰
•	Ecd,∞	-0.245‰
•	Ecs,∞	-0.296‰
•	Ecd(t)	-0.0956‰
•	$\mathcal{E}_{CS}(t)$	-0.147‰

e considerando un coefficiente di dilatazione termica α del cls di 1E-5 1/°C si ottiene una variazione termica equivalente pari a 15°C.

7.8 Modellazione delle azioni

In accordo con le sopra citate normative, sono state considerate nei calcoli le seguenti azioni:

- pesi propri elementi strutturali SW;
- carichi permanenti strutturali G₁
- carichi permanenti non strutturali G₂;
- carichi variabili Q;
- azione sismica E
- azioni termiche T.

Le diverse azioni agenti, classificate in casi di carico (CDC), sono combinate secondo le regole previste dalla normativa vigente.

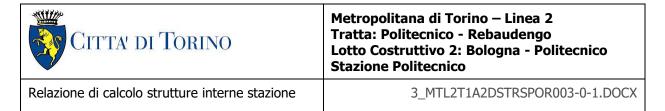


Tabella 20. Casi di carico CDC

No.	Name	Туре	Description
1	SW	Dead Load (D)	Self Weight
2	G1	Dead Load (D)	Permanenti strutturali
3	G2	Dead Load (D)	Permanenti NON strutturali
4	QE	Live Load (L)	Variabile Cat. E
5	QC5	Live Load (L)	Variabile cat. C5
6	G2_B	Dead Load (D)	Ballast
7	Q_TRN	Live Load (L)	Treno
8	RTR	Dead Load (D)	Ritiro
9	TR	Dead Load (D)	Spinta terreno
10	CS_X+	Live Load (L)	Spinta carico stradale X+
11	CS_X-	Live Load (L)	Spinta carico stradale X-
12	CS_Y+	Live Load (L)	Spinta carico stradale Y+
13	CS_Y-	Live Load (L)	Spinta carico stradale Y-
14	WTR	Dead Load (D)	Water
15	QVC	Live Load (L)	Variabile - Veicoli
16	TR_EQ_X+	Earthquake (E)	Incremento spinta terreno X+
17	TR_EQ_X-	Earthquake (E)	Incremento spinta terreno X-
18	TR_EQ_Y+	Earthquake (E)	Incremento spinta terreno Y+
19	TR_EQ_Y-	Earthquake (E)	Incremento spinta terreno Y-
20	SLV_X_E+	Earthquake (E)	Sisma X ECC+
21	SLV_X_E-	Earthquake (E)	Sisma X ECC-
22	SLV_Y_E+	Earthquake (E)	Sisma Y ECC+
23	SLV_Y_E-	Earthquake (E)	Sisma Y ECC-
24	SLO_X_E+	Earthquake (E)	Sisma X ECC+
25	SLO_X_E-	Earthquake (E)	Sisma X ECC-
26	SLO_Y_E+	Earthquake (E)	Sisma Y ECC+
27	SLO_Y_E-	Earthquake (E)	Sisma Y ECC-

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara) SLE

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente SLE

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente SLE

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

dove

NTC 2008 Tabella 2.5.I			
Destinazione d'uso/azione	ψ0	Ψ1	Ψ2
Categoria A - Ambienti ad uso residenziale	0,70	0,50	0,30
Categoria B - Uffici	0,70	0,50	0,30
Categoria C - Ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D - Ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E – Aree per immagazzinamento, uso commerciale ed uso industriale,	1,00	0,90	0,80
Biblioteche, archivi, magazzini e ambienti ad uso industriale			
Categoria F - Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli	0,70	0,70	0,60
di peso < 30 kN)			
Categoria G - Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli	0,70	0,50	0,30
di peso > 30 kN)			
Categoria H - Coperture accessibili per sola manutenzione	0,00	0,00	0,00
Categoria I - Coperture praticabili	da val	utarsi ca	so per
Categoria K - Coperture per usi speciali (impianti, eliporti)		caso	
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Relazione di calcolo strutture interne stazione

Tabella 21. Coefficienti combinazioni di carico CMB

CMB	NAME -LCD4	ACTIVE	TYPE	SW		1.3	QE		G2_B	Q_TRN	RTR			CS_X-	CS_Y+		WTR		TR_EQ_X+	TR_EQ_X-	TR_EQ_Y+	TR_EQ_Y-	SLV_X_E+	SLV_X_E-	SLVY_E+	SLV_YE-	SLO_X_E+	SLO_X_E-	SLO_Y_E+	SLO_Y_E-
SLU	gLCB1	Active	Add	1.3	1.3		1.5		1.3	1.125	1.3	1.3	1.125	1.125	1.125	1.125	1	1.125												
SLU	gLCB2 gLCB3	Active Active	Add Add	1.3	1.3	1.3	1.5	1.5	1.3	1.125	1.3	1.3 1.3		1.125 1.125	1.125	1.125 1.125	1	1.125 1.125												
SLU	gLCB3	Active	Add	1.3	1.3	1.3	1.5	1.05	1.3	1.125	1.3	1.3			1.125	1.125	1	1.125												
SLU	gLCB5	Active	Add	1.3	1.3	1.3	1.5	1.05	1.3	1.125	1.3	1.3		1.125	1.125	1.125	1	1.125												
SLU	gLCB6	Active	Add	1.3	1.3	1.3	1.5	1.05	1.3	1.125	1.3	1.3		1.125	1.5		1	1.125												
SLU	gLCB7	Active	Add	1.3	1.3	1.3	1.5	1.05	1.3	1.125	1.3	1.3		1.125	1.125	1.5	1	1.125												
SLU	gLCB8	Active	Add	1.3	1.3	1.3	1.5	1.05	1.3	1.125	1.3	1.3		1.125	1.125		1	1.5												
SLU	gLCB9	Active	Add	1	1	1	0	0	1	0	1	1	0	0	0	0	1.3													
SLV	gLCB10	Active	Add	1	1	1	0.8	0.6	1		1	1	0.2	0	0.06	0	1	0.2	1	0	0.3	0	1		0.3					
SLV	gLCB11	Active	Add	1	1	1	0.8	0.6	1		1	1	0.2	0	-0.06	0	1	0.2		0	-0.3	0	1		-0.3					
SLV	gLCB12	Active	Add	1	1	1	0.8	0.6	1		1	1	0.2	0	0	0.06	1	0.2	1	0	0	0.3	1			0.3				
SLV	gLCB13	Active	Add	1	1	1	0.8	0.6	1		1	1	0.2	0	0	-0.06	1	0.2	1	0	0	-0.3	1			-0.3				
SLV	gLCB14	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.2	0.06	0	1	0.2	0	1	0.3	0		1	0.3					
SLV	gLCB15	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.2	-0.06	0	1	0.2	0	1	-0.3	0		1	-0.3					
SLV	gLCB16	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.2	0	0.06	1	0.2	0	1	0	0.3		1		0.3				
SLV	gLCB17	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.2	0	-0.06	1	0.2	0	1	0	-0.3		1		-0.3				
SLV	gLCB18	Active	Add	1	1	1	0.8	0.6	1		1	1	0.06	0	0.2	0	1	0.2	0.3	0	1	0	0.3		1					
SLV	gLCB19	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.06	0	0.2	0	1	0.2	-0.3	0	1	0	-0.3		1					
SLV	gLCB20	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.06	0.2	0	1	0.2	0	0.3	1	0		0.3	1					
SLV	gLCB21	Active	Add	1	1	1	0.8	0.6	1		1	1	0	-0.06	0.2	0	1	0.2	0	-0.3	1	0		-0.3	1					
SLV	gLCB22	Active	Add	1	1	1	0.8	0.6	1		1	1	0.06	0	0	0.2	1	0.2	0.3	0	0	1	0.3			1				
SLV	gLCB23	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.06	0	0		1	0.2	-0.3		0	1	-0.3			1				
SLV	gLCB24	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.06	0		1	0.2			0	1		0.3		1				
SLV	gLCB25	Active	Add	1	1	1	0.8	0.6	1		1	1	0	-0.06	0	0.2	1	0.2		-0.3	0	1		-0.3		1				
SLV	gLCB26	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.2	0	-0.06	0	1	0.2		0	-0.3	0	-1	-	-0.3					
SLV	gLCB27	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.2	0	0.06	0	1	0.2		0	0.3	0	-1		0.3					
SLV	gLCB28	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.2	0	0		1	0.2			0	-0.3	-1	-		-0.3				
SLV	gLCB29	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.2	0	0		1	0.2		0	0	0.3	-1			0.3				
SLV	gLCB30	Active	Add	1	1	1	0.8	0.6	1		1	1	0	-0.2	-0.06	0	1	0.2			-0.3			-1	-0.3					
SLV	gLCB31	Active	Add Add	1	1	1	0.8	0.6	1		1	1	0	-0.2	0.06	-0.06	1	0.2		-1 -1	0.3	-0.3		-1 -1	0.3	-0.3				
SLV	gLCB32 gLCB33	Active Active	Add	1	1	1	0.8	0.6	1		1	1	0	-0.2 -0.2	0		1	0.2			0	0.3		-1	1	0.3				
SLV	gLCB33	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.06	-0.2	-0.2		1	0.2			-1		-0.3	-1	-1	0.3				
SLV	gLCB34 gLCB35	Active	Add	1	1	1	0.8	0.6	1		1	1	0.06	0	-0.2		1	0.2			-1	0	0.3		-1					
SLV	gLCB36	Active	Add	1	1	1	0.8	0.6	1		1	1	0.00	-0.06	-0.2		1	0.2			-1	0	0.3	-0.3	-1					
SLV	gLCB37	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.06	-0.2		1	0.2			-1			0.3	-1					
SLV	gLCB38	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.06	0	0	-0.2	1	0.2	-0.3		0	-1	-0.3			-1				
SLV	gLCB39	Active	Add	1	1	1	0.8	0.6	1		1	1	0.06	0	0	-0.2	1	0.2	0.3	0	0	-1	0.3			-1				
SLV	gLCB40	Active	Add	1	1	1	0.8	0.6			1	1	0	-0.06	0		1	0.2		-0.3	0	-1		-0.3		-1				
SLV	gLCB41	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.06	0	-0.2	1	0.2	0	0.3	0	-1		0.3		-1				
SLO	gLCB42	Active	Add	1	1	1	0.8	0.6	1		1	1	0.2	0	0.06	0	1	0.2	1	0	0.3	0					1		0.3	
SLO	gLCB43	Active	Add	1	1	1	0.8	0.6	1		1	1	0.2	0	-0.06	0	1	0.2	1	0	-0.3	0					1		-0.3	
SLO	gLCB44	Active	Add	1	1	1	0.8	0.6	1		1	1	0.2	0	0	0.06	1	0.2	1	0	0	0.3					1			0.3
SLO	gLCB45	Active	Add	1	1	1	0.8	0.6	1		1	1	0.2	0	0	-0.06	1	0.2	1	0	0	-0.3					1			-0.3
SLO	gLCB46	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.2	0.06		1	0.2		1	0.3							1	0.3	
SLO	gLCB47	Active	Add	1	1	1	0.8	0.6			1	1	0		-0.06		1	0.2		-	-0.3							1	-0.3	
SLO	gLCB48	Active	Add	1	1	1	0.8	0.6			1	1	0	0.2	0		1	0.2			0			-				1		0.3
SLO	1 -	Active	Add	1	1	1	0.8	0.6			1	1	0		0		1	0.2			0			-				1		-0.3
SLO	gLCB50	Active	Add	1	1	1	0.8	0.6			1	1	0.06	0	0.2		1	0.2			1			-	-		0.3		1	
SLO	gLCB51	Active	Add	1	1	1	0.8	0.6			1	1	-0.06	0	0.2		1	0.2			1	0		1	-		-0.3		1	
SLO		Active	Add	1	1	1	0.8	0.6			1	1	0		0.2		1	0.2			1			1	-			0.3	1	
SLO		Active	Add	1	1	1	0.8	0.6			1	1	0		0.2		1	0.2			1			1	-			-0.3	1	
SLO	gLCB54	Active	Add	1	1	1	0.8	0.6	1		1	1	0.06	0	0		1	0.2			0	1		+			0.3			1
SLO	gLCB55	Active	Add	1	1	1	0.8	0.6	1		1	1	-0.06	0	0		1	0.2			0	1		-	-		-0.3			1
SLO	gLCB56	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.06	0	0.2	1	0.2	0	0.3	0	1	I .	L			L	0.3		1

Relazione di calcolo strutture interne stazione

СМВ	NAME	ACTIVE	TYPE	sw	G1	G2	QE	QC5	G2_B	Q_TRN	RTR	TR	CS X+	CS X-	CS Y+	CS Y-	WTR	QVC	TR_EQ_X+	TD FO Y	TR FO V	TR FO V	CIV V F.	SLV_X_E-	CIVIV E	SIV VE	SIO V F	SLO_X_E- SI	O V F.	SIO V F
SLO	gLCB57	Active	Add	3W 1	1	1 02	0.8		U2_B	Q_IKN	KIK 1	1	C3_A+	-0.06	0	0.2		0.2		-0.3	IK_EQ_1+	1 IK_EQ_1-	SLV_X_E+	SLV_A_E-	SLV1_E+	SLV_TE-	SLU_X_E+	-0.3	LO_T_E+ S	1 1
SLO	gLCB57	Active	Add	1	1 1	1	0.8		1		1	1	-0.2	-0.00	-0.06	0.2	1	0.2	-1	-0.3	-0.3	0		1	1	1	-1	-0.5	-0.3	
SLO	gLCB59	Active	Add	1	1	1	0.8		1		1	1	-0.2	0	0.06	0	1	0.2	-1	0	0.3	0					-1		0.3	
SLO	gLCB39	Active	Add	1	1	1	0.8		1		1	1	-0.2	0	0.00	-0.06	1	0.2	-1	0	0.3	-0.3					-1		0.5	-0.3
SLO	gLCB61	Active	Add	1	1	1	0.8		1		1	1	-0.2	0	0	0.06		0.2		0	0	0.3					-1			0.3
SLO	gLCB62	Active	Add	1	1	1	0.8		1		1	1	-0.2	-0.2	-0.06	0.00	1	0.2	-1	-1	-0.3	0.3					-1	-1	-0.3	0.5
SLO	gLCB63	Active	Add	1	1	1	0.8		1		1	1	0	-0.2	0.06	0	1	0.2	0	-1	0.3	0						-1	0.3	
SLO	gLCB64	Active	Add	1	1	1	0.8		1		1	1	0	-0.2	0.00	-0.06	1	0.2	·	-1	0.5	-0.3						-1	0.5	-0.3
SLO	gLCB65	Active	Add	1	1	1	0.8		1		1	1	0	-0.2	0	0.06		0.2		-1	0	0.3						-1		0.3
SLO	gLCB66	Active	Add	1	1	1	0.8		1		1	1	-0.06	0.2	-0.2	0.00		0.2		0	-1	0.5					-0.3	-	-1	
SLO	gLCB67	Active	Add	1	1	1	0.8		1		1	1	0.06	0	-0.2	0		0.2			-1	0					0.3		-1	
SLO	gLCB68	Active	Add	1	1	1	0.8		1		1	1	0	-0.06	-0.2	0	1	0.2			-1	0						-0.3	-1	
SLO	gLCB69	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.06	-0.2	0	1	0.2	0	0.3	-1	0						0.3	-1	
SLO	gLCB70	Active	Add	1	1	1	0.8		1		1	1	-0.06	0	0	-0.2	1	0.2	-0.3	0	0	-1					-0.3			-1
SLO	gLCB71	Active	Add	1	1	1	0.8	1	1		1	1	0.06	0	0	-0.2		0.2		0	0	-1					0.3			-1
SLO	gLCB72	Active	Add	1	1	1	0.8		1		1	1	0	-0.06	0	-0.2		0.2		-0.3	0	-1						-0.3		-1
SLO	gLCB73	Active	Add	1	1	1	0.8	0.6	1		1	1	0	0.06	0	-0.2	1	0.2	0	0.3	0	-1						0.3		-1
SLE R	gLCB74	Active	Add	1	1	1	1	0.7	1	0.75	1	1	0.75	0.75	0.75	0.75	1	0.75												
SLE_R	gLCB75	Active	Add	1	1	1	1	1	1	0.75	1	1	0.75	0.75	0.75	0.75	1	0.75												
SLE_R	gLCB76	Active	Add	1	1	. 1	. 1	0.7	1	1	1	1	0.75	0.75	0.75	0.75	1	0.75												
SLE_R	gLCB77	Active	Add	1	1	. 1	1	0.7	1	0.75	1	1	1	0.75	0.75	0.75	1	0.75												
SLE_R	gLCB78	Active	Add	1	1	. 1	. 1	0.7	1	0.75	1	1	0.75	1	0.75	0.75	1	0.75												
SLE_R	gLCB79	Active	Add	1	1	. 1	1	0.7	1	0.75	1	1	0.75	0.75	1	0.75	1	0.75												
SLE_R	gLCB80	Active	Add	1	1	1	1	0.7	1	0.75	1	1	0.75	0.75	0.75	1	1	0.75												
SLE_R	gLCB81	Active	Add	1	1	. 1	. 1	0.7	1	0.75	1	1	0.75	0.75	0.75	0.75	1	1												
SLE_F	gLCB82	Active	Add	1	1	1	0.9	0.6	1		1	1					1													
SLE_F	gLCB83	Active	Add	1	1	. 1	0.8	0.7	1		1	1					1													
SLE_F	gLCB84	Active	Add	1	1	. 1	0.8	0.6	1	0.75	1	1					1													
SLE_F	gLCB85	Active	Add	1	1	. 1	0.8	0.6	1		1	1	0.75				1													
SLE_F	gLCB86	Active	Add	1	1	. 1	0.8	0.6	1		1	1		0.75			1													
SLE_F	gLCB87	Active	Add	1	1	. 1	0.8	0.6	1		1	1			0.75		1													
SLE_F	gLCB88	Active	Add	1	1	. 1	0.8	0.6	1		1	1				0.75	1													
SLE_F	gLCB89	Active	Add	1	1	1	0.8	0.6	1		1	1					1	0.75												
SLE_QP	gLCB90	Active	Add	1	1	. 1	0.8	0.6	1		1	1					1													

Tabella 22. Tipologia combinazioni

ID	Name	Tipo	Sigla Id
1-9	gLCB1-gLCB9	SLU	Combinazione SLU
10-41	gLCB10-gLCB41	SLV	Combinazione SLU sismica
42-73	gLCB42-gLCB73	SLO	Combinazione SLE sismica
74-90	gLCB74-gLCB90	SLE	Combinazioni SLE (R, FQ, QP)

7.9 Interazione terreno-struttura

Nel modello FEM l'interazione terreno-struttura è schematizzata secondo il modello di Winkler con una serie di molle elastiche indipendenti reagenti a sola compressione (compression-only) posizionate sia lungo la lunghezza dei diaframmi in corrispondenza dai diversi orizzontamenti (rigidezza laterale) che alla base dello stesso (rigidezza alla punta).

La rigidezza assiale delle molle risulta proporzionale al modulo di reazione k_s del terreno che è considerato variabile linearmente con la profondità.

A favore di sicurezza, si sono considerati dei valori costanti per le diverse rigidezze, in particolare:

- Rigidezza laterale diaframmi

0	Solettone di copertura:	31039.23 kN/m
0	Piano Atrio (-1):	181686.75 kN/m
0	Piano Mezzanino (-2):	265369.39 kN/m
0	Piano Mezzanino (-3):	342907.20 kN/m
0	Platea di fondazione:	495529.60 kN/m

Rigidezza verticale diaframmi

0	Solettone di copertura:	19872.24 kN/m ³
0	Piano Atrio (-1):	38022.23 kN/ m ³
0	Piano Mezzanino (-2):	56172.21 kN/ m ³
0	Platea di fondazione:	93167.70 kN/ m ³
0	Diaframmi provvisori:	72434.09 kN/ m ³

- Rigidezza verticale platea di fondazione

o Platea di fondazione: 70684.03 kN/ m³

Per la determinazione di k_w si fa riferimento al metodo di **Randolph e Wroth (1978)**, il quale considera il palo immerso in un mezzo elastico, ed esamina separatamente l'interazione con tale mezzo della superficie laterale e della base del palo, le due soluzioni vengono poi sovrapposte.

Nel metodo si calcola quindi $k_w = k_s + k_b$

dove:

- k_s rappresenta la rigidezza della molla laterale
- k_b la rigidezza della molla alla base del palo.

$$k_s = 2 \cdot \pi \cdot L \cdot G_m / \zeta$$
$$k_b = 4 \cdot r_b \cdot G_b / (1 - v)$$

I parametri utilizzati dal modello sono:

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

 $r_0 = D/2$ rappresenta il raggio del palo

L è la lunghezza del palo

 $\boldsymbol{\zeta}$ è un coefficiente che tiene conto dell'ampiezza r_m del campo deformativo che si sviluppa intorno al palo di raggio r_0

 $\xi = G_L / G_b$ è il rapporto tra i moduli di taglio alla profondità z = L, per pali poggianti su di uno strato di elevata rigidezza

 $\rho = G_m / G_L$ è il fattore di non omogeneità del terreno laterale, per pali immersi in un terreno con rigidezza variabile

G_m rappresenta il valore medio del modulo di elasticità trasversale fra la superficie e la profondità L

 G_L il valore medio del modulo di elasticità trasversale alla profondità L.

rь il raggio alla base

G_b il modulo di elasticità trasversale del materiale al di sotto della base del palo

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

8. STRUTTURA INTERRATA

8.1 Modellazione della struttura

Di seguito si riportano le caratteristiche geometriche del modello FEM realizzato (per la sola parte interrata)

Tabella 23. Caratteristiche modello FEM

Modellazione della geometria e proprietà meccaniche:		
nodi	23340	
elementi D2	392	
elementi D3 (per pareti, platee, gusci)	23687	
elementi Wall	0	
elementi solaio	0	
elementi solidi	0	
Elementi di tipo TRUSS	NO	
Elementi di tipo BEAM	SI	
Elementi di tipo PLATE	SI	
Elementi di tipo WALL	NO	
Orizzontamenti:		
Solai con la proprietà piano rigido	NO	
Solai senza la proprietà piano rigido	NO	
Tipo di vincoli:		
Nodi vincolati rigidamente	SI	
Nodi vincolati elasticamente	SI	

Relazione di calcolo strutture interne stazione

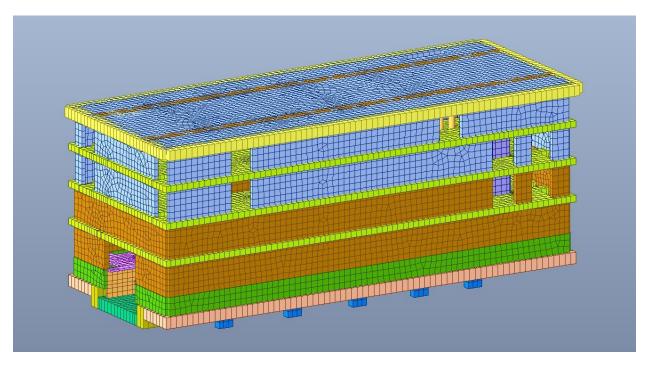


Figura 17. Complessivo stazione – Modello FEM Vista 1

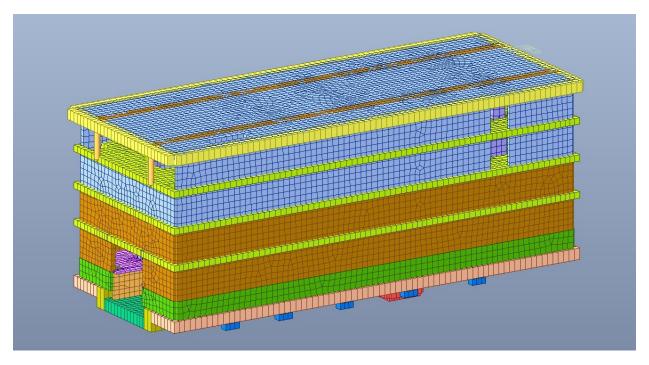


Figura 18. Complessivo stazione – Modello FEM Vista 2

Relazione di calcolo strutture interne stazione

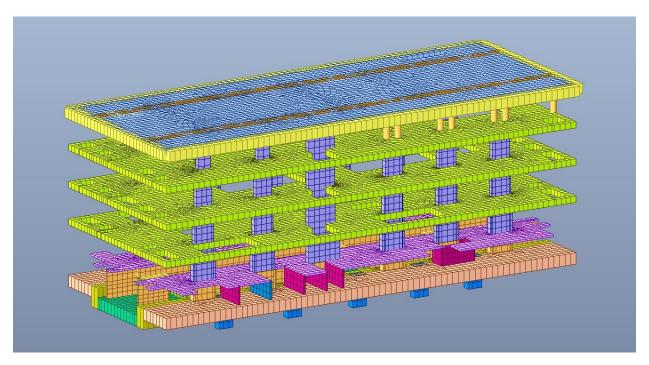


Figura 19. Struttura interna

Figura 20. Struttura interrata – Piano atrio

Relazione di calcolo strutture interne stazione

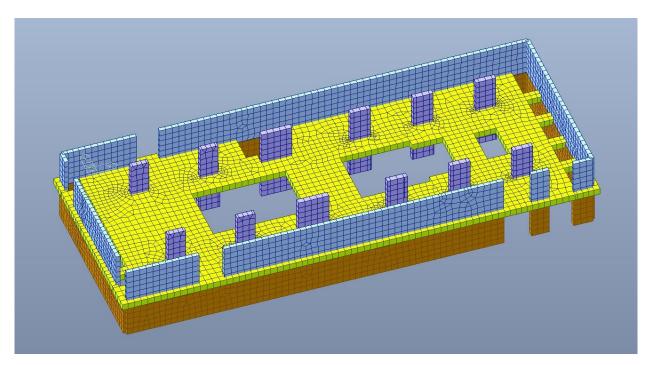


Figura 21. Struttura interrata – Piano mezzanino (-2)

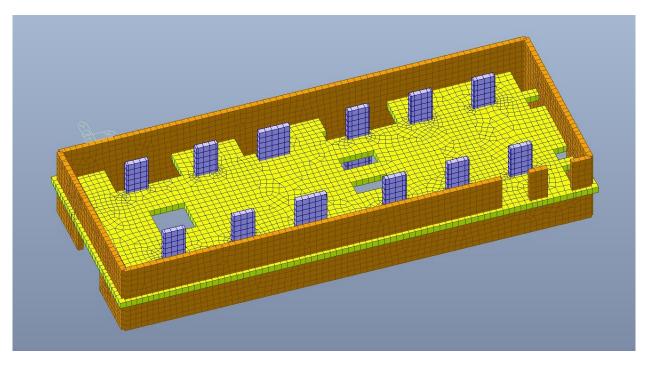


Figura 22. Struttura interrata – Piano mezzanino (-3)

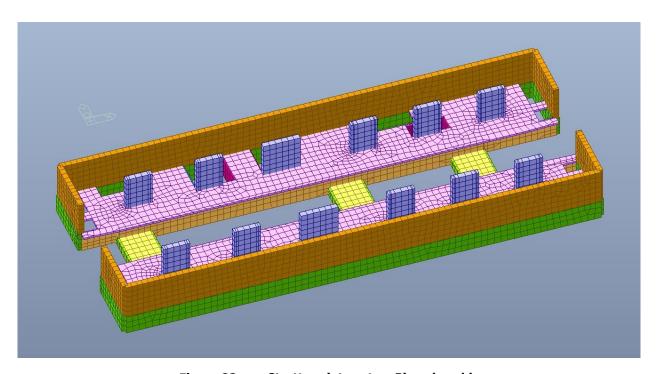


Figura 23. Struttura interrata – Piano banchina

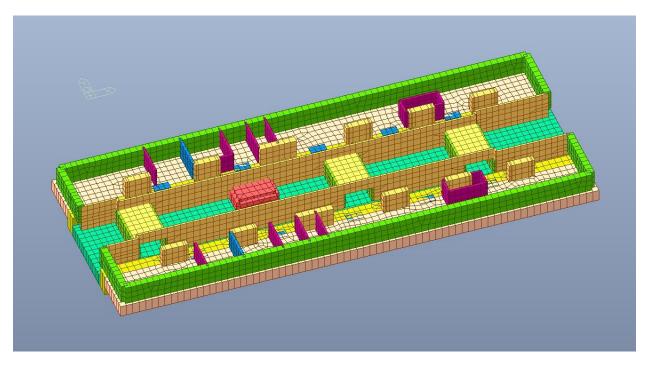


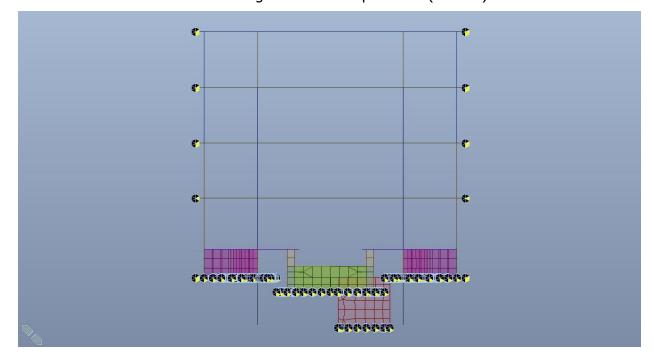
Figura 24. Struttura interrata – Platea di fondazione e cunicoli

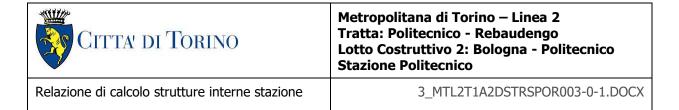
CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

Vincoli:

interni: struttura incastrata;

• col mondo esterno: molle reagenti a sola compressione (Winkler).




Figura 25. Vincoli con il mondo esterno – Sezione trasversale

I diaframmi esterni NON sono stati modellati in quanto non oggetto della presente relazione; mentre i diaframmi centrali sono stati modellati solamente per la porzione sotto la platea di fondazione in quanto fungono da vincoli a tempo infinito.

I collegamenti tra orizzontamenti e diaframmi esterni sono stati modellati tramite l'inserimento di molle orizzontali compression-only ortogonali al diaframma stesso in modo da simulare la rigidezza laterale e lungo Z in modo da simulare la rigidezza di base; a favore di sicurezza per i diaframmi centrali è stata considerata la sola rigidezza alla base, trascurando il contributo offerto dall'attrito laterale della parte infissa.

Per il Piano mezzanino (-3) è stato modellato solamente il vincolo orizzontale, in quanto non trova appoggio sul diaframma perimetrale ma solamente sulle fodere di rivestimento.

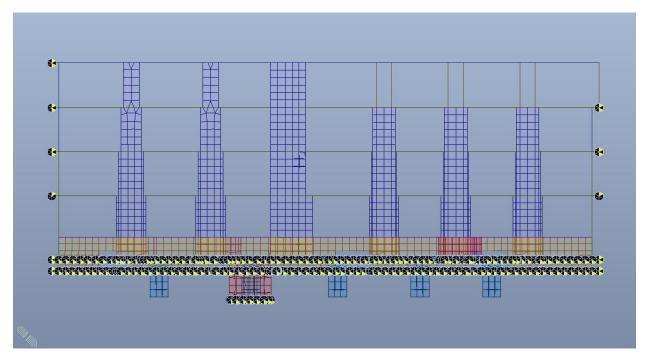


Figura 26. Vincoli con il mondo esterno – Sezione longitudinale

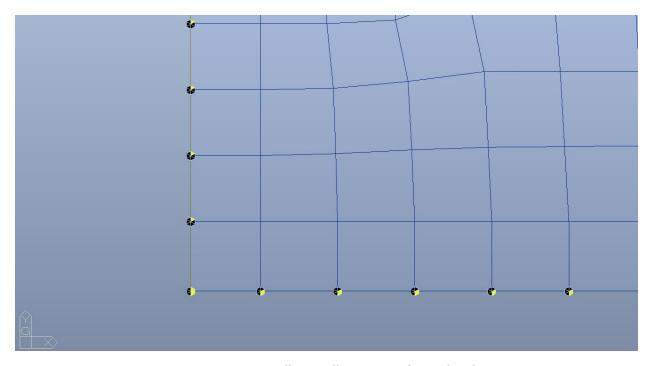
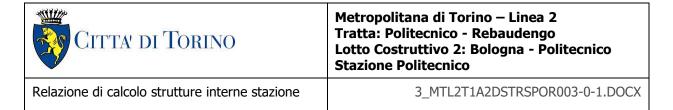


Figura 27. Dettaglio – Molle compression-only X/Y e Z

Nella tabella seguente sono indicati gli spessori dei rispettivi elementi strutturali.


Tabella 24. Caratteristiche sezioni modello FEM

NAME	TYPE	IN-OUT	THICK-IN [cm]
Solettone di copertura	Value	Yes	80
Solettoni intermedi	Value	Yes	100
Diaframmi_INT	Value	Yes	120
Fodere	Value	Yes	60-80-100
Banchina	Value	Yes	30
Muretti_Banchina	Value	Yes	30
Soletta_VC	Value	Yes	30
Setti_scala	Value	Yes	25
Setti_VC	Value	Yes	60
Platea	Value	Yes	130-180
Setti_Fossa	Value	Yes	100
Fondo_Fossa	Value	Yes	100
Soletta_Fossa	Value	Yes	100

8.2 Modellazione delle azioni – Tempo infinito

Di seguito si riportano i carichi applicati sul modello FEM realizzato per i diversi orizzontamenti

8.2.1 Solettone di copertura

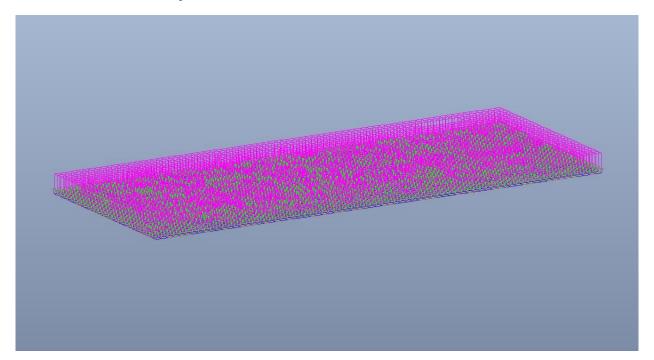


Figura 28. Solettone di copertura- Carichi permanenti NON strutturali G2

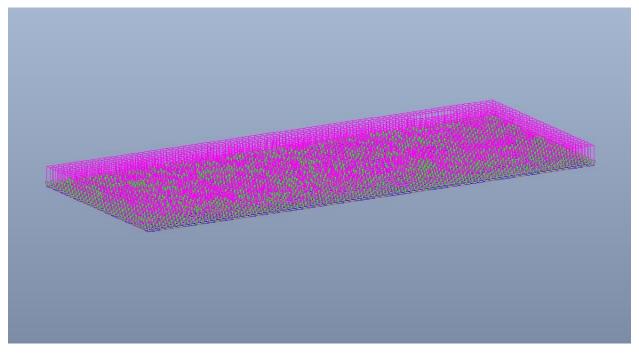


Figura 29. Solettone di copertura – Carico variabile veicolare

8.2.2 Piano atrio (-1)

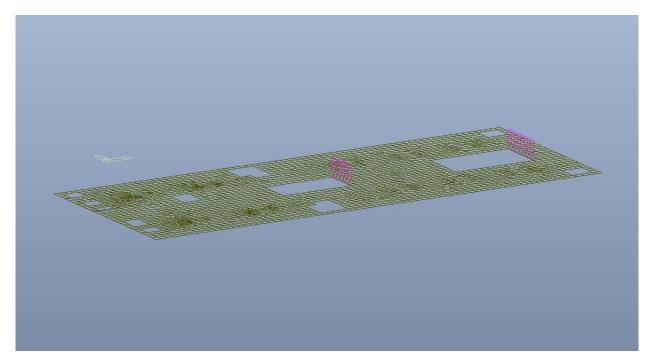


Figura 30. Piano atrio (-1) – Carichi permanenti strutturali G_1 – Scale

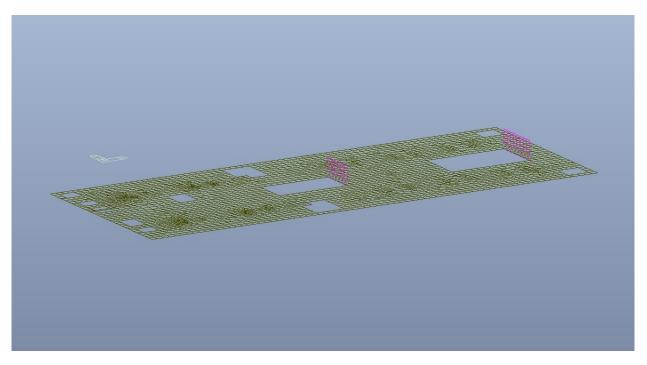
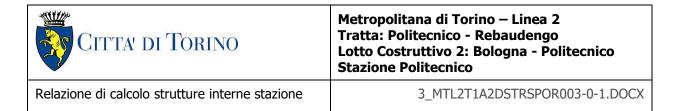



Figura 31. Piano atrio (-1) – Carichi permanenti NON strutturali G_2 – Scale

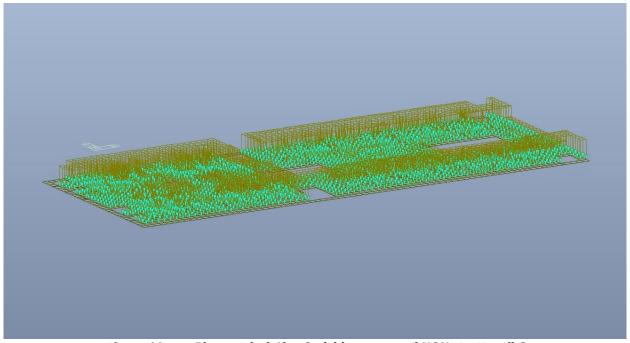


Figura 32. Piano atrio (-1) – Carichi permanenti NON strutturali G₂

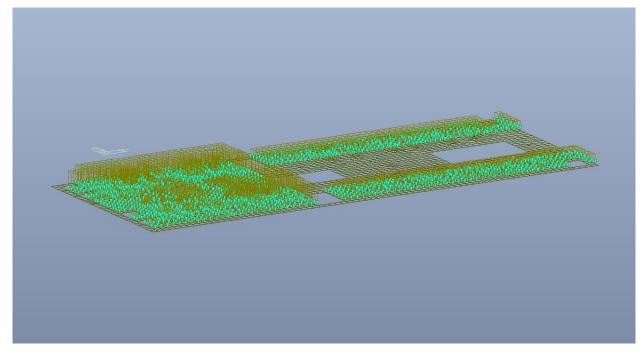


Figura 33. Piano atrio (-1) – Carico variabile Q cat.E – Zona Locali Tecnici

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

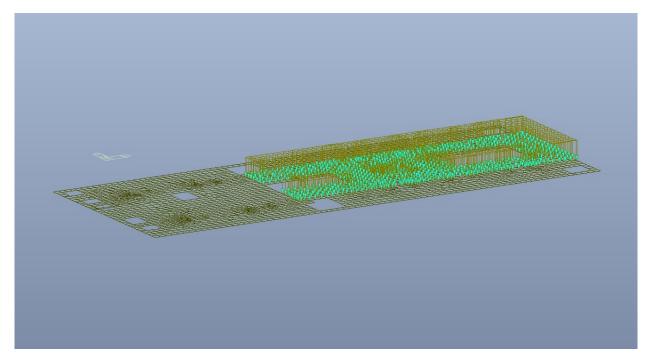


Figura 34. Piano atrio (-1) – Carico variabile Q cat.C5 – Zona viaggiatori

8.2.3 Piano mezzanino (-2)

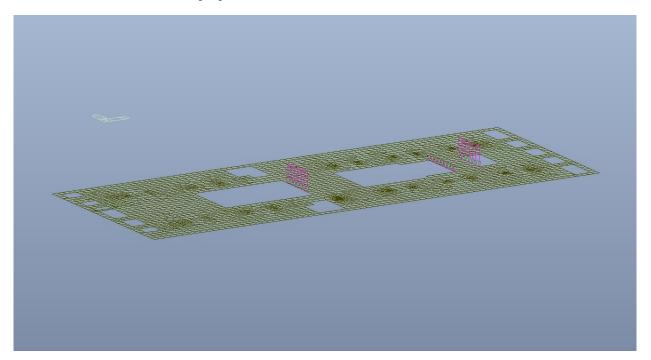


Figura 35. Piano mezzanino (-2) – Carichi permanenti strutturali G₁ - Scale

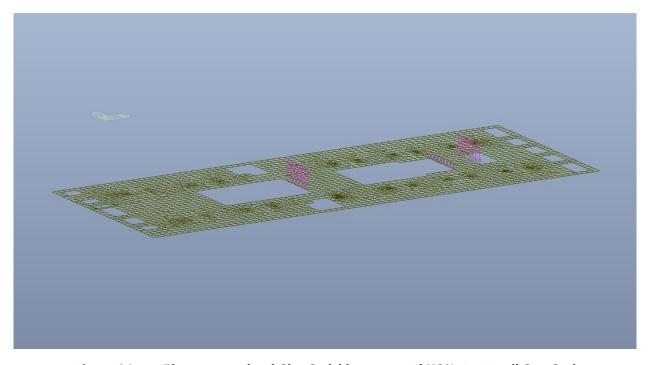


Figura 36. Piano mezzanino (-2) – Carichi permanenti NON strutturali G₂ – Scale

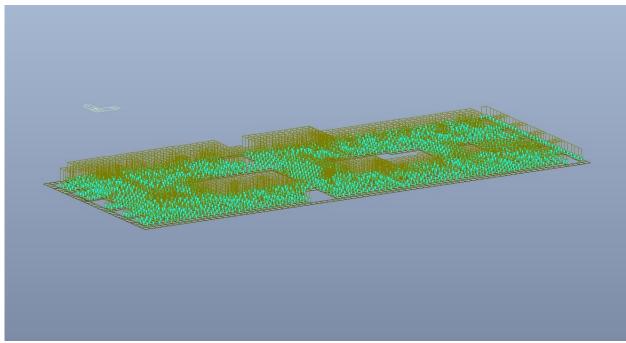


Figura 37. Piano mezzanino (-2) – Carichi permanenti NON strutturali G₂

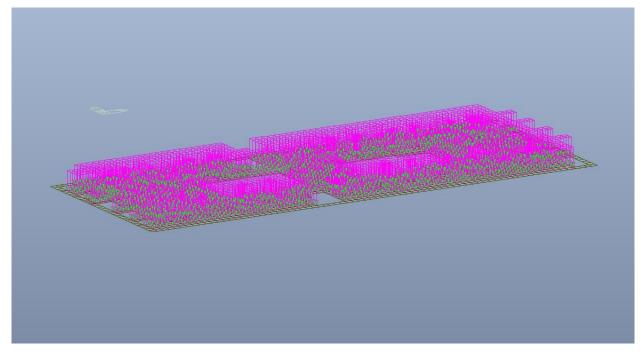


Figura 38. Piano mezzanino (-2) – Carico variabile Q cat.E

8.2.4 Piano mezzanino (-3)

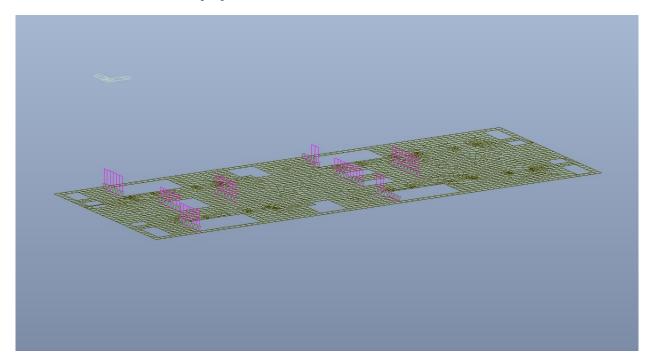


Figura 39. Piano mezzanino (-3) – Carichi permanenti strutturali G₁ - Scale

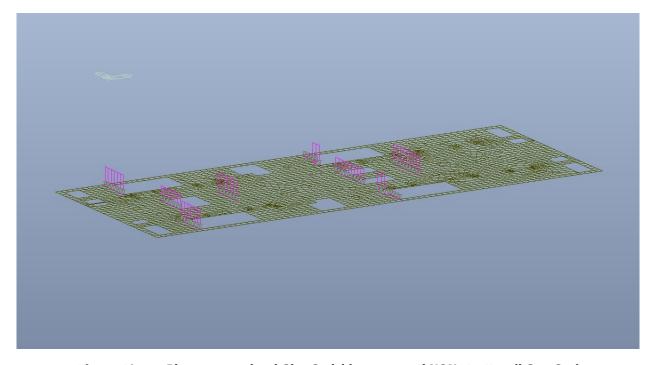
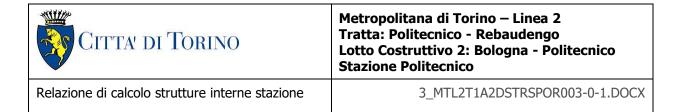



Figura 40. Piano mezzanino (-3) – Carichi permanenti NON strutturali G_2 – Scale

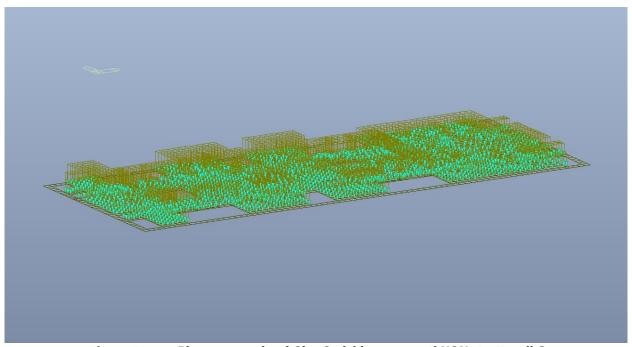


Figura 41. Piano mezzanino (-3) – Carichi permanenti NON strutturali G₂

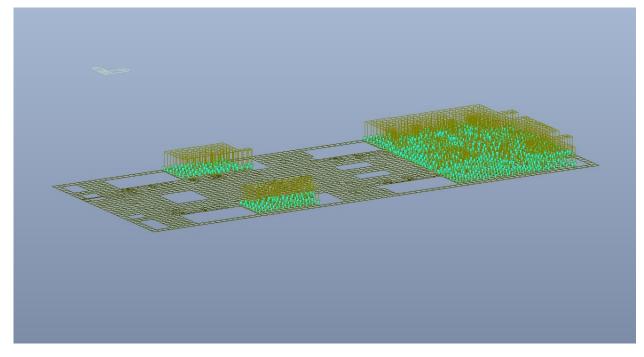


Figura 42. Piano mezzanino (-3) – Carico variabile Q cat.E – Zona Locali Tecnici

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

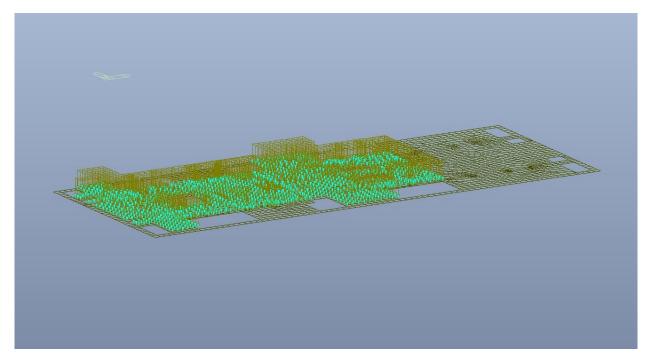
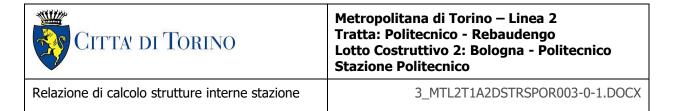



Figura 43. Piano mezzanino (-3) – Carico variabile Q cat.C5 – Zona viaggiatori

8.2.5 Piano banchina

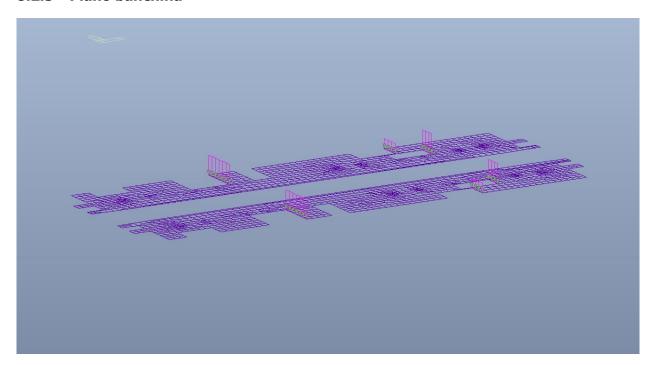


Figura 44. Piano banchina – Carichi permanenti strutturali G₁ - Scale

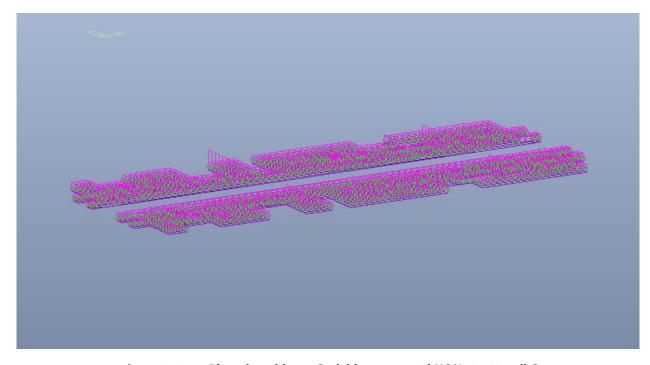


Figura 45. Piano banchina – Carichi permanenti NON strutturali G₂

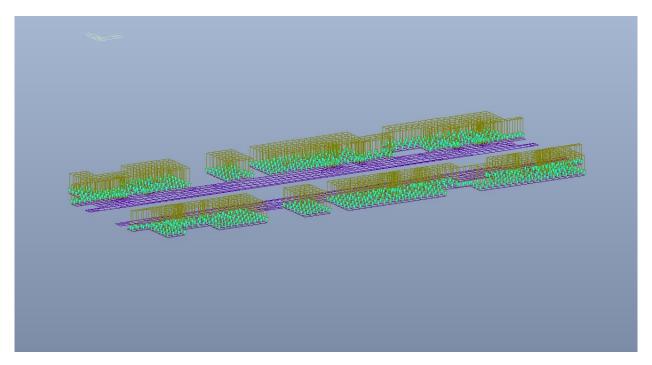


Figura 46. Piano banchina – Carico variabile Q cat.E – Zona Locali Tecnici

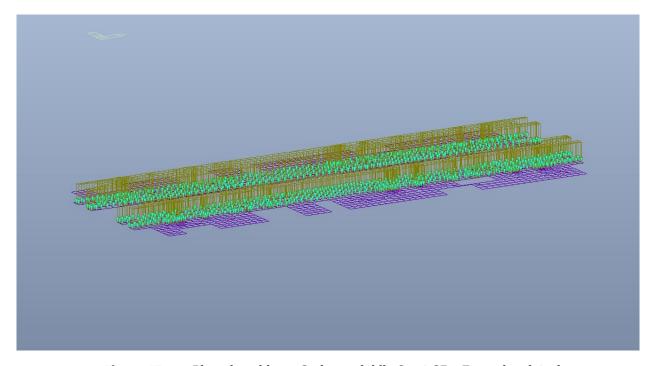
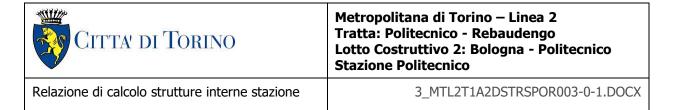



Figura 47. Piano banchina – Carico variabile Q cat.C5 – Zona viaggiatori

8.2.6 Platea di fondazione e cunicoli

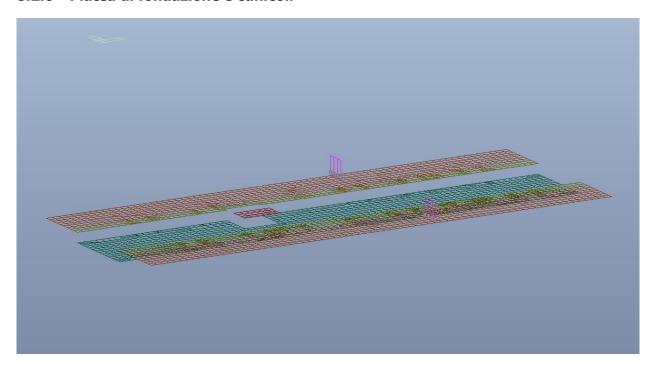


Figura 48. Platea di fondazione – Carichi permanenti strutturali G₁ – Scale

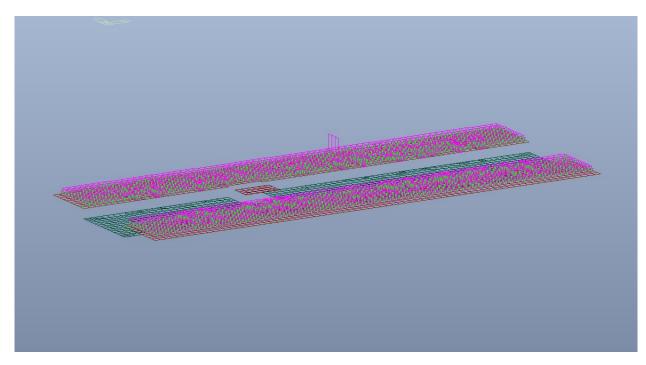
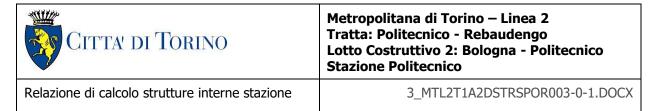



Figura 49. Platea di fondazione – Carichi permanenti NON strutturali G2

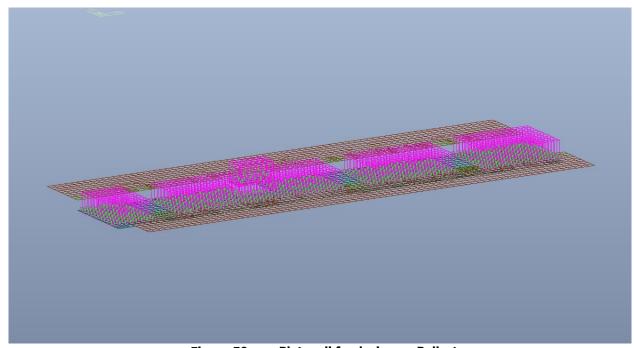


Figura 50. Platea di fondazione – Ballast

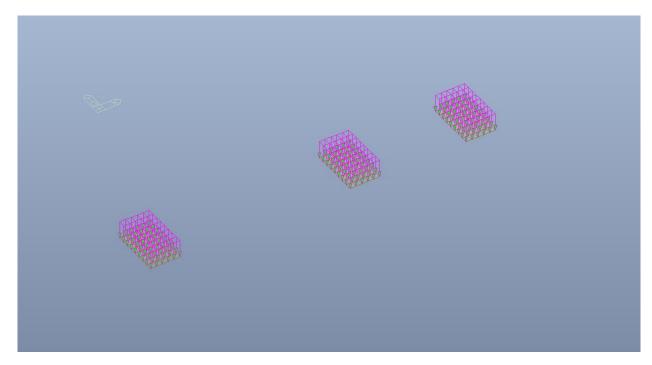


Figura 51. Copertura cunicoli – Ballast

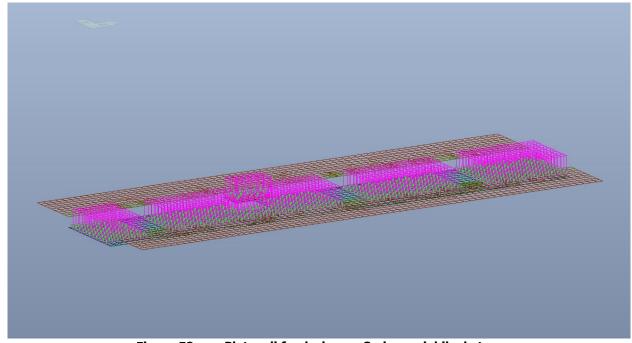


Figura 52. Platea di fondazione – Carico variabile da treno

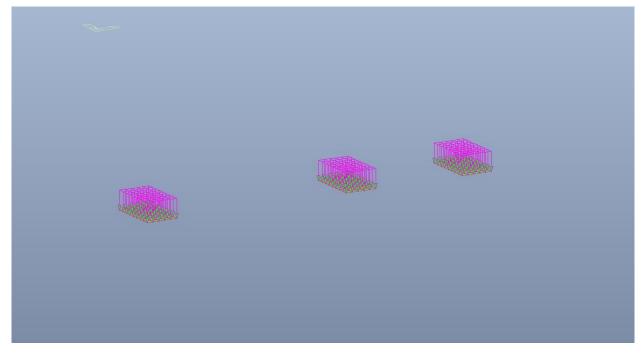


Figura 53. Copertura cunicoli – Carico variabile da treno

8.2.7 Carichi orizzontali

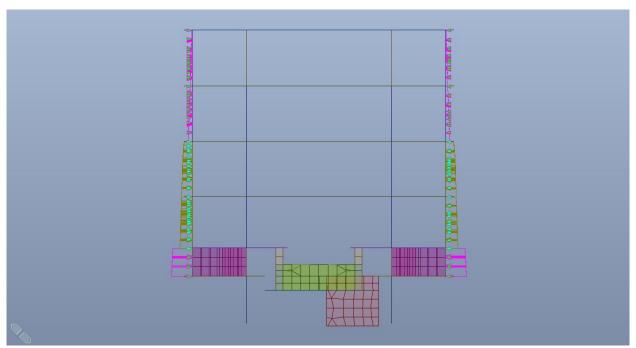


Figura 54. Spinta statica del terreno - Tipologico

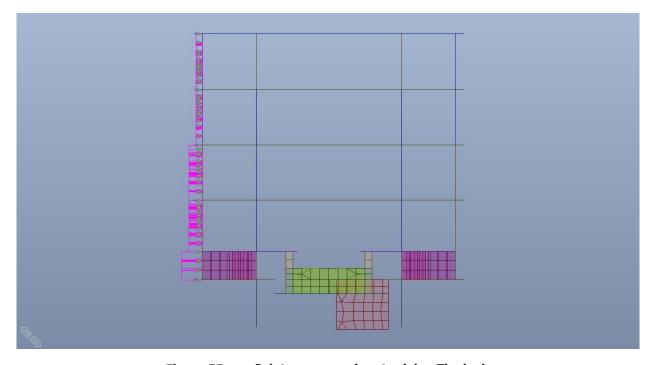


Figura 55. Spinta sovraccarico stradale - Tipologico

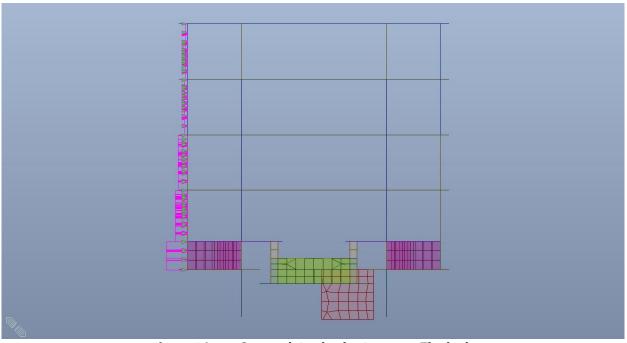


Figura 56. Sovraspinta sismica terreno - Tipologico

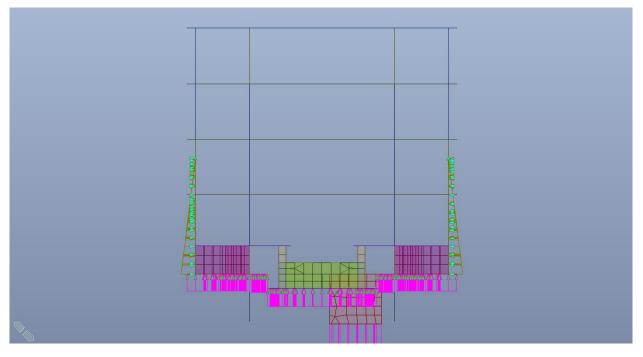


Figura 57. Spinta idrostatica quota 231 m s.l.m. (-15.80 m da P.C.) - Tipologico

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

8.2.8 Ritiro

L'azione termica è applicata a tutte le strutture interne, sia orizzontali che verticali; nell'immagine seguente non sono state riportate le fodere per motivi di chiarezza di rappresentazione.

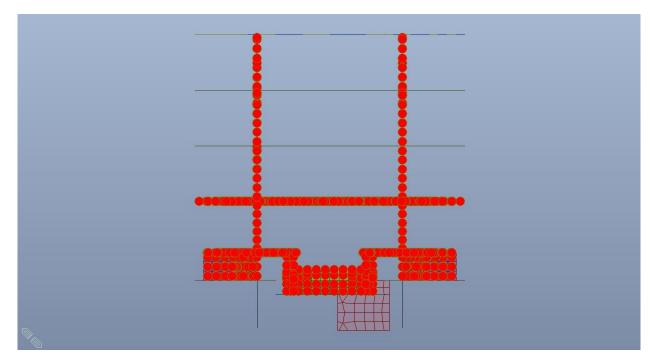


Figura 58. Azione termica per effetto del ritiro

8.3 Modellazione delle azioni – Tempo zero

Come si evince dalle immagini seguenti, le strutture verticali interne a sostegno dei diversi piani sono differenti tra il tempo zero (cantiere) e tempo infinito, sia come tipologia che come posizione. Questo comporta una traslazione dei punti di massimo momento positivo e di massimo momento negativo nel tempo.

Figura 59. Struttura verticale – Tempo infinito

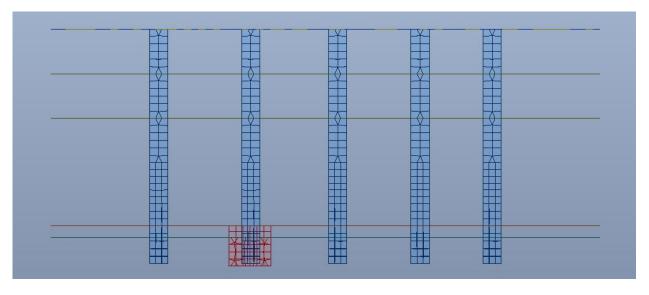
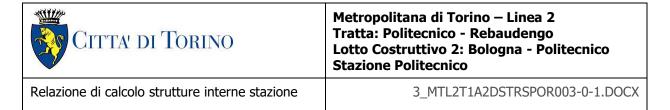



Figura 60. Struttura verticale – Tempo zero

Di seguito si riportano i carichi a tempo zero applicati sul modello FEM realizzato, per l'analisi dei solettoni di piano e dei diaframmi temporanei.

8.3.1 Solettone di copertura

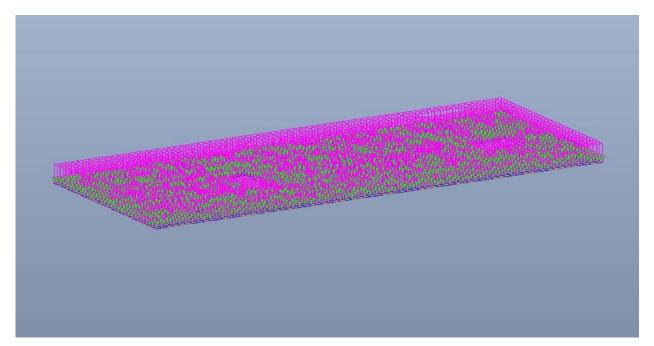


Figura 61. Solettone di copertura- Carichi permanenti NON strutturali G2

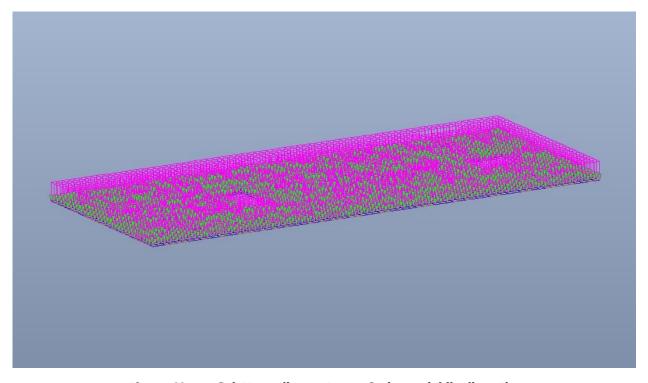


Figura 62. Solettone di copertura – Carico variabile di cantiere

8.3.2 Piano atrio (-1)

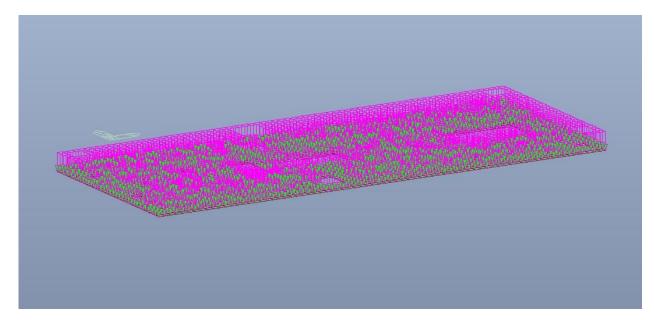


Figura 63. Piano atrio (-1) – Carico variabile di cantiere

8.3.3 Piano mezzanino (-2)

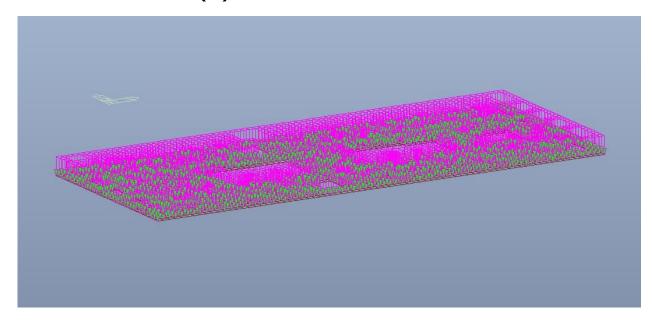


Figura 64. Piano mezzanino (-2) – Carico variabile di cantiere

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

8.3.4 Platea di fondazione

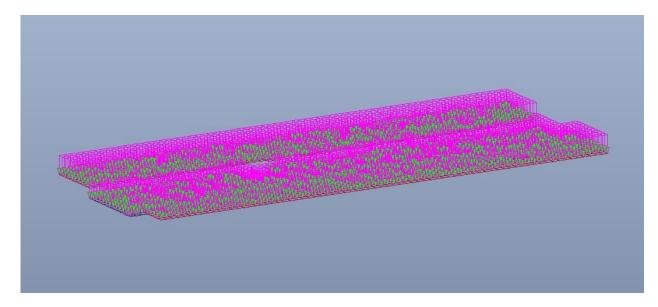


Figura 65. Platea di fondazione – Carico variabile di cantiere

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

9. VERIFICA DI RIGIDEZZA – SLO

La condizione in termini di rigidezza sulla struttura si ritiene soddisfatta qualora la conseguente deformazione degli elementi strutturali non produca sugli elementi non strutturali danni tali da rendere la costruzione temporaneamente inagibile.

Nel caso delle costruzioni civili e industriali di classe d'uso III tale condizione si può ritenere soddisfatta quando gli spostamenti di interpiano, ottenuti dall'analisi in presenza dell'azione sismica di progetto corrispondente allo SLO, sono inferiori ai 2/3 dei limiti indicati al Par. 7.3.6.1, in tale caso pari a 0.005 (tamponature collegate rigidamente alla struttura).

$$qd_r \le \frac{2}{3} \cdot 0.0050 \cdot h$$

dove:

- q è il fattore di struttura per il relativo Stato;
- d_r è il massimo spostamento relativo;
- h è l'altezza di interpiano.

Le immagini seguenti riportano i massimi/minimi spostamenti XY per i rispettivi orizzontamenti.

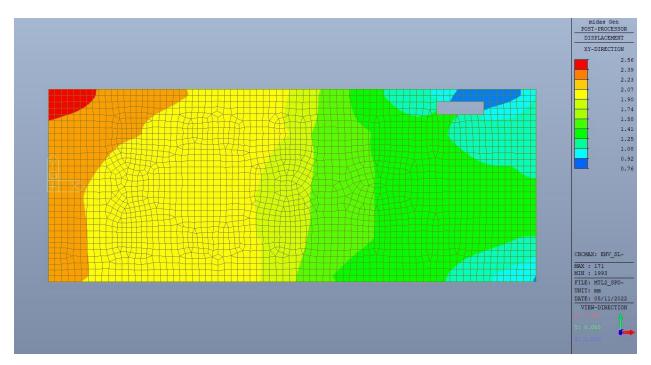


Figura 66. Solettone di copertura – Massimo spostamento XY SLO

Relazione di calcolo strutture interne stazione

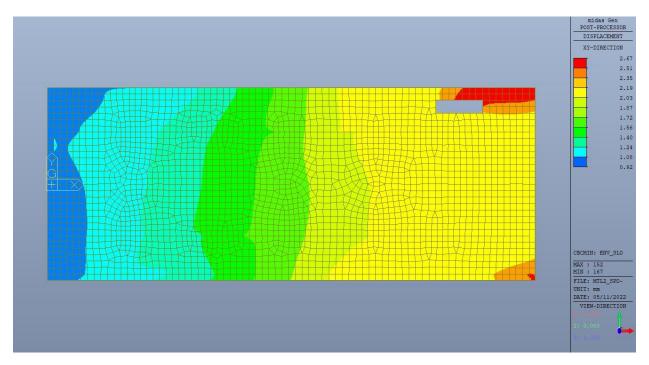


Figura 67. Solettone di copertura – Minimo spostamento XY SLO

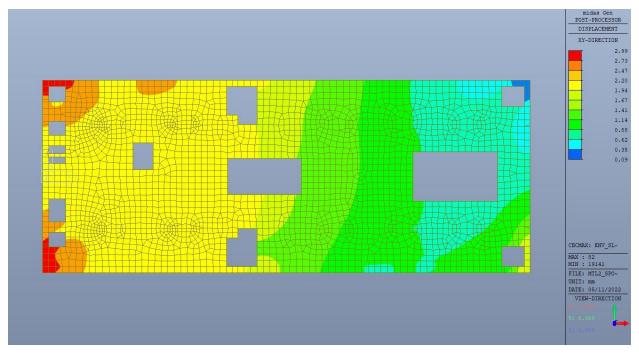


Figura 68. Piano atrio (-1) – Massimo spostamento XY SLO

Relazione di calcolo strutture interne stazione

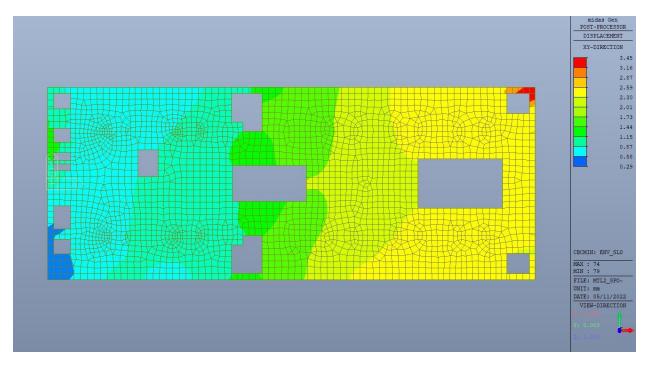


Figura 69. Piano atrio (-1) – Minimo spostamento XY SLO

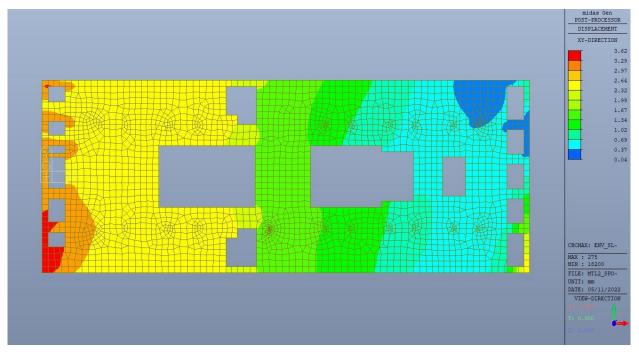


Figura 70. Piano mezzanino (-2) – Massimo spostamento XY SLO

Relazione di calcolo strutture interne stazione

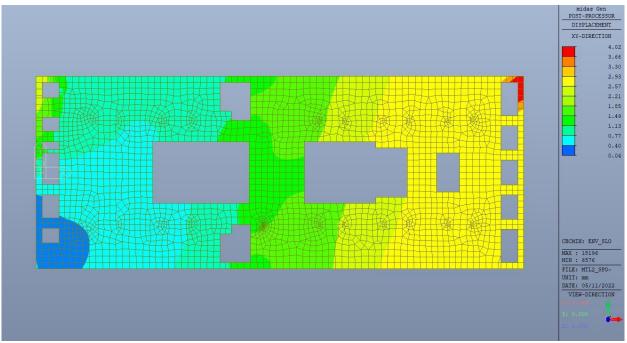


Figura 71. Piano mezzanino (-2) – Minimo spostamento XY SLO

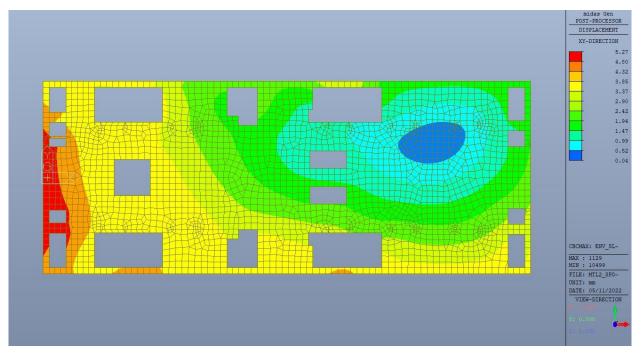


Figura 72. Piano mezzanino (-3) – Massimo spostamento XY SLO

Relazione di calcolo strutture interne stazione

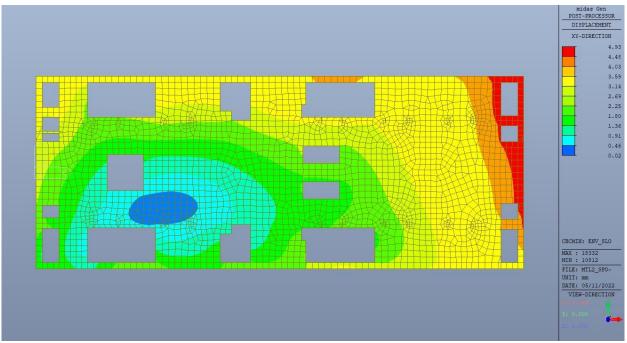


Figura 73. Piano mezzanino (-3) – Minimo spostamento XY SLO

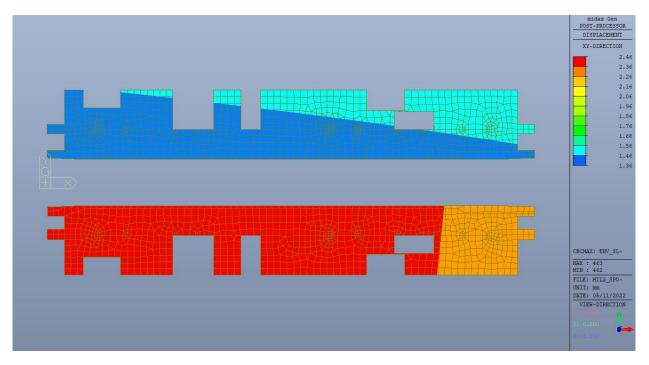


Figura 74. Piano banchina – Massimo spostamento XY SLO

Relazione di calcolo strutture interne stazione

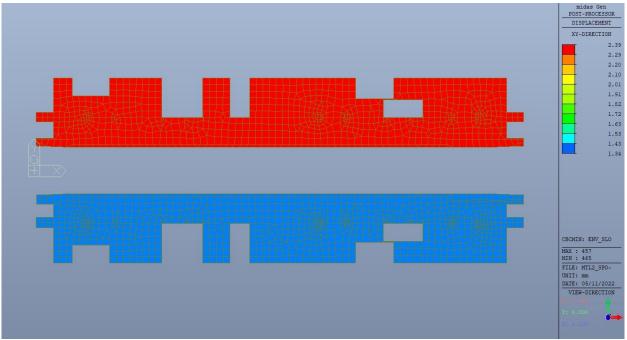


Figura 75. Piano banchina – Minimo spostamento XY SLO

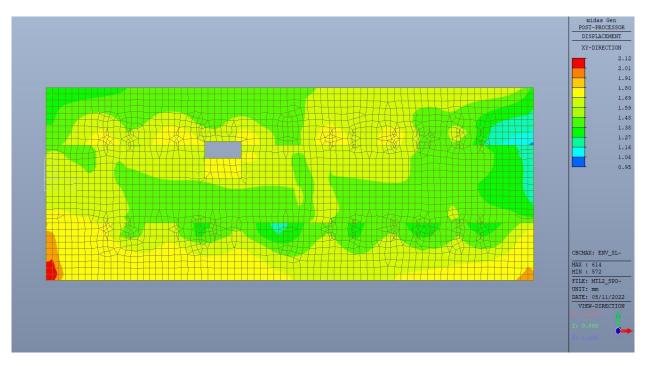


Figura 76. Platea di fondazione – Massimo spostamento XY SLO

Relazione di calcolo strutture interne stazione

3_MTL2T1A2DSTRSPOR003-0-1.DOCX

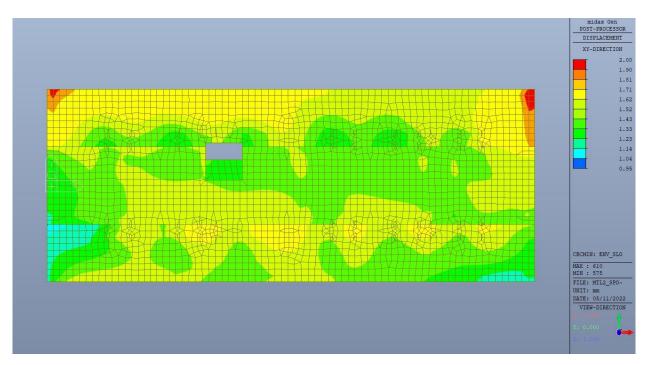


Figura 77. Platea di fondazione – Minimo spostamento XY SLO

	D _{XY} [n	II [m]	dr [mm]	limita [mm]	CK	
FLOOR	MAX	MIN	H [m]	dr [mm]	limite [mm]	CK
Solettone di copertura	2.56	2.67	5.95	0.78	19.83	ОК
Piano atrio	2.99	3.45	5.85	0.63	19.50	ОК
Piano mezzanino (-2)	3.62	4.02	5.85	1.65	19.50	ОК
Piano mezzanino (-3)	5.27	4.93	5.45	2.81	18.17	ОК
Piano banchina	2.46	2.39	2.95	0.66	9.83	ОК
Platea di fondazione	3.12	2.00				

Si può ritenere la verifica di rigidezza allo SLO soddisfatta.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

10. VERIFICA DI RESISTENZA – SLD

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda allo SLD.

Essendo una struttura a comportamento NON dissipativo, il fattore di struttura q_{SLV} e q_{SLD} coincidono e sono entrambi pari a 1; inoltre la capacità delle membrature è calcolata con riferimento al loro comportamento elastico o sostanzialmente elastico.

In questo caso, come riportato nelle figure n.11 e n.12, essendo lo spettro SLD sempre inferiore allo spettro SLV, si può ritenere tale verifica non significativa e di conseguenza automaticamente soddisfatta.

11. VERIFICA SOLETTONE DI COPERTURA

Come evidenziato nel cap.8, le strutture verticali interne a sostegno dei diversi piani sono differenti tra il tempo zero (cantiere) e tempo infinito, sia come tipologia che come posizione. Questo comporta una traslazione dei punti di massimo momento positivo e di massimo momento negativo nel tempo.

11.1 Verifica Stati Limite Ultimi – SLU e SLV

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

11.1.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV nelle due direzioni X e Y, sia a tempo infinito che a tempo zero.

Relazione di calcolo strutture interne stazione

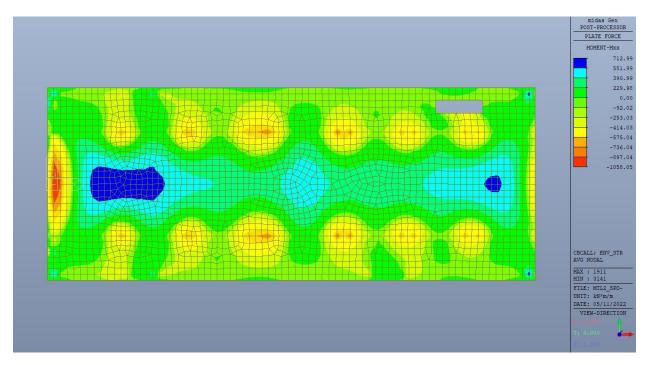


Figura 78. Solettone – Inviluppo momento flettente M_{xx} – Direzione X – Tempo infinito

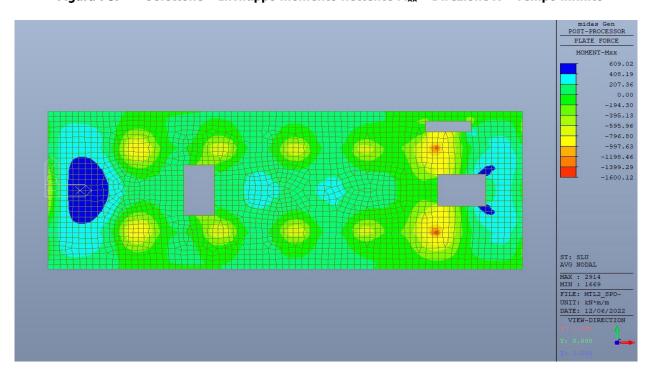


Figura 79. Solettone – Inviluppo momento flettente M_{xx} – Direzione X – Tempo zero

Relazione di calcolo strutture interne stazione

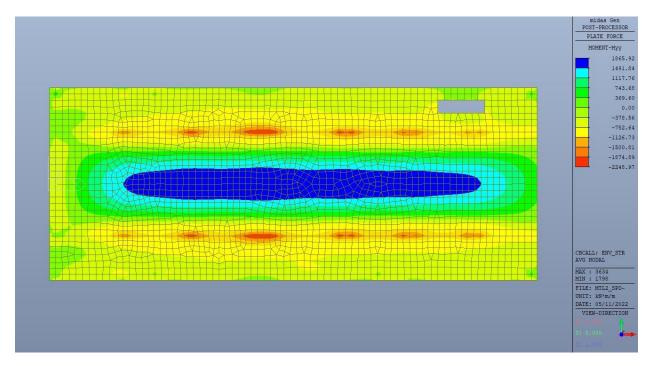


Figura 80. Solettone – Inviluppo momento flettente M_{yy} – Direzione Y – Tempo infinito

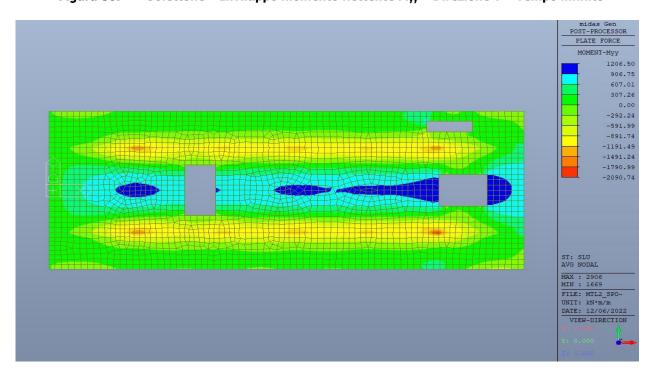


Figura 81. Solettone – Inviluppo momento flettente M_{yy} – Direzione Y – Tempo zero

Relazione di calcolo strutture interne stazione

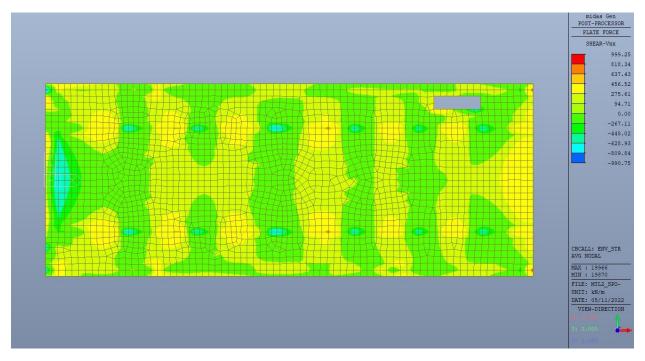


Figura 82. Solettone – Inviluppo taglio V_{xx} – Direzione X – Tempo infinito

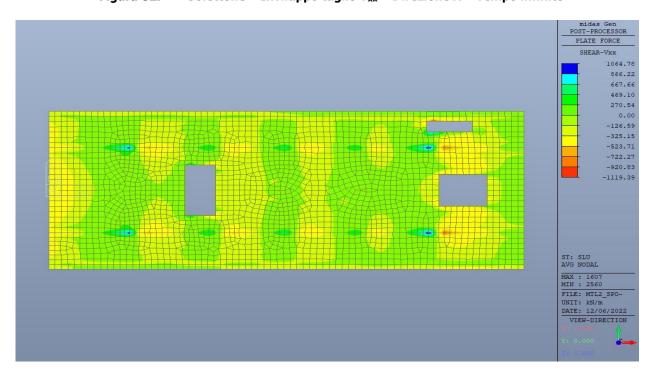


Figura 83. Solettone – Inviluppo taglio V_{xx} – Direzione X – Tempo zero

Relazione di calcolo strutture interne stazione

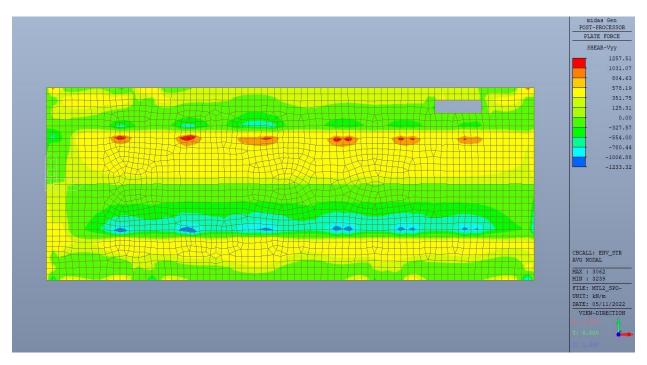


Figura 84. Solettone – Inviluppo taglio V_{yy} – Direzione Y – Tempo infinito

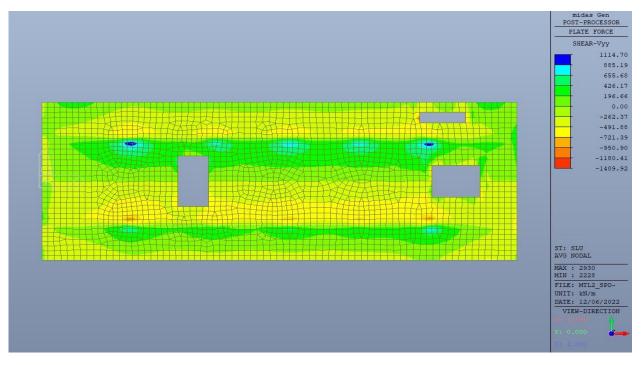


Figura 85. Solettone – Inviluppo taglio V_{yy} – Direzione Y – Tempo zero

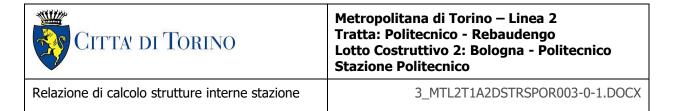
CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

11.1.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

Come valore minimo dell'armatura longitudinale si è considerato quanto riportato nel par. 4.1.6 delle NTC2018, ossia il quantitativo minimo riportato per le travi pari a

$$A_{s,min} = 0.26 \cdot \frac{f_{ctm}}{f_{vk}} \cdot b_t \cdot h$$


dove:

- f_{ctm} è il valore medio della resistenza a trazione del cls;
- f_{yk} è il valore caratteristico della resistenza a trazione dell'armatura;
- b_t è la larghezza media della zona tesa;
- h è l'altezza della sezione.

Tabella 25. Armatura minima

				D1 - TOP			D1 -BOTTOM		
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	СК
Solettone H80	100	80	8000	18.08	13.39	OK	18.08	13.39	OK
					D2 - TOP			D2 -BOTTOM	
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	СК
Solettone H80	100	100	10000	22.6	13.39	OK	22.6	13.39	OK

Nelle immagini seguenti sono riportate le armature superiori e inferiori nelle due direzioni D1 e D2.

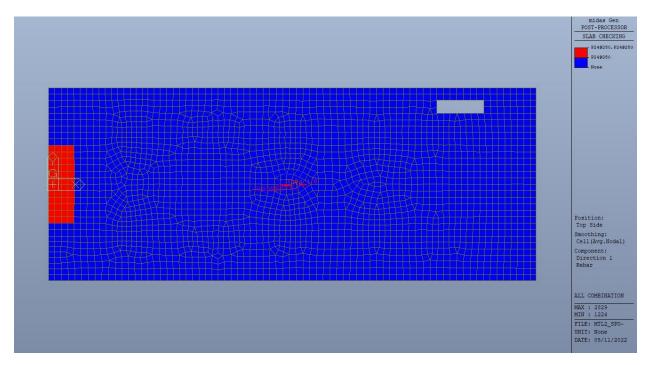


Figura 86. Solettone di copertura – Armatura superiore direzione D1

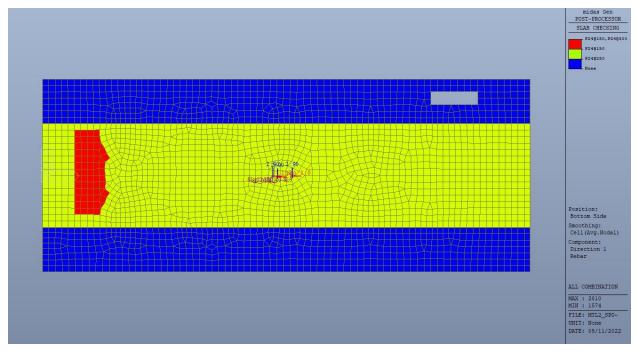


Figura 87. Solettone di copertura – Armatura inferiore direzione D1

Relazione di calcolo strutture interne stazione

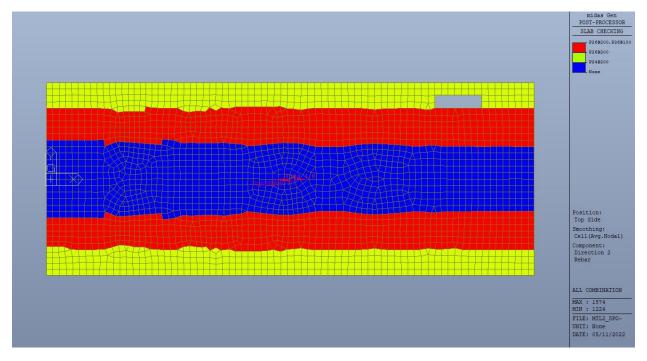


Figura 88. Solettone di copertura – Armatura superiore direzione D2

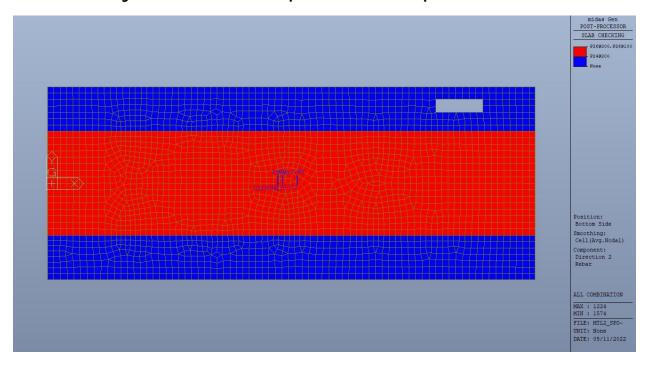


Figura 89. Solettone di copertura – Armatura inferiore direzione D2

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Nelle seguenti immagini vengono riportati i massimi tassi di lavoro a flessione e taglio dei singoli elementi strutturali nelle due direzioni D1 e D2 per entrambe le fasi temporali evidenziando, nel caso, quelli con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

TEMPO INFINITO

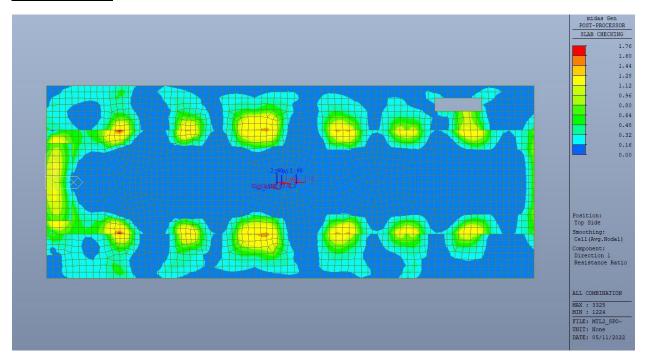


Figura 90. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D1

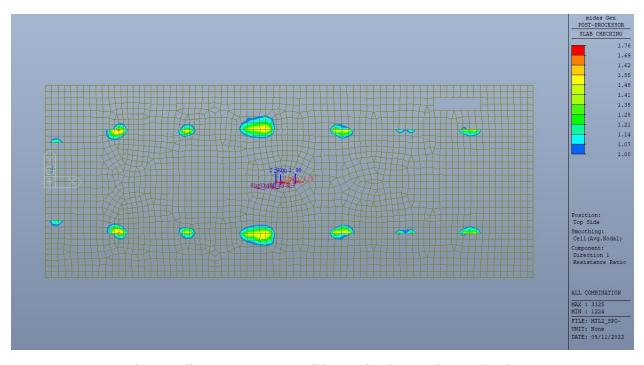


Figura 91. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1

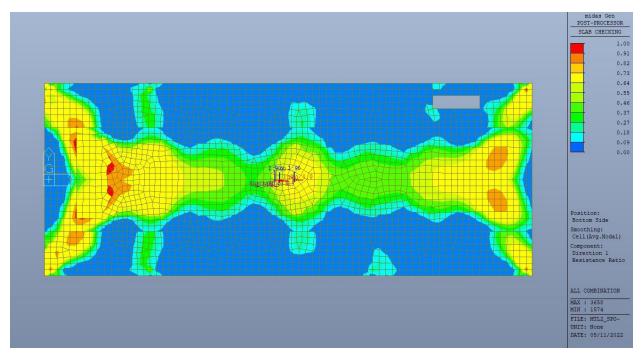


Figura 92. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D1

Relazione di calcolo strutture interne stazione

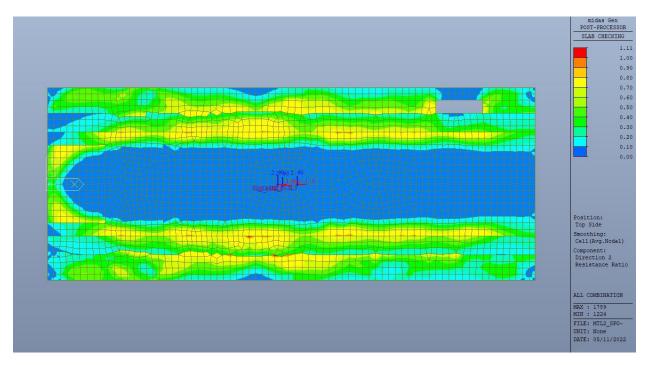


Figura 93. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D2

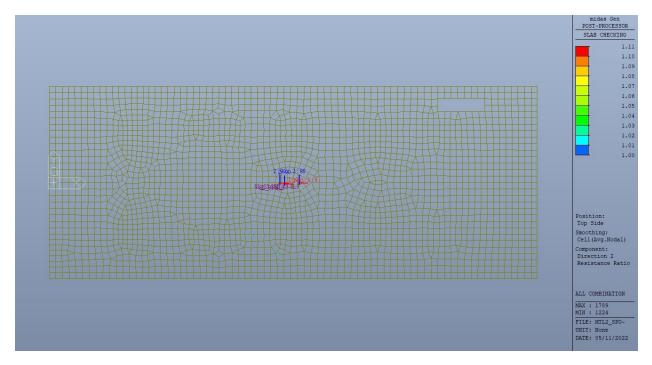


Figura 94. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D2 – Zone > 1

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

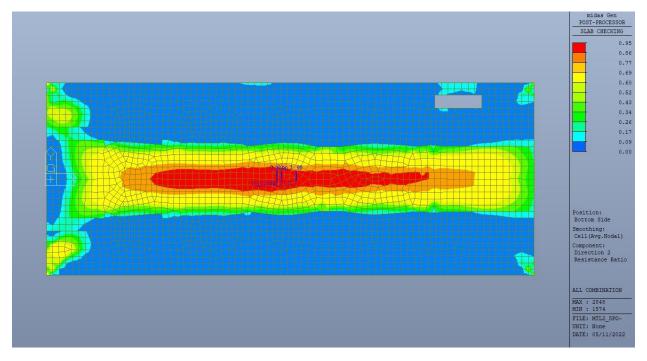


Figura 95. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D2

In particolare, nella figura n.81 le zone con tasso di lavoro maggiore di 1 possono essere trascurare in quanto è presente la trave ribassata di larghezza pari a 2m.

Per entrambe le direzioni, le zone con tasso di lavoro superiore all'unita sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

TEMPO ZERO

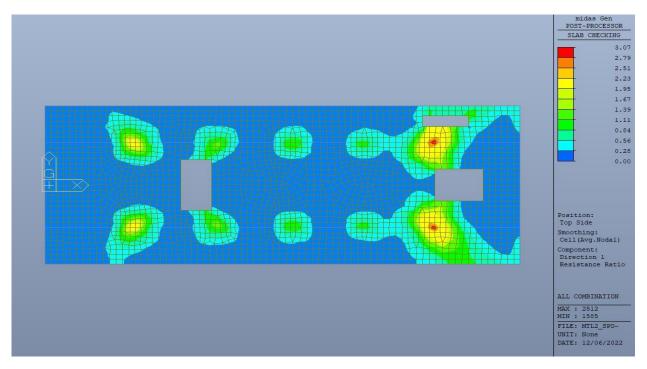


Figura 96. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D1

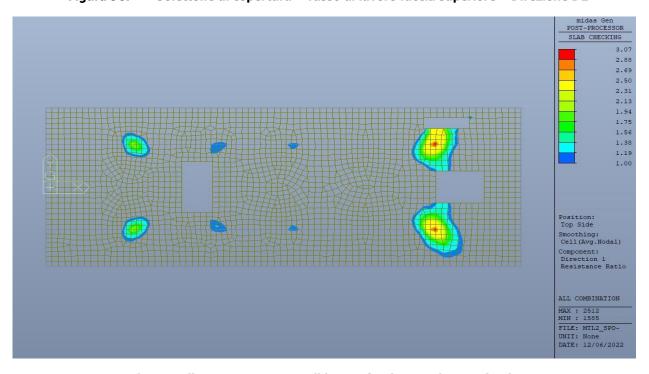


Figura 97. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

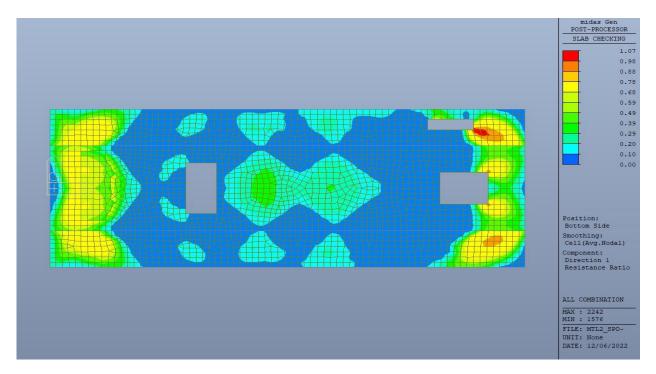


Figura 98. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D1

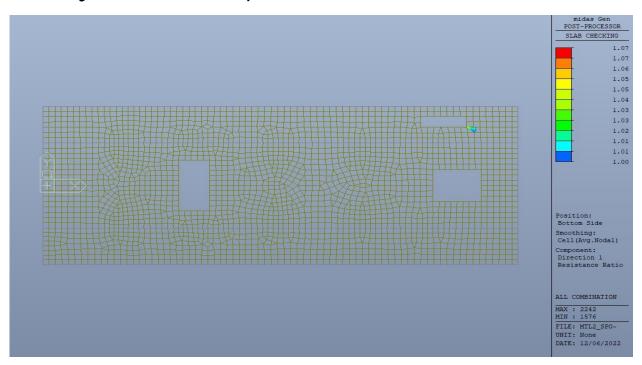


Figura 99. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

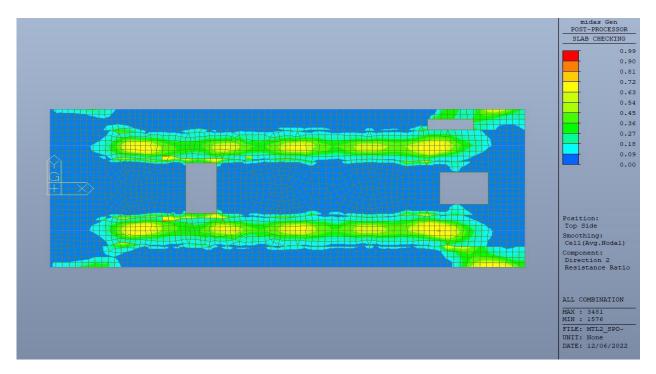


Figura 100. Solettone di copertura – Tasso di lavoro faccia superiore – Direzione D2

Relazione di calcolo strutture interne stazione

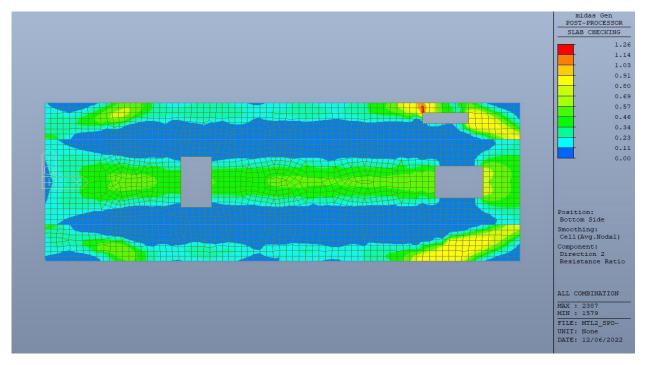


Figura 101. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D2

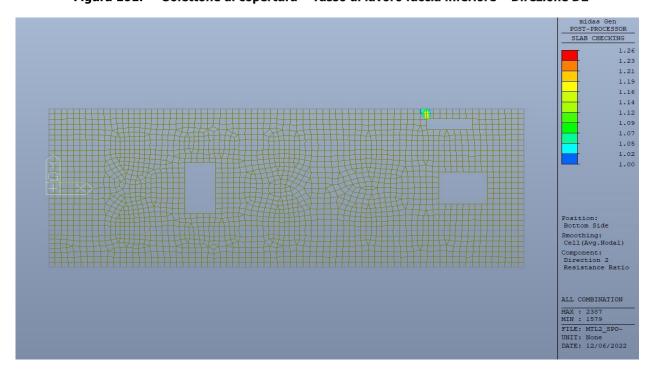


Figura 102. Solettone di copertura – Tasso di lavoro faccia inferiore – Direzione D2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Al tempo zero, per entrambe le direzioni, le zone con tasso di lavoro superiore all'unita sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta.

In particolare, nella figura n.97 le zone con tasso di lavoro maggiore di 1 possono essere trascurare in quanto è presente la trave ribassata di larghezza pari a 2m.

L'analisi delle condizioni intermedie soranno oggetto di approfondimento in fase di stesura del progetto esecutivo/costruttivo.

Resistenza a taglio di progetto in direzione X e Y – valore per unità di lunghezza.

Tabella 26. Verifica taglio - Solettone di copertura

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f_{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γ _c	1.5		coefficiente di sicurezza
С	100	mm	copriferro
d	700	mm	altezza utile sezione
k	1.53		
ρ_1	0.26%		rapporto geometrico di armatura longitudinale
V _{min}	0.369		
V_{Rd}	257.07	kN	
$V_{Rd,min}$	258.09	kN	
V _{Rd,c}	258.09	kN	resistenza a taglio NO armatura
NB	4		numero bracci
D	20	mm	diametro armatura a taglio
A _b	3.14	cm2	area barra armatura a taglio
A_{st}	12.56	cm2	area complessiva staffe
st	200	mm	passo staffe
γ_{s}	1.15		
α	90	۰	
cotg teta	1		
V_{Rsd}	1548.16	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V_{Rcd}	2740.87	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	1548.16	kN	resistenza a taglio CON armatura

Come riportato dalle immagini successive, la resistenza di progetto a taglio per elementi con armatura dedicata è superiore al taglio agente per tutta la totalità degli elementi, si può considerare la verifica soddisfatta per entrambe le direzioni.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

TEMPO INFINITO

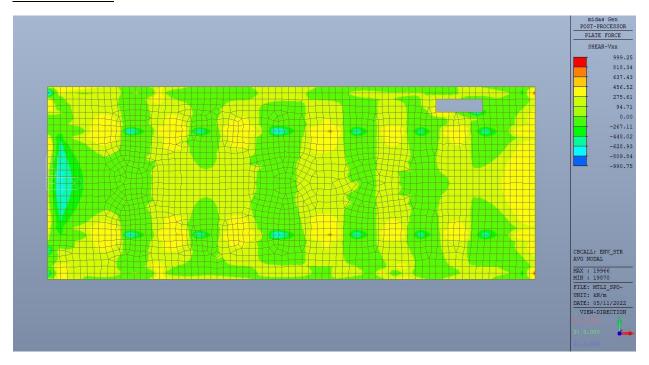


Figura 103. Solettone di copertura – Resistenza a taglio Direzione X

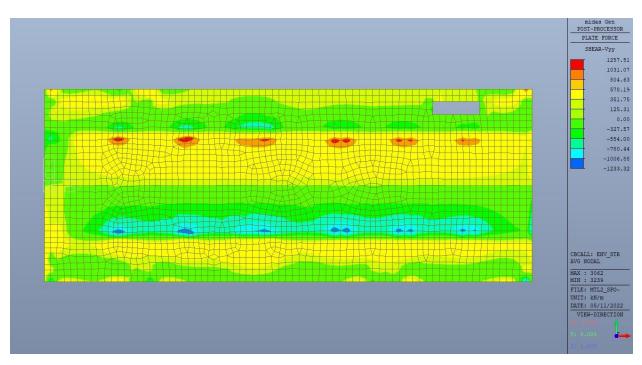


Figura 104. Solettone di copertura – Resistenza a taglio Direzione Y

TEMPO ZERO

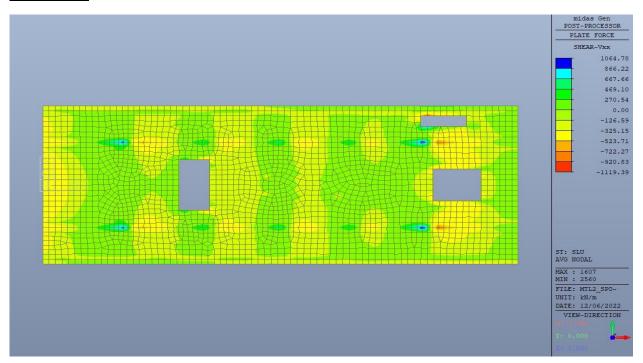


Figura 105. Solettone di copertura – Resistenza a taglio Direzione X

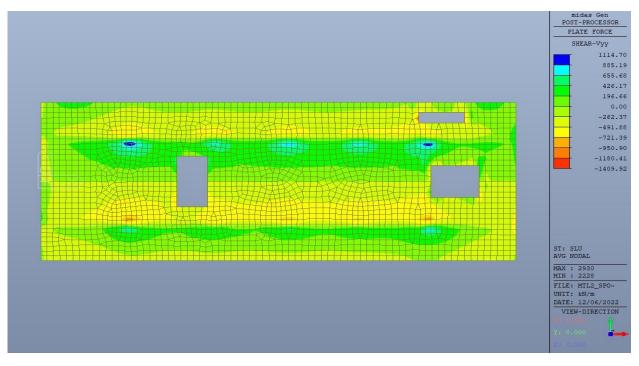


Figura 106. Solettone di copertura – Resistenza a taglio Direzione Y

11.2 Verifica Stati Limite di Esercizio - SLE

Si deve verificare il rispetto dei seguenti stati limite:

- · deformazione;
- fessurazione;
- limitazione delle tensioni di esercizio.

Le verifiche SLE sono condotte solamente a tempo infinito, in quanto risulta essere la configurazione più gravosa.

11.2.1 Stato limite di deformazione

I limiti di deformabilità devono essere congruenti con le prestazioni richieste alla struttura anche in relazione alla destinazione d'uso, con riferimento alle esigenze statiche, funzionali ed estetiche.

Si può considerare la deformazione massima a pieno carico pari a 1/250 della luce di calcolo.

L = 28.60 m (tra travi rialzate interne)

 $\delta_{\text{max}} = 114.4 \text{mm}$

Di seguito si riporta la deformata calcolata, a favore di sicurezza, in condizione di creep (effetti a lungo termine dovuti al fluage) con un modulo elastico del cls E_c ridotto di un valore pari a 2.75.

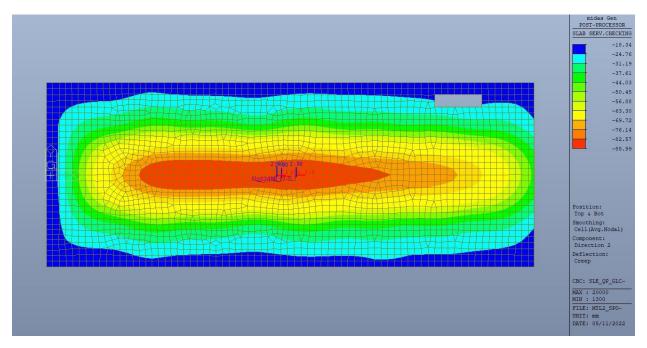


Figura 107. Solettone di copertura – Massima deformazione

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Il massimo valore dell'abbassamento relativo in combinazione RARA è pari a 71.00mm, inferiore al valore massimo e compatibile con le prestazioni richieste.

La verifica è soddisfatta.

11.2.2 Stato limite di fessurazione

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, in funzione della classe di esposizione scelta si determina la condizione ambientale:

- ordinarie;
- aggressive;
- molto aggressive.

Stabilito la classe ambientale, in funzione della tipologia di armatura, se sensibile o poco sensibile alla corrosione, si determina il valore limite di apertura delle fessure.

In questo caso:

- classe di esposizione XC3;
- classe ambientale orinaria;
- armatura poco sensibile;
- valore limite apertura delle fessure w₃ (0.4mm) combinazioni SLE Frequente;
- valore limite apertura delle fessure w₂ (0.3mm) combinazioni SLE Quasi Permanente.

Nelle seguenti immagini vengono riportati il ratio tra il valore di apertura delle fessure e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

Figura 108. Solettone di copertura – Apertura delle fessure - Ratio Direzione 1

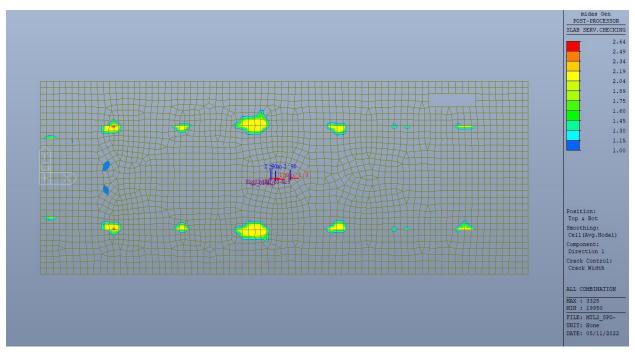


Figura 109. Solettone di copertura – Apertura delle fessure - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

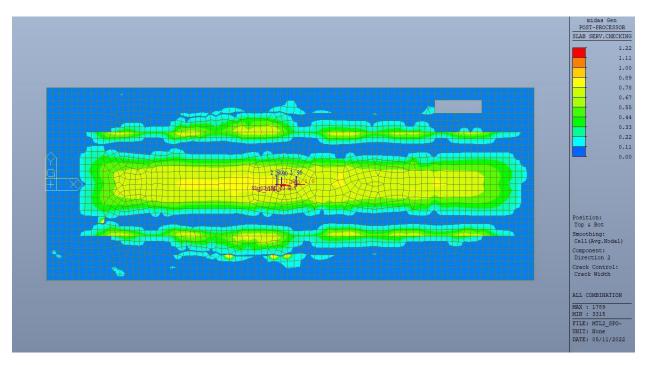


Figura 110. Solettone di copertura – Apertura delle fessure - Ratio Direzione 2

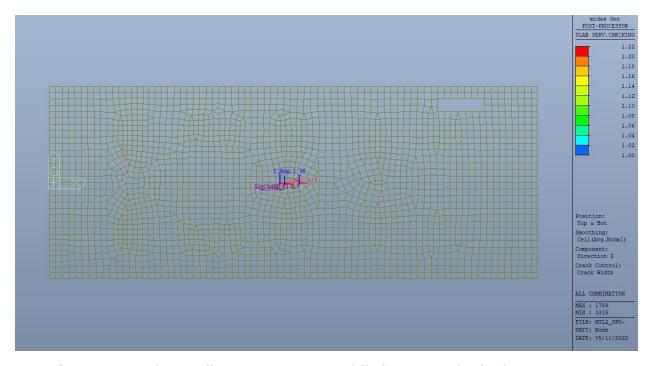


Figura 111. Solettone di copertura – Apertura delle fessure - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni complessive del solettone di copertura; in particolare non si considerano le zone comprese all'interno delle travi ribassate.

Si può ritenere la verifica soddisfatta.

11.2.3 Stato limite di limitazione delle tensioni in esercizio

Si deve verificare che nelle varie parti della struttura le massime tensioni, sia nel calcestruzzo sia nelle armature, dovute alle combinazioni caratteristiche e quasi permanente delle azioni siano inferiori ai massimi valori consentiti:

- $\sigma_{c,max} \leq 0.60 f_{ck}$ per la combinazione caratteristica;
- $\sigma_{c,max} \leq 0.45 f_{ck}$ per la combinazione quasi permanente;
- $\sigma_{s,max} \le 0.80 f_{yk}$ per la combinazione caratteristica.

Nelle seguenti immagini vengono riportati il ratio tra la tensione massima (cls e armatura) e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

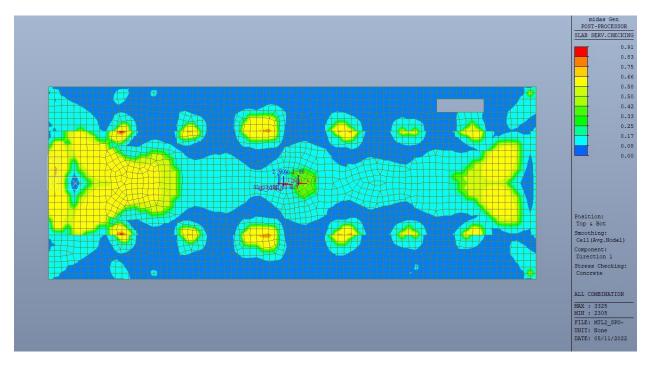


Figura 112. Solettone di copertura – Tensioni calcestruzzo - Ratio Direzione 1

Relazione di calcolo strutture interne stazione

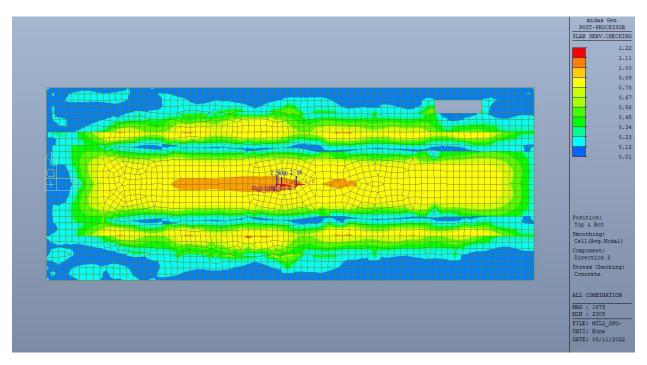


Figura 113. Solettone di copertura – Tensioni calcestruzzo - Ratio Direzione 2

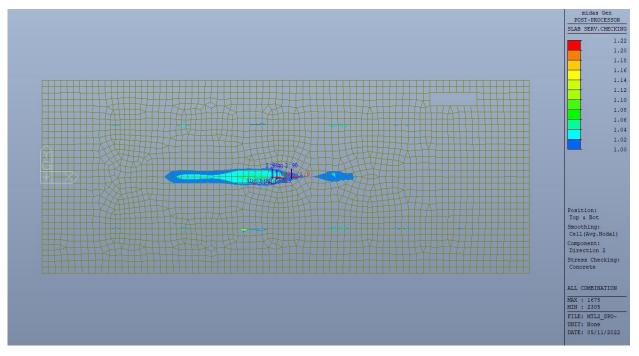


Figura 114. Solettone di copertura – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1

Relazione di calcolo strutture interne stazione

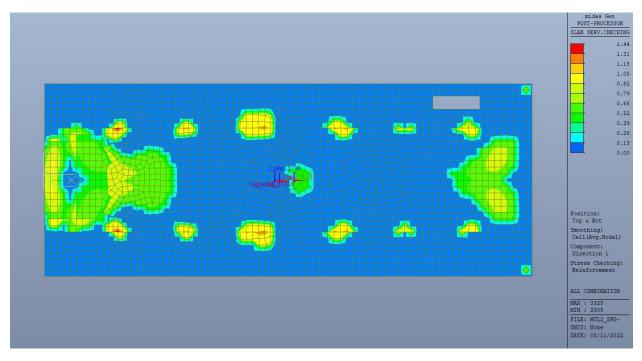


Figura 115. Solettone di copertura – Tensioni armatura - Ratio Direzione 1

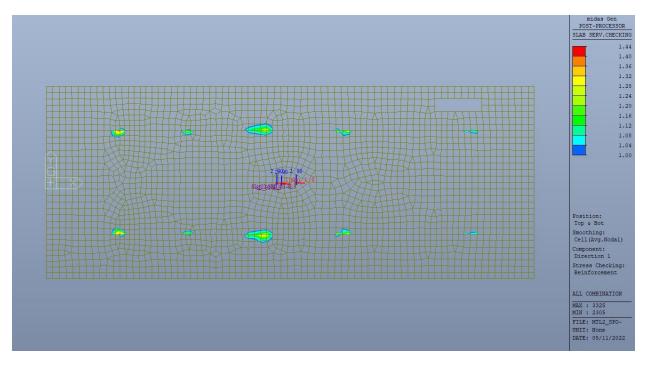


Figura 116. Solettone di copertura – Tensioni armatura - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

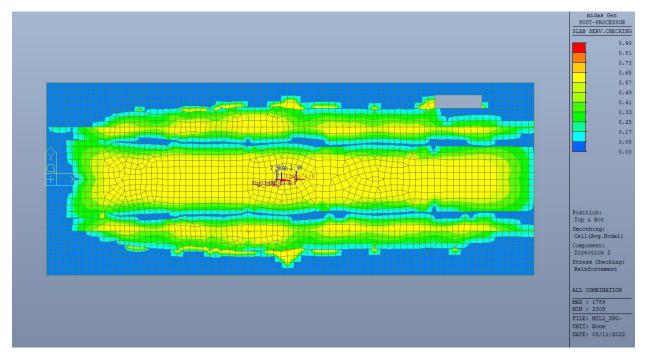



Figura 117. Solettone di copertura – Tensioni armatura - Ratio Direzione 2

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni della soletta di copertura.

Si può ritenere la verifica soddisfatta.

12. VERIFICA TRAVI RIBASSATE

Le travi ribassate hanno le seguenti sezioni:

- Travi perimetrali 180x160cm;
- Travi centrali 200x160cm.

Come si evince dalle immagini seguenti, le strutture verticali a sostegno delle stesse sono differenti tra il tempo zero (cantiere) e tempo infinito, sia come tipologia che come posizione. Questo comporta una traslazione dei punti di massimo momento positivo e di massimo momento negativo nel tempo.

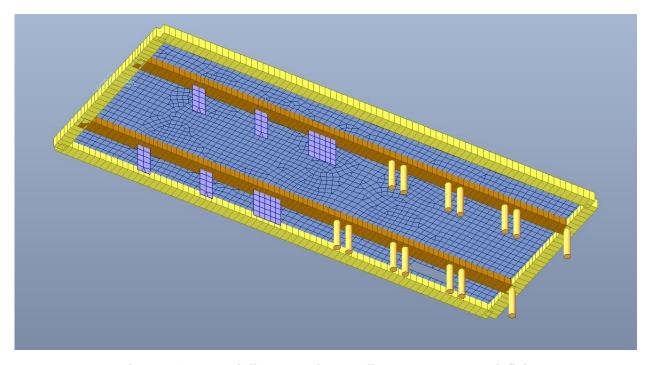


Figura 118. Travi ribassate solettone di copertura – Tempo infinito

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Figura 119. Travi ribassate solettone di copertura – Tempo zero

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

12.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV di momento flettente e taglio, sia a tempo infinito che a tempo zero.

Relazione di calcolo strutture interne stazione

3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Travi 200x160

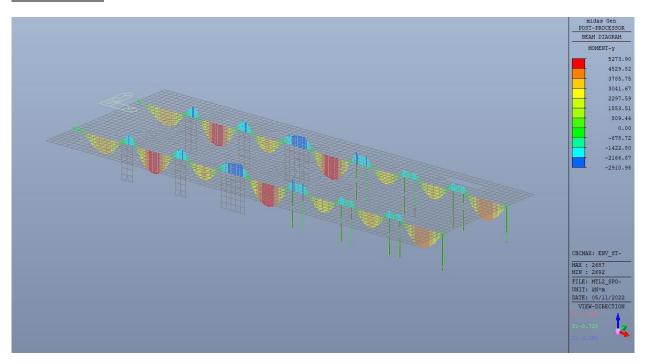


Figura 120. Travi ribassate 200x160 – Inviluppo My tempo infinito

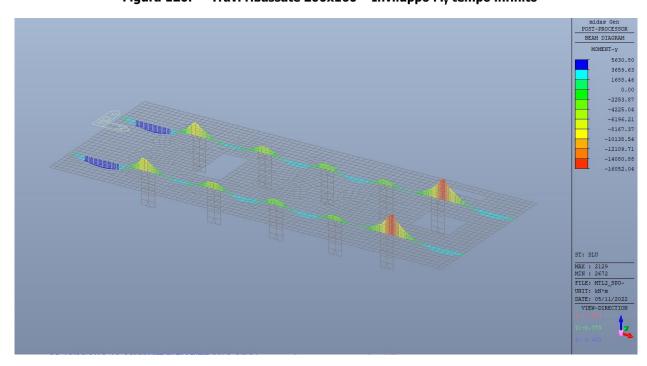


Figura 121. Travi ribassate 200x160 – Inviluppo My tempo zero

Relazione di calcolo strutture interne stazione

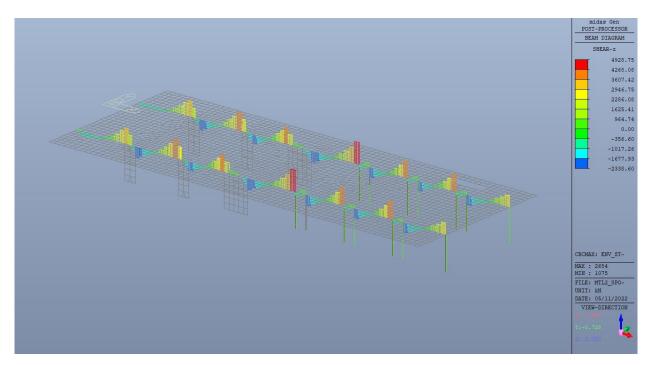


Figura 122. Travi ribassate 200x160 - Inviluppo V_z tempo infinito

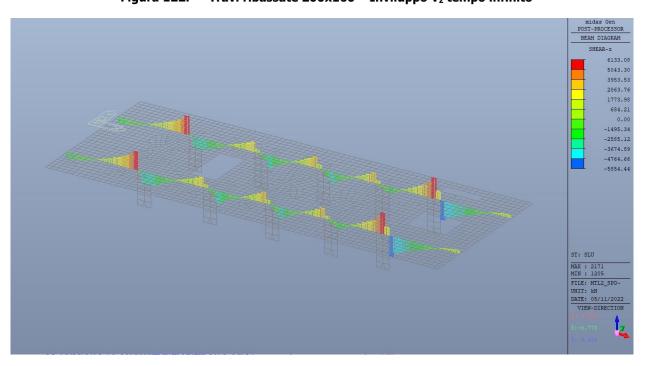


Figura 123. Travi ribassate 200x160 – Inviluppo V_z tempo zero

Travi 180x160

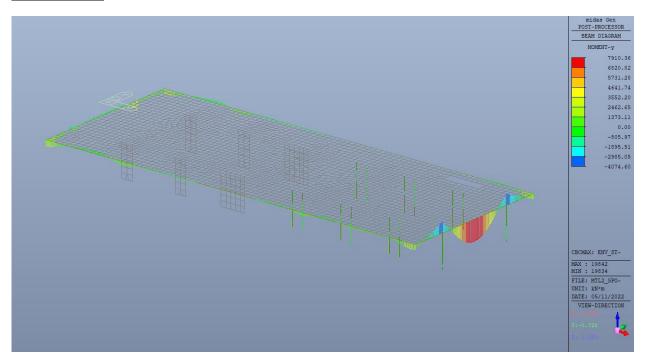


Figura 124. Travi ribassate 180x160 – Inviluppo My tempo infinito

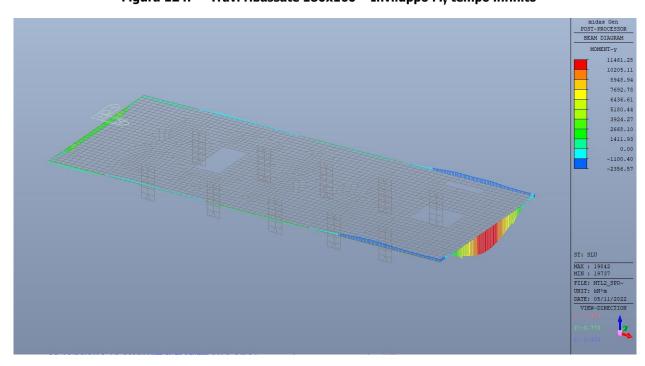


Figura 125. Travi ribassate 180x160 – Inviluppo My tempo zero

Relazione di calcolo strutture interne stazione

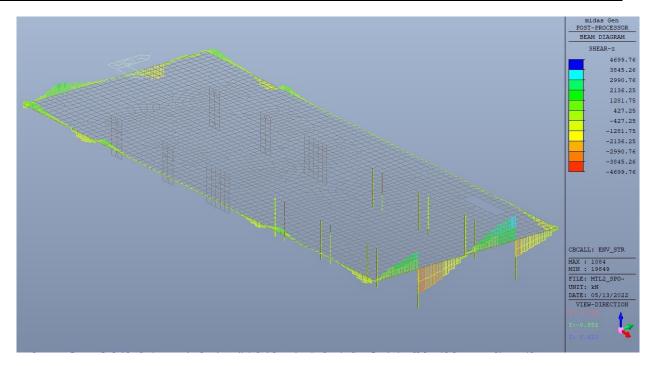


Figura 126. Travi ribassate 180x160 – Inviluppo V_z tempo infinito

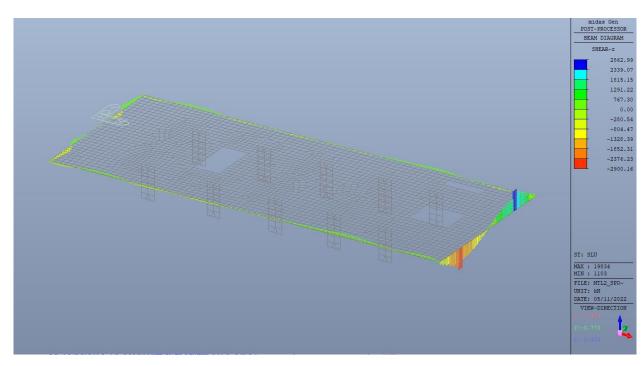


Figura 127. Travi ribassate 180x160 – Inviluppo V_z tempo zero

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

12.2 Verifiche strutturali

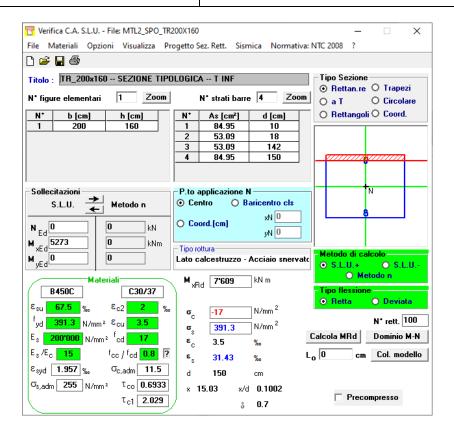
Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

A favore di sicurezza sono stati adottati, comunque, i dettagli costruttivi per le strutture a comportamento dissipativo, in particolare le limitazioni geometriche e di armatura per la classe di duttilità B, come riportato nel par. 7.4.6 delle NTC2018.

Tabella 27. Controllo armatura minima e passo minimo staffe - Travi

Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _i [cm ²]	A _s [cm ²]	ρ[%]	ρ _{comp} [%]	ρ _{min} [%]	ρ _{max} [%]	СК	p ST [cm]	p _{min} ST [cm]	CK
TR 180x160	180	160	28800	159.3	159.3	0.55%	0.55%	0.31%	1.33%	ОК	20	20.8	OK
TR 200x160	200	160	32000	138.06	138.06	0.43%	0.43%	0.31%	1.21%	ОК	20	20.8	OK

12.2.1 Travi 200x160


Di seguito si riporta la verifica a flessione per la sezione tipologica della trave ribassata 200x160cm, armata sia inferiormente che superiormente con:

- 1° strato esterno 16d26;
- 2° strato interno 10d26.

Relazione di calcolo strutture interne stazione

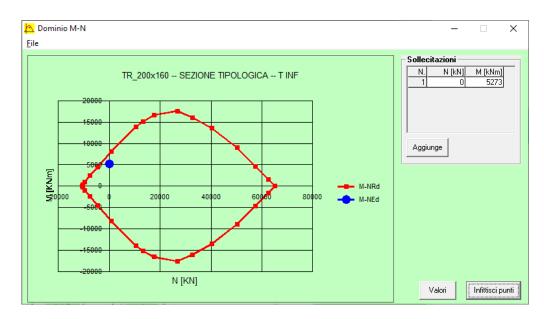


Figura 128. Travi ribassate – Verifica trave TR200x160

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Tale valore di momento flettente resistente è superiore al massimo valore di momento flettente (positivo e negativo) agente lungo tutta la trave, sia a tempo infinito che a temo zero; fanno eccezione i seguenti punti (a tempo zero) in cui il valore di momento negativo è superiore al valore calcolato.

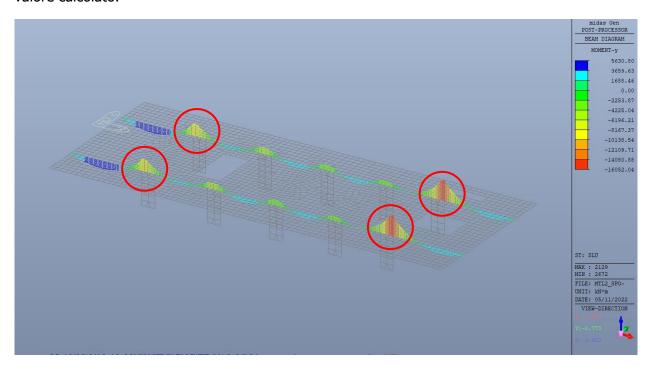
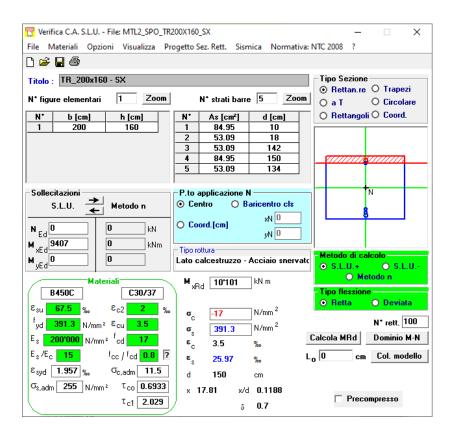


Figura 129. Travi ribassate – Verifica trave TR200x160 tempo zero


Tali sezioni devono essere armate secondo il seguente schema:

-	Appoggio di sinistra:	
	 Superiore 	1° strato esterno 16d26
		2° strato interno 10d26
		3° strato interno 10d26
	Inferiore	1º strato esterno 16d26
		2º strato interno 10d26
-	Appoggio di destra:	
	Superiore	1º strato esterno 16d26
	·	2º strato interno 16d26
		3° strato interno 16d26
		4º strato interno 16d26
	Inferiore	1º strato esterno 16d26
		2º strato interno 10d26
		3° strato interno 10d26

Relazione di calcolo strutture interne stazione

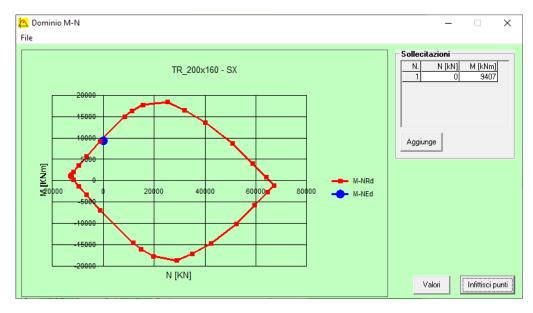
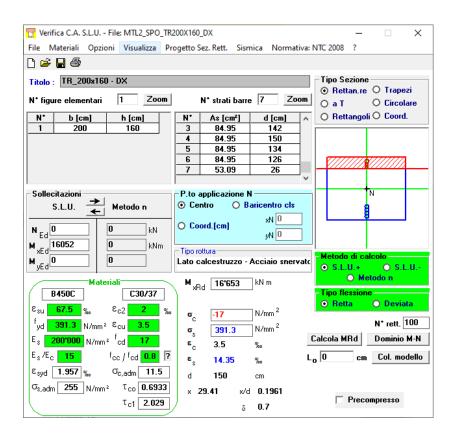



Figura 130. Travi ribassate – Verifica trave TR200x160 appoggio SX

Relazione di calcolo strutture interne stazione

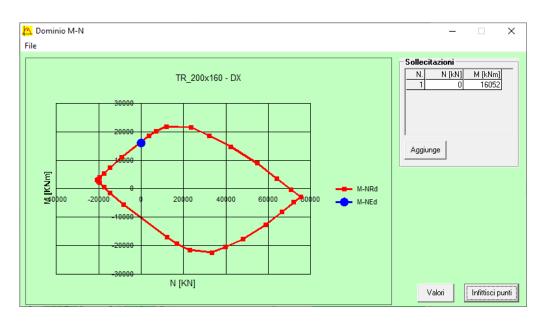


Figura 131. Travi ribassate – Verifica trave TR200x160 appoggio DX

Resistenza a taglio di progetto.

Tabella 28. Verifica taglio - TR200x160

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f _{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γ _c	1.5		coefficiente di sicurezza
С	100	mm	copriferro
d	1500	mm	altezza utile sezione
k	1.37		
ρ_1	0.46%		rapporto geometrico di armatura longitudinale
V _{min}	0.309		
V_{Rd}	1188.20	kN	
V _{Rd,min}	928.11	kN	
$V_{Rd,c}$	1188.20	kN	resistenza a taglio NO armatura
NB	6		numero bracci
D	20	mm	diametro armatura a taglio
A _b	3.14	cm2	area barra armatura a taglio
A _{st}	18.84	cm2	area complessiva staffe
st	200	mm	passo staffe
γ_{s}	1.15		
α	90	•	
cotg teta	1		
V_{Rsd}	4976.22	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V_{Rcd}	11746.58	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	4976.22	kN	resistenza a taglio CON armatura – SEZIONE TIPOLOGICA
NB	6		numero bracci
D	20	mm	diametro armatura a taglio
Ab	3.14	cm2	area barra armatura a taglio
Ast	18.84	cm2	area complessiva staffe
st	150	mm	passo staffe
gs	1.15		
а	90	0	
cotg teta	1		
VRsd	6634.96	kN	resistenza di progetto a taglio - lato acciaio
ac	1		
n	0.5		
fcd	17.40	N/mm2	
VRcd	11746.58	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	6634.96	kN	resistenza a taglio CON armatura – APPOGGI SX E DX

La resistenza di progetto a taglio per elementi con armatura dedicata è superiore al taglio agente per tutta la totalità degli elementi.

Tutte le verifiche sono soddisfatte.

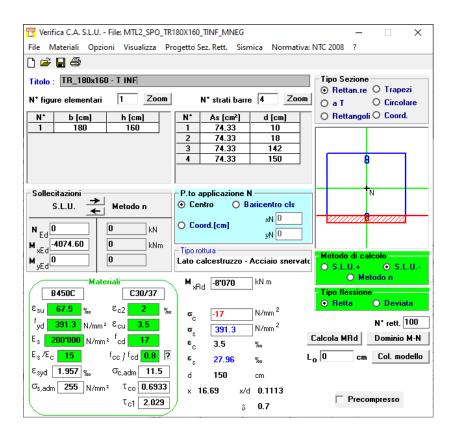
CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

12.2.2 Travi 180x160

Di seguito si riporta la verifica a flessione per le sezioni maggiormente sollecitate della trave ribassata 180x160cm, considerando l'inviluppo delle sollecitazioni a tempo zero e tempo infinito:

Massimo momento negativo:

1º strato esterno 14d26 Superiore 2° strato interno 14d26 Inferiore 1° strato esterno 14d26 2° strato interno 14d26


Massimo momento positivo:

1º strato esterno 14d26 Superiore 2° strato interno 14d26 Inferiore 1º strato esterno 14d26 2º strato interno 14d26 3° strato interno 14d26

Relazione di calcolo strutture interne stazione

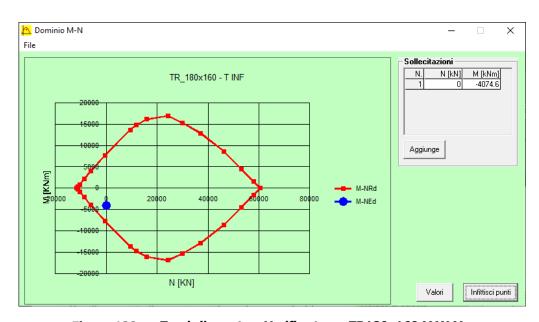
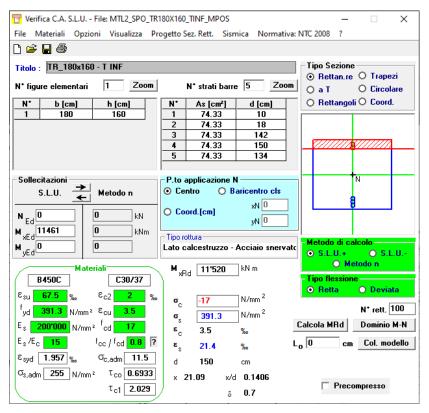



Figura 132. Travi ribassate – Verifica trave TR180x160 MAX M_{NEG}

Relazione di calcolo strutture interne stazione

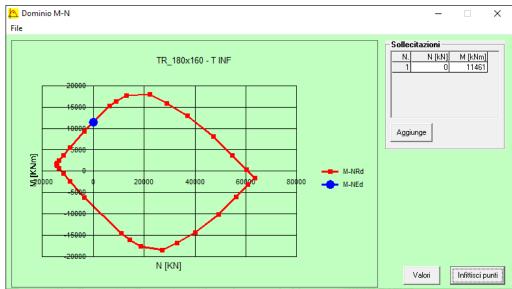


Figura 133. Travi ribassate – Verifica trave TR180x160 MAX M_{POS}

Resistenza a taglio di progetto.

Tabella 29. Verifica taglio - TR180x160

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f _{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γc	1.5		coefficiente di sicurezza
С	100	mm	copriferro
d	1500	mm	altezza utile sezione
k	1.37		
ρ_1	0.55%		rapporto geometrico di armatura longitudinale
V _{min}	0.309		
V_{Rd}	1135.31	kN	
V _{Rd,min}	835.30	kN	
$V_{Rd,c}$	1135.31	kN	resistenza a taglio NO armatura
NB	6		numero bracci
D	20	mm	diametro armatura a taglio
A _b	3.14	cm2	area barra armatura a taglio
A _{st}	18.84	cm2	area complessiva staffe
st	200	mm	passo staffe
γ_{s}	1.15		
α	90	•	
cotg teta	1		
V_{Rsd}	4976.22	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V _{Rcd}	10571.92	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	4976.22	kN	resistenza a taglio CON armatura

La resistenza di progetto a taglio per elementi con armatura dedicata è superiore al taglio agente per tutta la totalità degli elementi.

Tutte le verifiche sono soddisfatte.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

13. VERIFICA PIANO ATRIO

Come evidenziato nel cap.8, le strutture verticali interne a sostegno dei diversi piani sono differenti tra il tempo zero (cantiere) e tempo infinito, sia come tipologia che come posizione. Questo comporta una traslazione dei punti di massimo momento positivo e di massimo momento negativo nel tempo.

13.1 Verifica Stati Limite Ultimi – SLU e SLV

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

13.1.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV nelle due direzioni X e Y , sia a tempo infinito che a tempo zero.

Relazione di calcolo strutture interne stazione

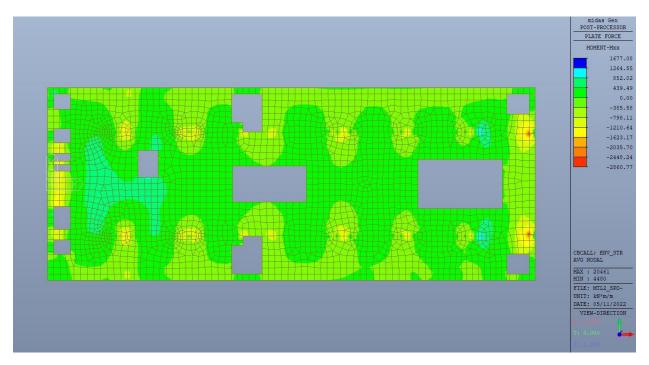


Figura 134. Piano atrio (-1) – Inviluppo momento flettente M_{xx} – Direzione X – Tempo infinito

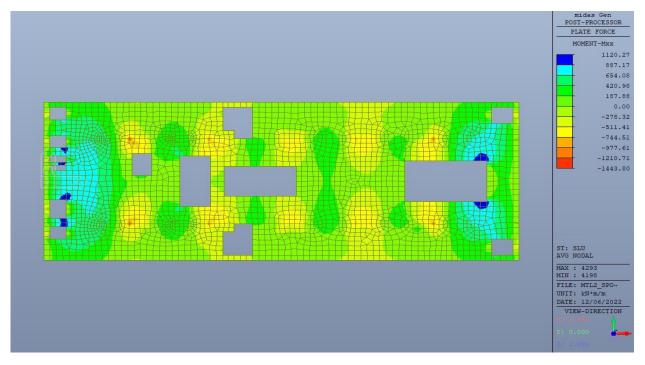


Figura 135. Piano atrio (-1) – Inviluppo momento flettente Mxx – Direzione X – Tempo zero

Relazione di calcolo strutture interne stazione

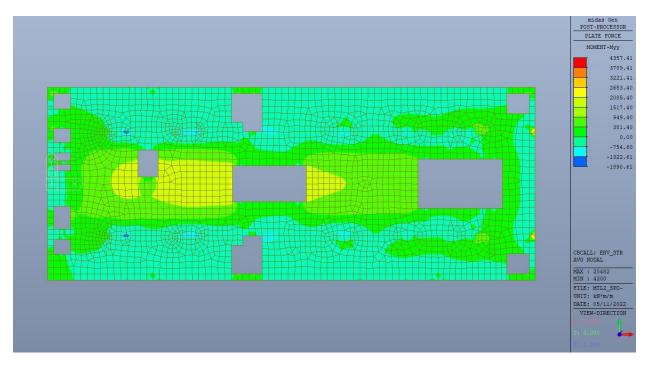


Figura 136. Piano atrio (-1) – Inviluppo momento flettente M_{yy} – Direzione Y – Tempo infinito

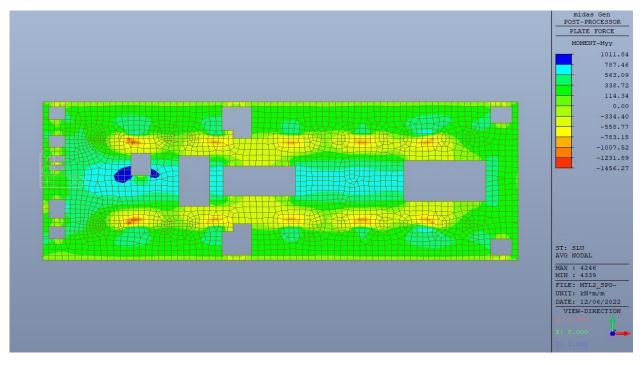


Figura 137. Piano atrio (-1) – Inviluppo momento flettente Myy – Direzione Y – Tempo zero

Relazione di calcolo strutture interne stazione

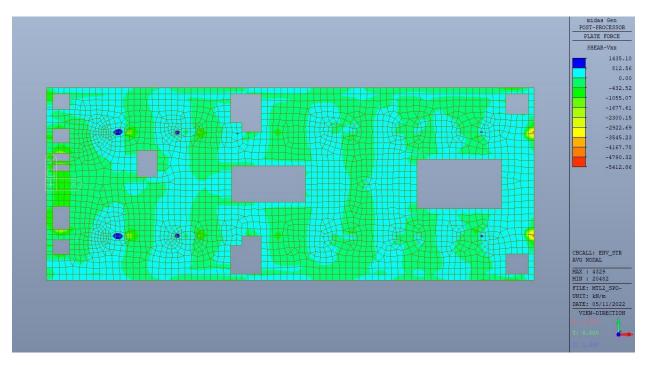


Figura 138. Piano atrio (-1) – Inviluppo taglio V_{xx} – Direzione X – Tempo infinito

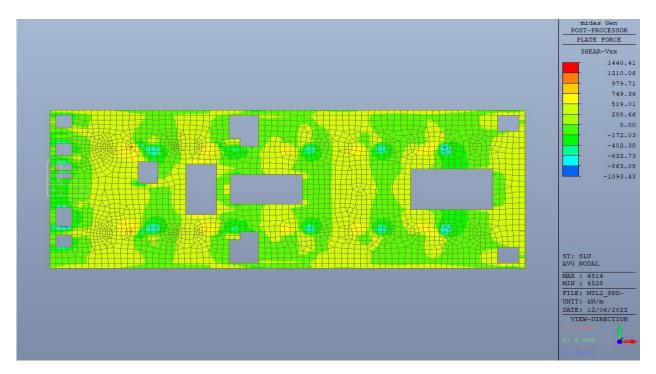


Figura 139. Piano atrio (-1) – Inviluppo taglio V_{xx} – Direzione X – Tempo zero

Relazione di calcolo strutture interne stazione

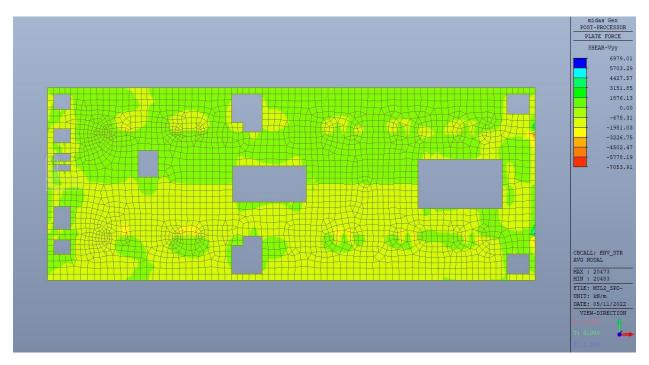


Figura 140. Piano atrio (-1) – Inviluppo taglio V_{yy} – Direzione Y – Tempo infinito

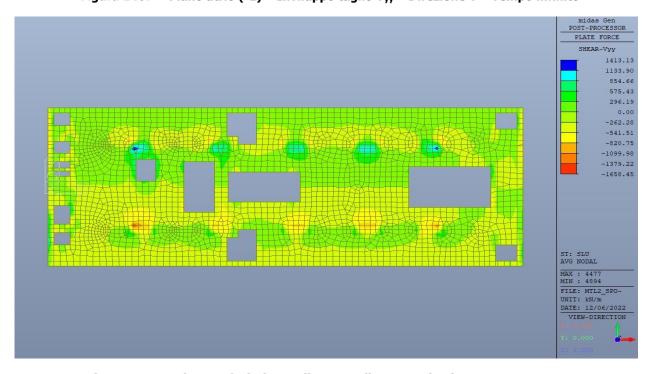


Figura 141. Piano atrio (-1) – Inviluppo taglio Vyy – Direzione Y – Tempo zero

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

13.1.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

Come valore minimo dell'armatura longitudinale si è considerato quanto riportato nel par. 4.1.6 delle NTC2018, ossia il quantitativo minimo riportato per le travi pari a

$$A_{s,min} = 0.26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b_t \cdot h$$

dove:

- f_{ctm} è il valore medio della resistenza a trazione del cls;
- f_{vk} è il valore caratteristico della resistenza a trazione dell'armatura;
- b_t è la larghezza media della zona tesa;
- h è l'altezza della sezione.

Tabella 30. Armatura minima

			D1 - TOP			D1 -BOTTOM			
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Solettone H100	100	100	10000	18.08	16.73	OK	18.08	16.73	OK
			D2 - TOP			D2 -BOTTOM			
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Solettone H100	100	100	10000	22.6	16.73	OK	22.6	16.73	OK

Nelle immagini seguenti sono riportate le armature superiori e inferiori nelle due direzioni D1 e D2.

Le verifiche a tempo zero si ritengono automaticamente soddisfatte in quanto le sollecitazioni ottenute riusltano essere sempre inferiori a quelle a tempo infinito.

Relazione di calcolo strutture interne stazione

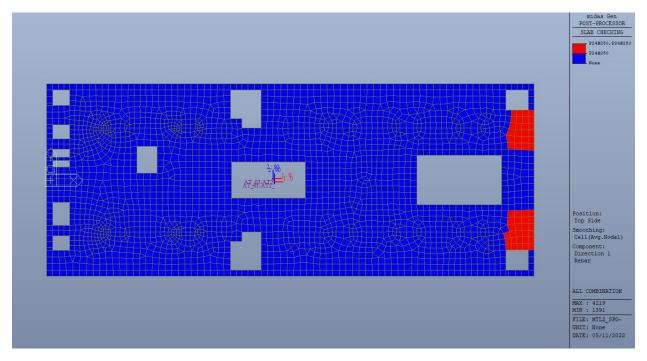


Figura 142. Piano atrio (-1) – Armatura superiore direzione D1

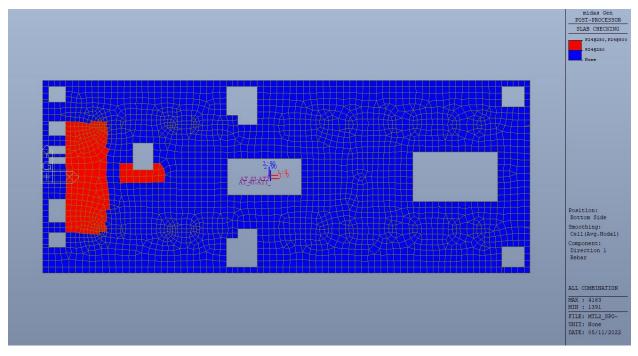


Figura 143. Piano atrio (-1) – Armatura inferiore direzione D1

Relazione di calcolo strutture interne stazione

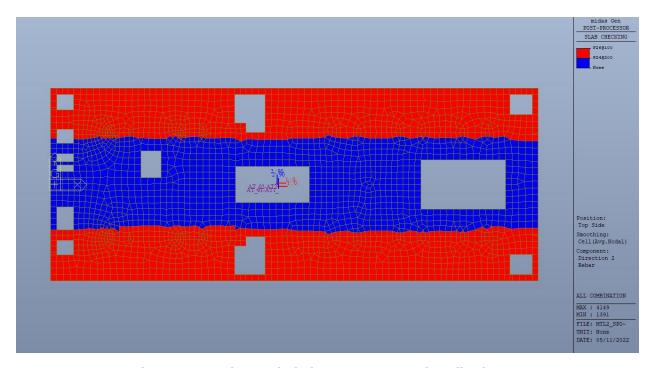


Figura 144. Piano atrio (-1) – Armatura superiore direzione D2

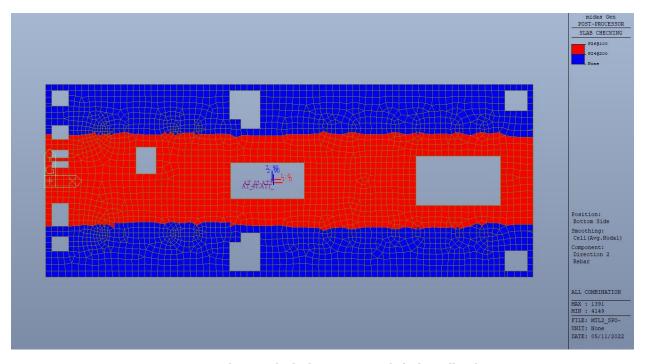


Figura 145. Piano atrio (-1) – Armatura inferiore direzione D2

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Nelle seguenti immagini vengono riportati i massimi tassi di lavoro a flessione e taglio dei singoli elementi strutturali nelle due direzioni D1 e D2 evidenziando, nel caso, quelli con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

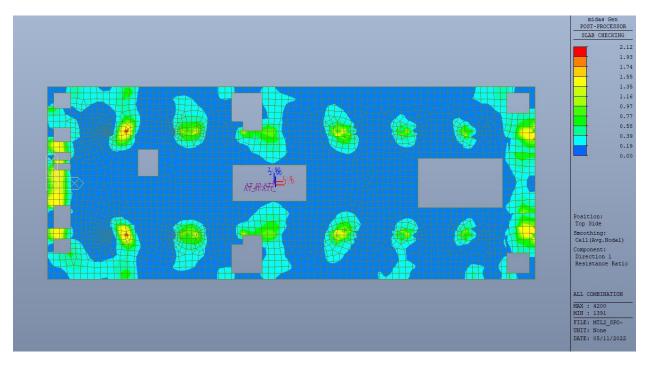


Figura 146. Piano atrio (-1) – Tasso di lavoro faccia superiore – Direzione D1

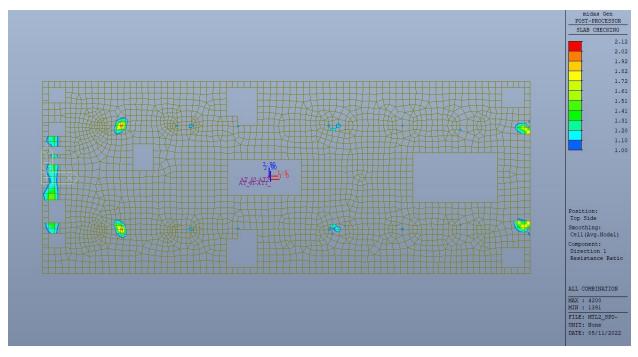


Figura 147. Piano atrio (-1) – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

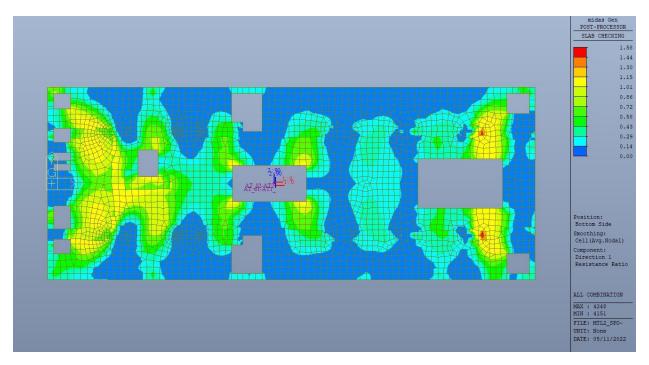


Figura 148. Piano atrio (-1) – Tasso di lavoro faccia inferiore – Direzione D1

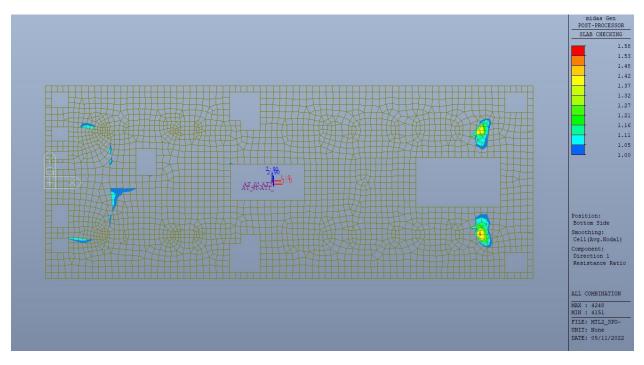


Figura 149. Piano atrio (-1) – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

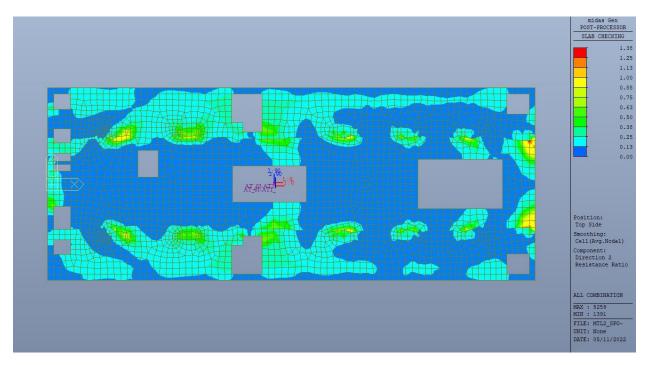


Figura 150. Piano atrio (-1) – Tasso di lavoro faccia superiore – Direzione D2

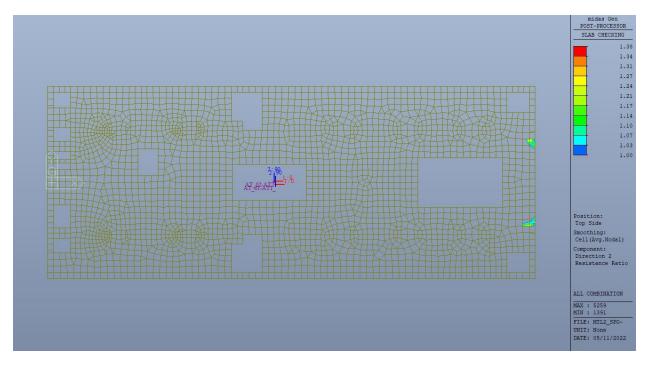


Figura 151. Piano atrio (-1) – Tasso di lavoro faccia superiore – Direzione D2 – Zone > 1

Relazione di calcolo strutture interne stazione

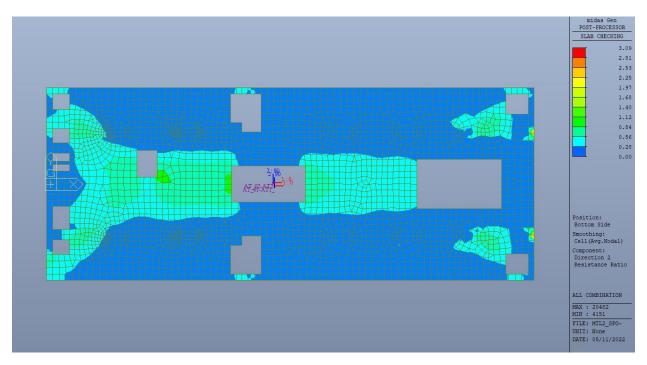


Figura 152. Piano atrio (-1) – Tasso di lavoro faccia inferiore – Direzione D2

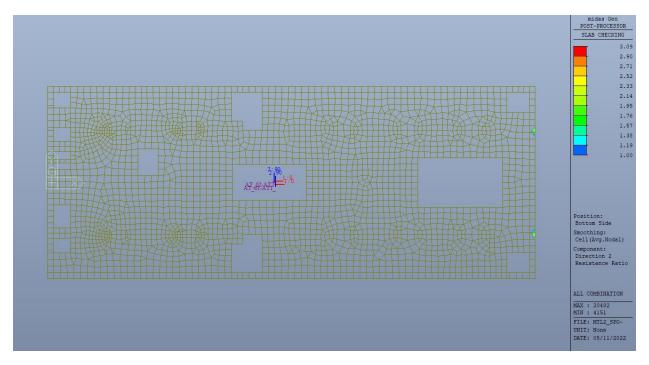


Figura 153. Piano atrio (-1) – Tasso di lavoro faccia inferiore– Direzione D2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Per entrambe le direzioni, le zone con tasso di lavoro superiore all'unita sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta.

Resistenza a taglio di progetto in direzione X e Y – valore per unità di lunghezza.

Tabella 31. Verifica taglio - Piano atrio (-1)

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f _{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γς	1.5		coefficiente di sicurezza
С	100	mm	copriferro
d	900	mm	altezza utile sezione
k	1.47		
ρ_1	0.20%		rapporto geometrico di armatura longitudinale
V _{min}	0.346		
V_{Rd}	291.45	kN	
$V_{Rd,min}$	311.56	kN	
V _{Rd,c}	311.56	kN	resistenza a taglio NO armatura
NB	4		numero bracci
D	20	mm	diametro armatura a taglio
A _b	3.14	cm2	area barra armatura a taglio
A _{st}	12.56	cm2	area complessiva staffe
st	200	mm	passo staffe
γ_s	1.15		
α	90	•	
cotg teta	1		
V _{Rsd}	1990.49	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V _{Rcd}	3523.97	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	1990.49	kN	resistenza a taglio CON armatura

Come riportato dalle immagini successive, le zone in cui la resistenza di progetto a taglio per elementi con armatura dedicata è inferiore al taglio agente sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta per entrambe le direzioni.

Relazione di calcolo strutture interne stazione

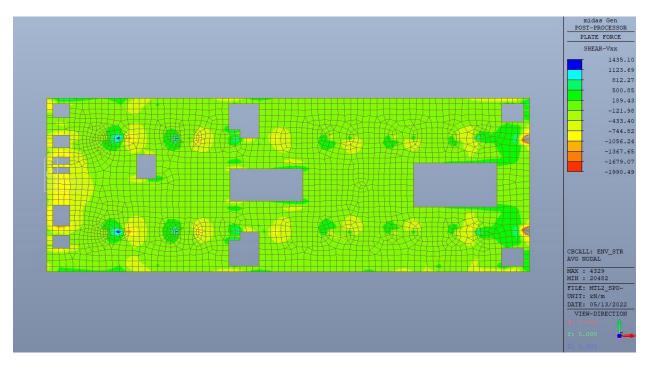


Figura 154. Piano atrio (-1) – Resistenza a taglio Direzione X

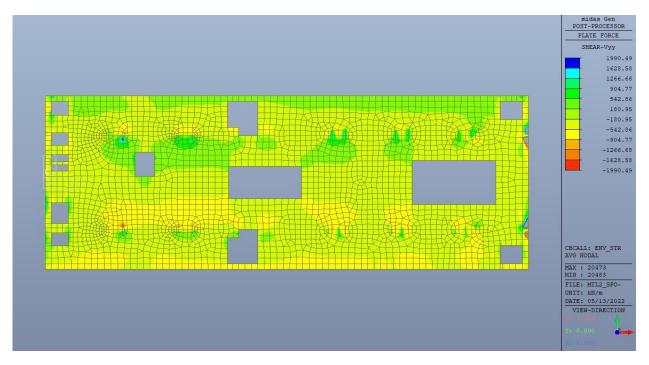


Figura 155. Piano atrio (-1) – Resistenza a taglio Direzione Y

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

13.2 Verifica Stati Limite di Esercizio - SLE

Si deve verificare il rispetto dei seguenti stati limite:

- deformazione;
- fessurazione;
- limitazione delle tensioni di esercizio.

13.2.1 Stato limite di deformazione

I limiti di deformabilità devono essere congruenti con le prestazioni richieste alla struttura anche in relazione alla destinazione d'uso, con riferimento alle esigenze statiche, funzionali ed estetiche.

Si può considerare la deformazione massima a pieno carico pari a 1/250 della luce di calcolo.

L = 28.60 m (tra diaframmi esterni)

 $\delta_{\text{max}} = 114.4 \text{mm}$

Di seguito si riporta la deformata calcolata, a favore di sicurezza, in condizione di creep (effetti a lungo termine dovuti al fluage) con un modulo elastico del cls E_c ridotto di un valore pari a 2.75.

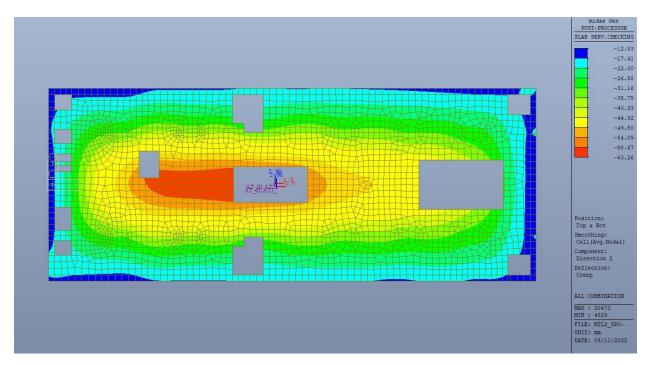


Figura 156. Piano atrio (-1) – Massima deformazione

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Il massimo valore dell'abbassamento relativo in combinazione RARA è pari a 50.43mm, inferiore al valore massimo e compatibile con le prestazioni richieste.

La verifica è soddisfatta.

13.2.2 Stato limite di fessurazione

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, in funzione della classe di esposizione scelta si determina la condizione ambientale:

- ordinarie;
- aggressive;
- molto aggressive.

Stabilito la classe ambientale, in funzione della tipologia di armatura, se sensibile o poco sensibile alla corrosione, si determina il valore limite di apertura delle fessure.

In questo caso:

- classe di esposizione XC3;
- classe ambientale orinaria;
- armatura poco sensibile;
- valore limite apertura delle fessure w₃ (0.4mm) combinazioni SLE Frequente;
- valore limite apertura delle fessure w₂ (0.3mm) combinazioni SLE Quasi Permanente.

Nelle seguenti immagini vengono riportati il ratio tra il valore di apertura delle fessure e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

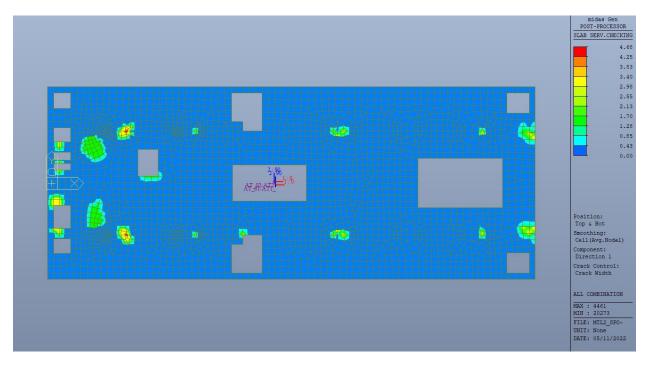


Figura 157. Piano atrio (-1) – Apertura delle fessure - Ratio Direzione 1

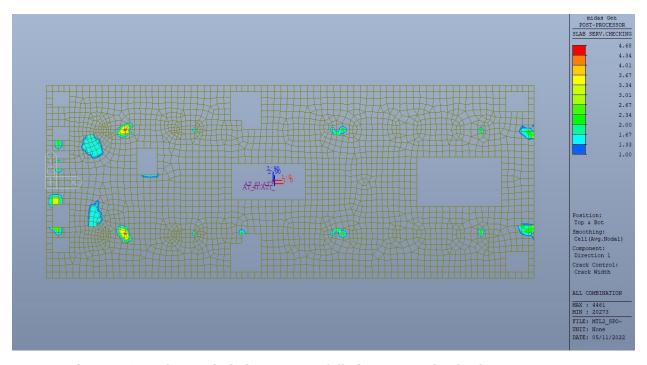


Figura 158. Piano atrio (-1) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

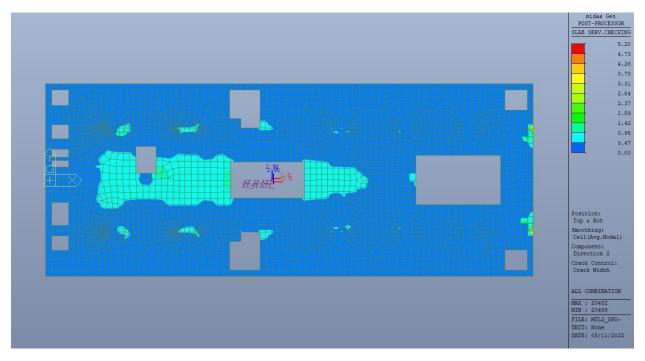


Figura 159. Piano atrio (-1) – Apertura delle fessure - Ratio Direzione 2

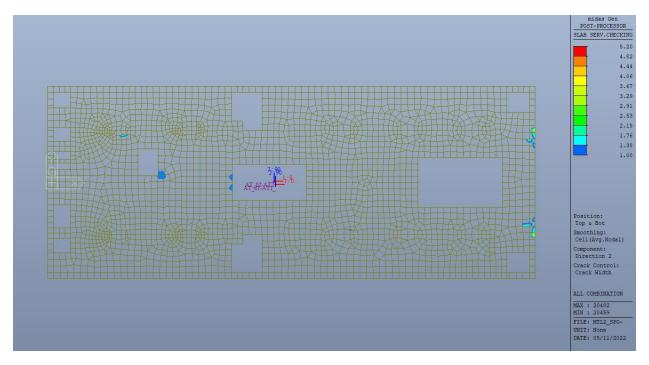


Figura 160. Piano atrio (-1) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni complessive del solettone; si può ritenere la verifica soddisfatta.

13.2.3 Stato limite di limitazione delle tensioni in esercizio

Si deve verificare che nelle varie parti della struttura le massime tensioni, sia nel calcestruzzo sia nelle armature, dovute alle combinazioni caratteristiche e quasi permanente delle azioni siano inferiori ai massimi valori consentiti:

- $\sigma_{c,max} \leq 0.60 f_{ck}$ per la combinazione caratteristica;
- $\sigma_{c,max} \leq 0.45 f_{ck}$ per la combinazione quasi permanente;
- $\sigma_{s,max} \leq 0.80 \, f_{vk}$ per la combinazione caratteristica.

Nelle seguenti immagini vengono riportati il ratio tra la tensione massima (cls e armatura) e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

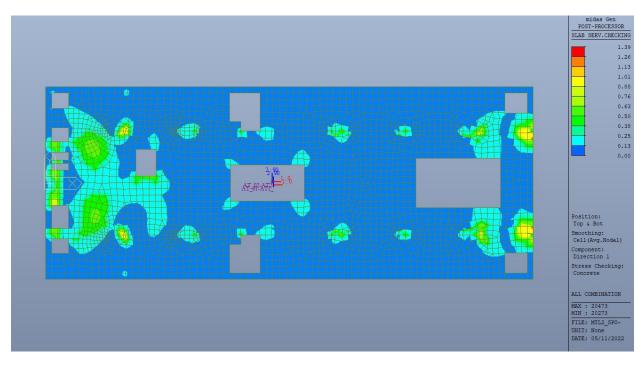


Figura 161. Piano atrio (-1) – Tensioni calcestruzzo - Ratio Direzione 1

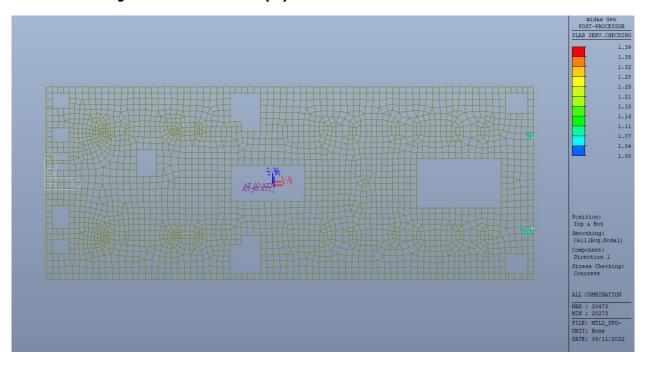


Figura 162. Piano atrio (-1) – Tensioni calcestruzzo - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

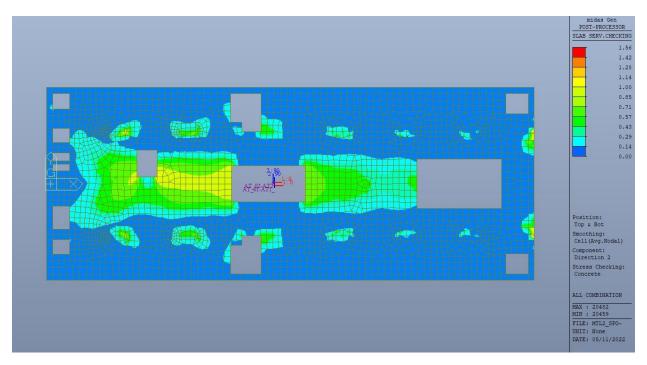


Figura 163. Piano atrio (-1) – Tensioni calcestruzzo - Ratio Direzione 2

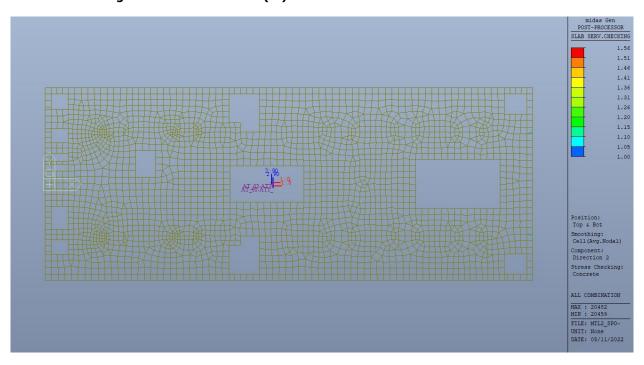


Figura 164. Piano atrio (-1) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1

Relazione di calcolo strutture interne stazione

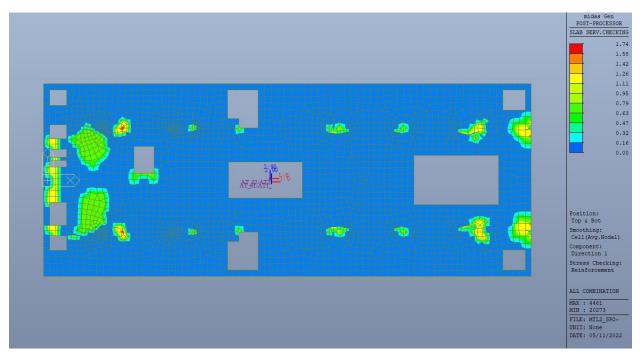


Figura 165. Piano atrio (-1) – Tensioni armatura - Ratio Direzione 1

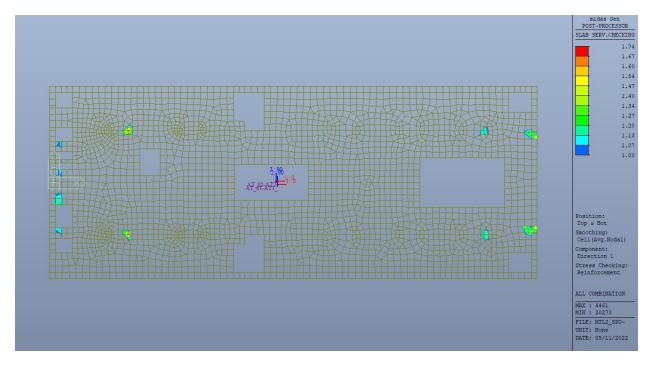


Figura 166. Piano atrio (-1) – Tensioni armatura - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

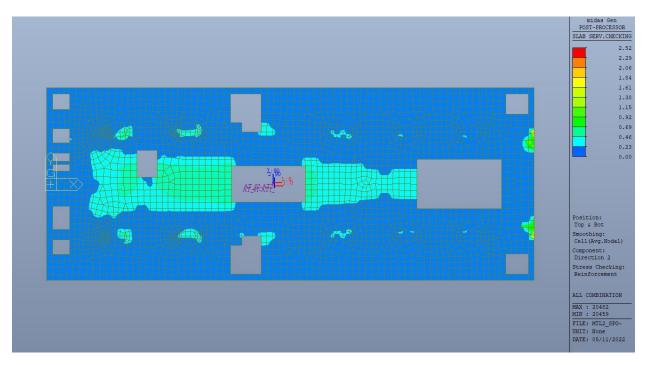


Figura 167. Piano atrio (-1) – Tensioni armatura - Ratio Direzione 2

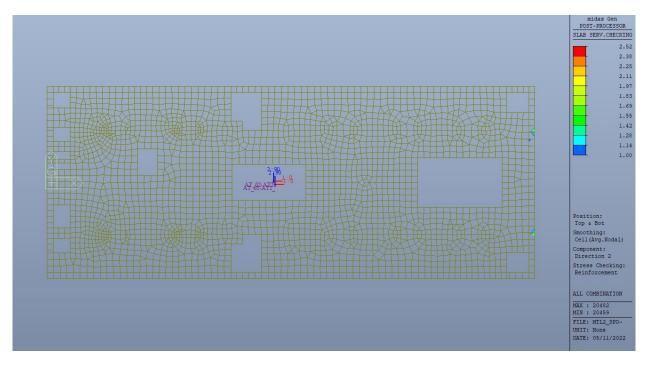


Figura 168. Piano atrio (-1) – Tensioni armatura - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico		
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX		

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni della soletta di piano.

Si può ritenere la verifica soddisfatta.

14. VERIFICA PIANO MEZZANINO (-2)

Come evidenziato nel cap.8, le strutture verticali interne a sostegno dei diversi piani sono differenti tra il tempo zero (cantiere) e tempo infinito, sia come tipologia che come posizione. Questo comporta una traslazione dei punti di massimo momento positivo e di massimo momento negativo nel tempo.

14.1 Verifica Stati Limite Ultimi – SLU e SLV

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

14.1.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV nelle due direzioni X e Y, sia a tempo infinito che a tempo zero.

Relazione di calcolo strutture interne stazione

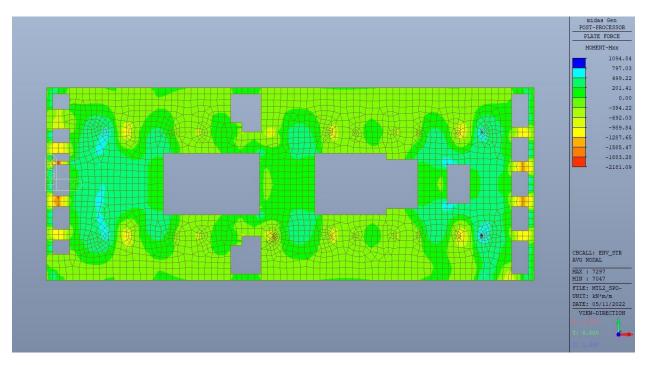


Figura 169. Mezzanino (-2) – Inviluppo momento flettente M_{xx} – Direzione X – Tempo infinito

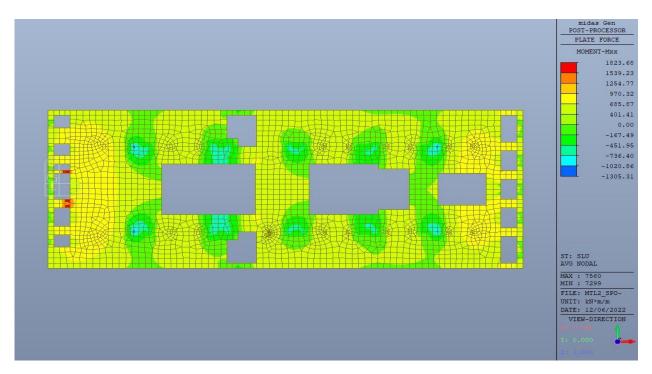


Figura 170. Mezzanino (-2) – Inviluppo momento flettente Mxx – Direzione X – Tempo zero

Relazione di calcolo strutture interne stazione

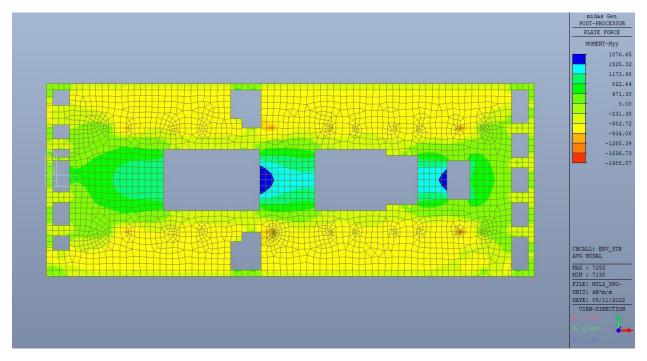


Figura 171. Mezzanino (-2) – Inviluppo momento flettente M_{yy} – Direzione Y – Tempo infinito

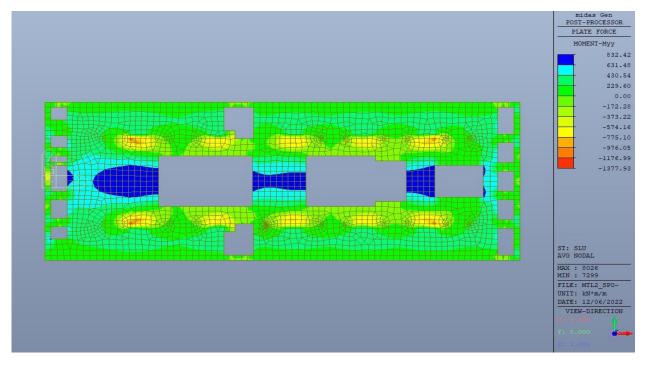


Figura 172. Mezzanino (-2) – Inviluppo momento flettente M_{yy} – Direzione Y – Tempo zero

Relazione di calcolo strutture interne stazione

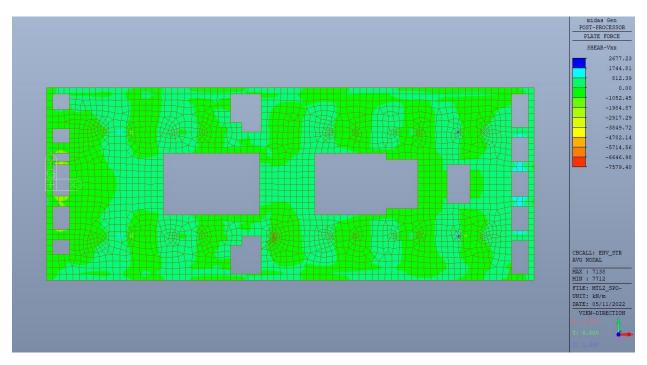


Figura 173. Mezzanino (-2) — Inviluppo taglio V_{xx} — Direzione X — Tempo infinito

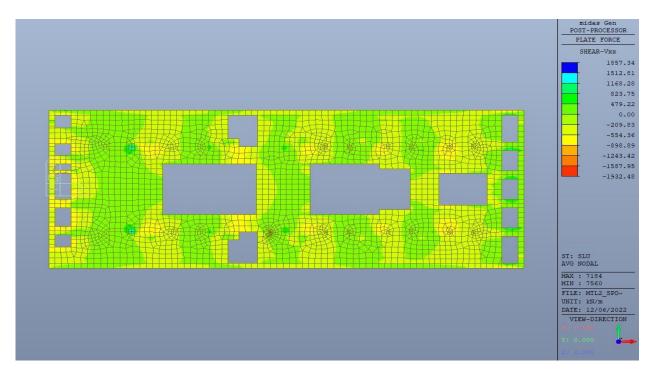


Figura 174. Mezzanino (-2) – Inviluppo taglio Vxx – Direzione X – Tempo infinito – Tempo zero

Relazione di calcolo strutture interne stazione

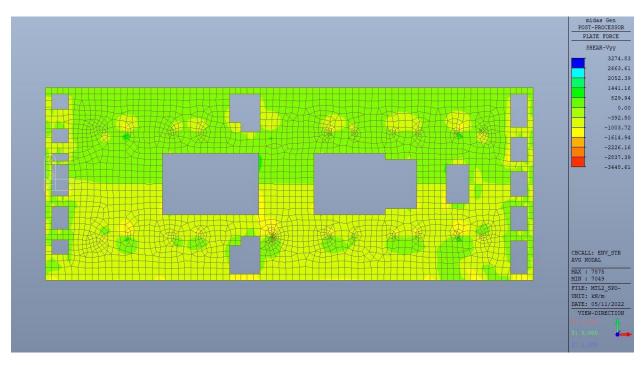


Figura 175. Mezzanino (-2) – Inviluppo taglio V_{yy} – Direzione Y – Tempo infinito

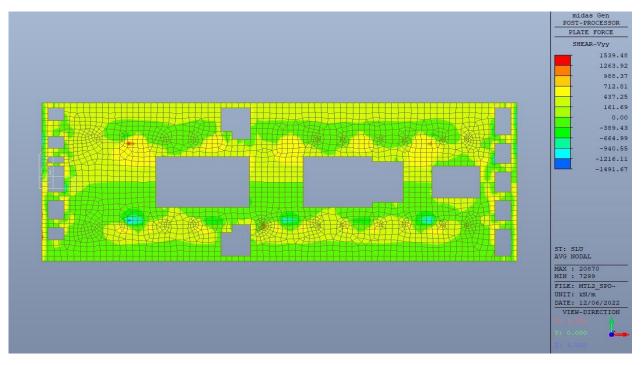


Figura 176. Mezzanino (-2) – Inviluppo taglio V_{yy} – Direzione Y – Tempo zero

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

14.1.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

Come valore minimo dell'armatura longitudinale si è considerato quanto riportato nel par. 4.1.6 delle NTC2018, ossia il quantitativo minimo riportato per le travi pari a

$$A_{s,min} = 0.26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b_t \cdot h$$

dove:

- f_{ctm} è il valore medio della resistenza a trazione del cls;
- f_{vk} è il valore caratteristico della resistenza a trazione dell'armatura;
- b_t è la larghezza media della zona tesa;
- h è l'altezza della sezione.

Tabella 32. Armatura minima

				D1 - TOP			D1 -BOTTOM		
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Solettone H100	100	100	10000	18.08	16.73	OK	18.08	16.73	OK
			D2 - TOP			D2 -BOTTOM			
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Solettone H100	100	100	10000	22.6	16.73	OK	22.6	16.73	ОК

Nelle immagini seguenti sono riportate le armature superiori e inferiori nelle due direzioni D1 e D2.

Le verifiche a tempo zero si ritengono automaticamente soddisfatte in quanto le sollecitazioni ottenute riusltano essere sempre inferiori a quelle a tempo infinito.

Relazione di calcolo strutture interne stazione

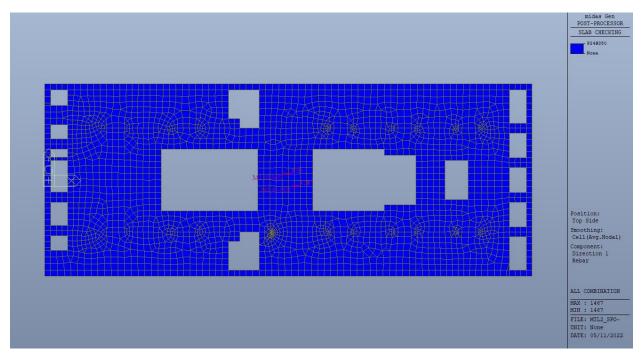


Figura 177. Piano mezzanino (-2) – Armatura superiore direzione D1

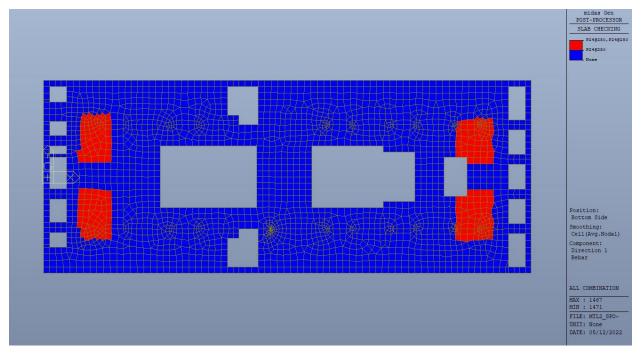


Figura 178. Piano mezzanino (-2) – Armatura inferiore direzione D1

Relazione di calcolo strutture interne stazione

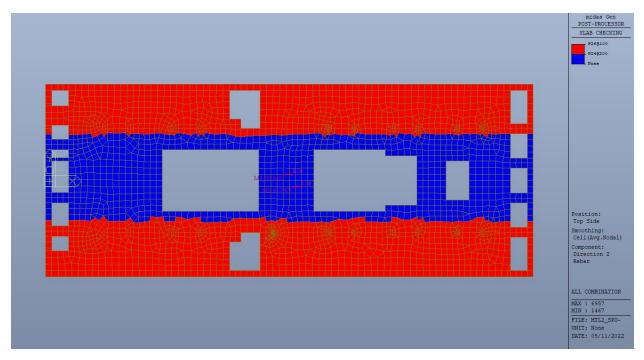


Figura 179. Piano mezzanino (-2) – Armatura superiore direzione D2

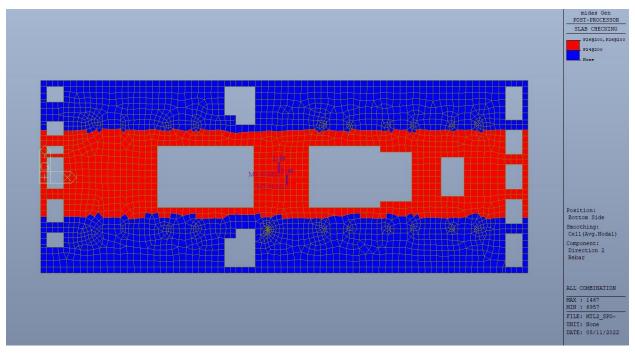


Figura 180. Piano mezzanino (-2) – Armatura inferiore direzione D2

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Nelle seguenti immagini vengono riportati i massimi tassi di lavoro a flessione e taglio dei singoli elementi strutturali nelle due direzioni D1 e D2 evidenziando, nel caso, quelli con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

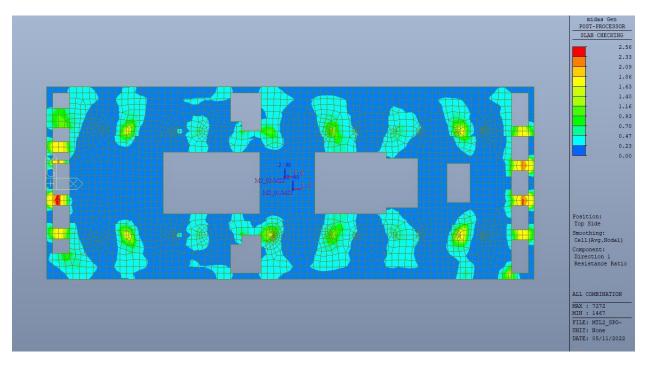


Figura 181. Piano mezzanino (-2) – Tasso di lavoro faccia superiore – Direzione D1

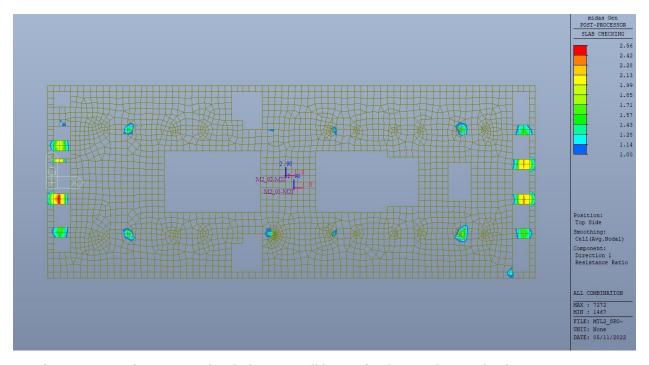


Figura 182. Piano mezzanino (-2) – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

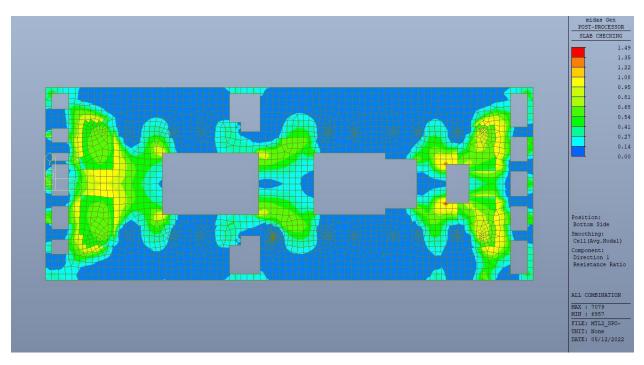


Figura 183. Piano mezzanino (-2) – Tasso di lavoro faccia inferiore – Direzione D1

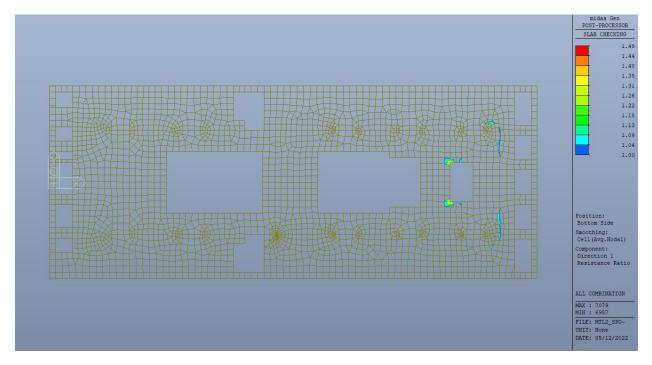


Figura 184. Piano mezzanino (-2) – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

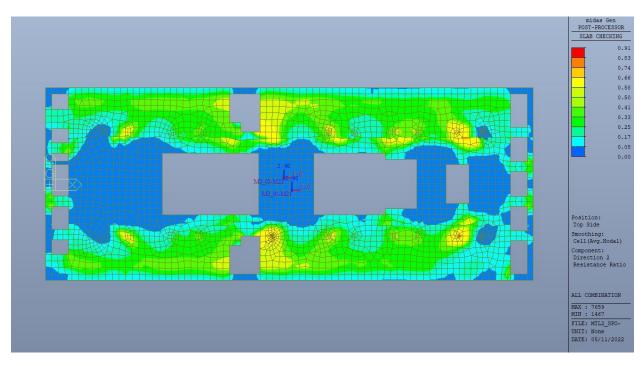


Figura 185. Piano mezzanino (-2) – Tasso di lavoro faccia superiore – Direzione D2

Relazione di calcolo strutture interne stazione

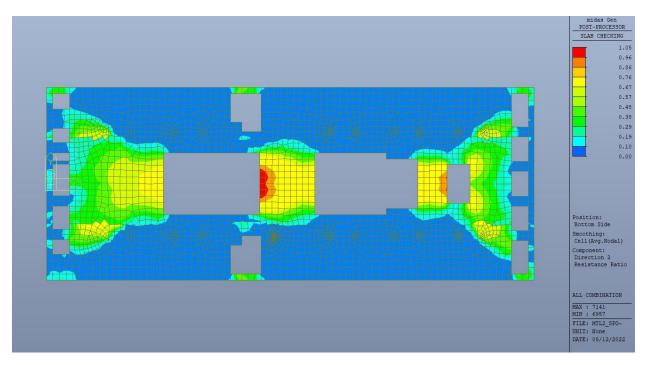


Figura 186. Piano mezzanino (-2) – Tasso di lavoro faccia inferiore – Direzione D2

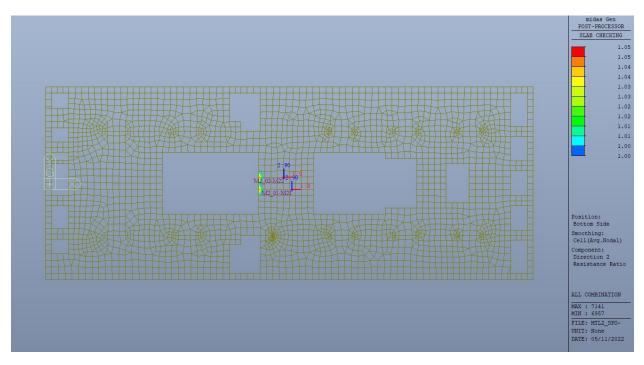


Figura 187. Piano mezzanino (-2) – Tasso di lavoro faccia inferiore– Direzione D2 – Zone > 1

Per entrambe le direzioni, le zone con tasso di lavoro superiore all'unita sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta.

Resistenza a taglio di progetto in direzione X e Y – valore per unità di lunghezza.

Tabella 33. Verifica taglio – Piano mezzanino (-2)

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f _{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γς	1.5		coefficiente di sicurezza
С	100	mm	copriferro
d	900	mm	altezza utile sezione
k	1.47		
ρ_1	0.20%		rapporto geometrico di armatura longitudinale
V _{min}	0.346		
V_{Rd}	291.45	kN	
$V_{Rd,min}$	311.56	kN	
$V_{Rd,c}$	311.56	kN	resistenza a taglio NO armatura
NB	4		numero bracci
D	20	mm	diametro armatura a taglio
A _b	3.14	cm2	area barra armatura a taglio
A _{st}	12.56	cm2	area complessiva staffe
st	200	mm	passo staffe
γ_{s}	1.15		
α	90	0	
cotg teta	1		
V_{Rsd}	1990.49	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V _{Rcd}	3523.97	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	1990.49	kN	resistenza a taglio CON armatura

Come riportato dalle immagini successive, le zone in cui la resistenza di progetto a taglio per elementi con armatura dedicata è inferiore al taglio agente sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta per entrambe le direzioni.

Relazione di calcolo strutture interne stazione

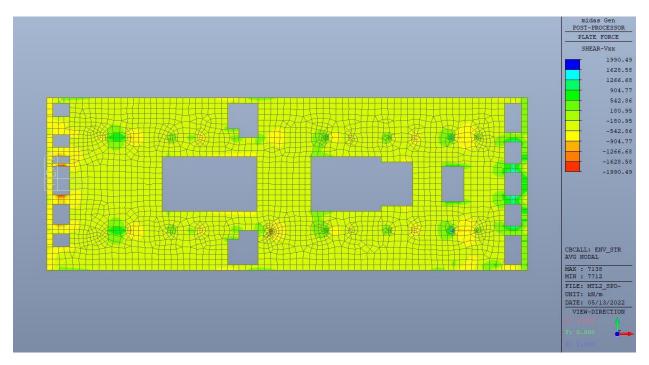


Figura 188. Piano mezzanino (-2) – Resistenza a taglio Direzione X

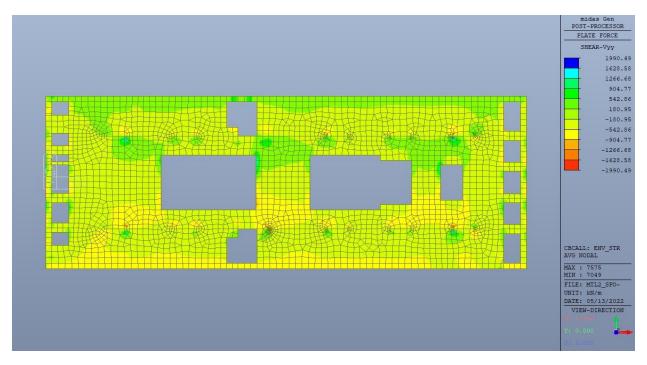


Figura 189. Piano mezzanino (-2) – Resistenza a taglio Direzione Y

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

14.2 Verifica Stati Limite di Esercizio - SLE

Si deve verificare il rispetto dei seguenti stati limite:

- · deformazione;
- fessurazione;
- limitazione delle tensioni di esercizio.

14.2.1 Stato limite di deformazione

I limiti di deformabilità devono essere congruenti con le prestazioni richieste alla struttura anche in relazione alla destinazione d'uso, con riferimento alle esigenze statiche, funzionali ed estetiche.

Si può considerare la deformazione massima a pieno carico pari a 1/250 della luce di calcolo.

L = 28.60 m (tra diaframmi esterni)

 $\delta_{\text{max}} = 114.4 \text{mm}$

Di seguito si riporta la deformata calcolata, a favore di sicurezza, in condizione di creep (effetti a lungo termine dovuti al fluage) con un modulo elastico del cls E_c ridotto di un valore pari a 2.75.

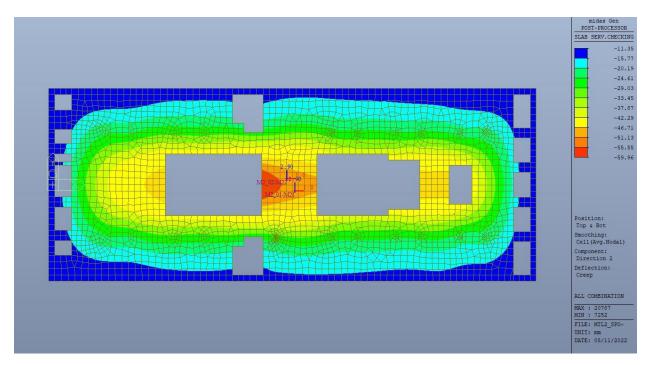


Figura 190. Piano mezzanino (-2) – Massima deformazione

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

Il massimo valore dell'abbassamento relativo in combinazione RARA è pari a 48.61mm, inferiore al valore massimo e compatibile con le prestazioni richieste.

La verifica è soddisfatta.

14.2.2 Stato limite di fessurazione

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, in funzione della classe di esposizione scelta si determina la condizione ambientale:

- ordinarie;
- aggressive;
- molto aggressive.

Stabilito la classe ambientale, in funzione della tipologia di armatura, se sensibile o poco sensibile alla corrosione, si determina il valore limite di apertura delle fessure.

In questo caso:

- classe di esposizione XC3;
- classe ambientale orinaria;
- armatura poco sensibile;
- valore limite apertura delle fessure w₃ (0.4mm) combinazioni SLE Frequente;
- valore limite apertura delle fessure w₂ (0.3mm) combinazioni SLE Quasi Permanente.

Nelle seguenti immagini vengono riportati il ratio tra il valore di apertura delle fessure e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

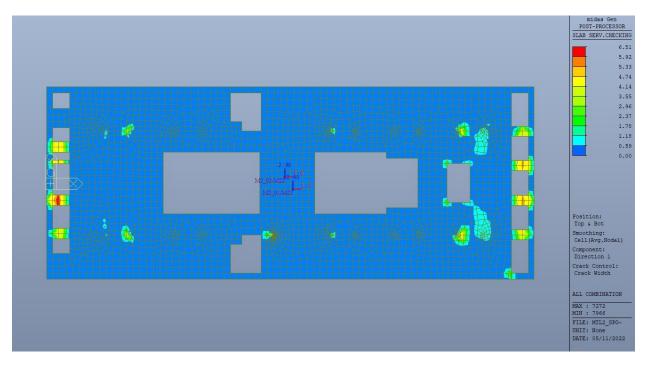


Figura 191. Piano mezzanino (-2) – Apertura delle fessure - Ratio Direzione 1

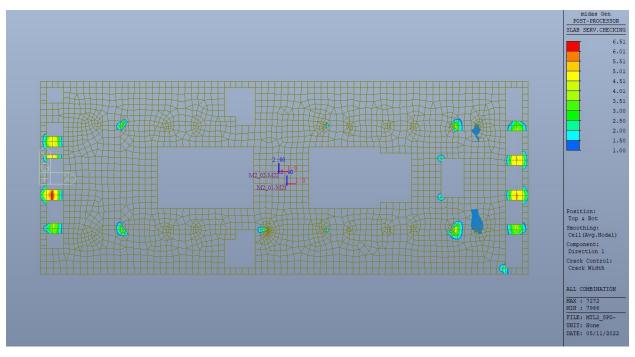


Figura 192. Piano mezzanino (-2) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

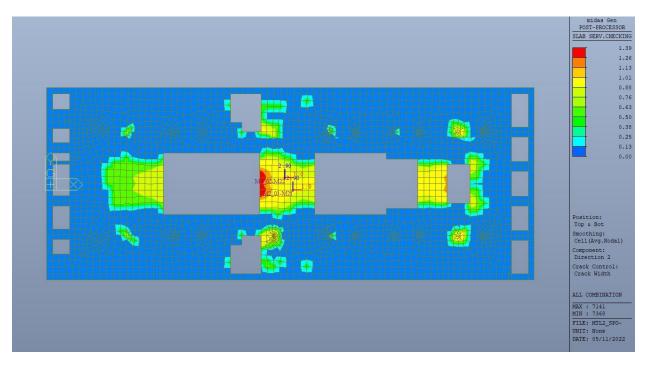


Figura 193. Piano mezzanino (-2) – Apertura delle fessure - Ratio Direzione 2

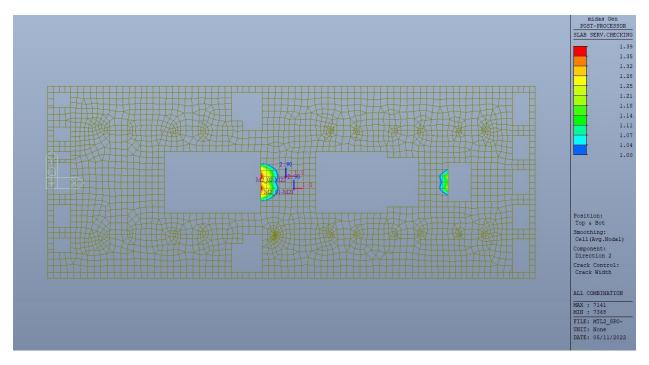


Figura 194. Piano mezzanino (-2) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni complessive del solettone; si può ritenere la verifica soddisfatta.

14.2.3 Stato limite di limitazione delle tensioni in esercizio

Si deve verificare che nelle varie parti della struttura le massime tensioni, sia nel calcestruzzo sia nelle armature, dovute alle combinazioni caratteristiche e quasi permanente delle azioni siano inferiori ai massimi valori consentiti:

- $\sigma_{c,max} \leq 0.60 f_{ck}$ per la combinazione caratteristica;
- $\sigma_{c,max} \leq 0.45 f_{ck}$ per la combinazione quasi permanente;
- σ_{s,max} ≤ 0.80 f_{vk} per la combinazione caratteristica.

Nelle seguenti immagini vengono riportati il ratio tra la tensione massima (cls e armatura) e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

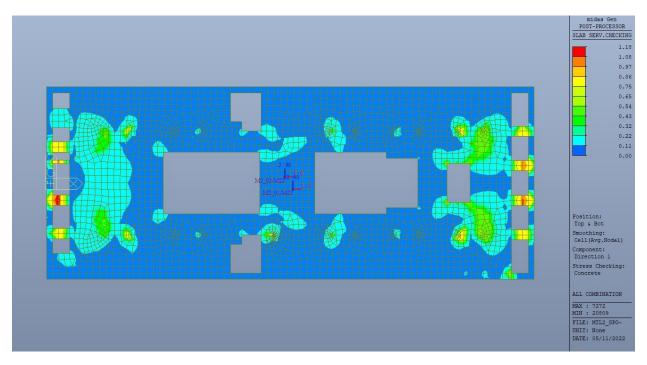


Figura 195. Piano mezzanino (-2) – Tensioni calcestruzzo - Ratio Direzione 1

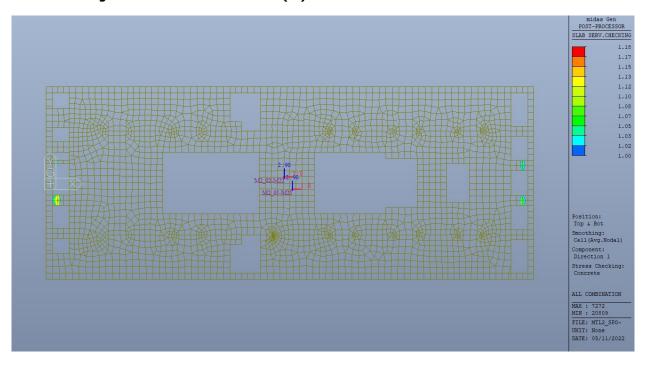


Figura 196. Piano mezzanino (-2) – Tensioni calcestruzzo - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

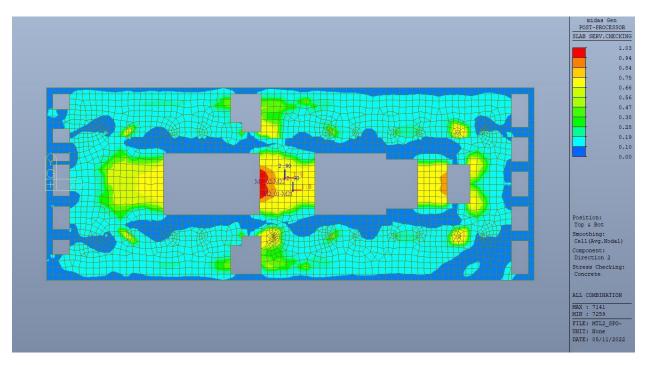


Figura 197. Piano mezzanino (-2) – Tensioni calcestruzzo - Ratio Direzione 2

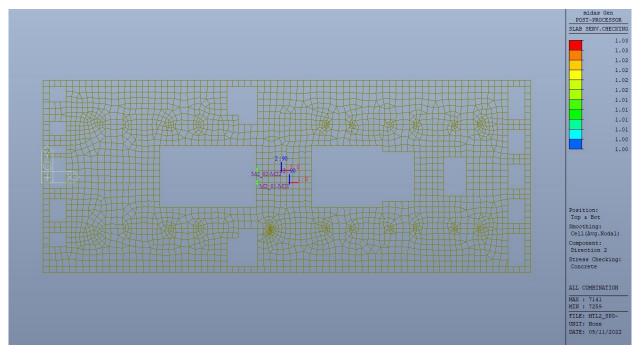


Figura 198. Piano mezzanino (-2) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1

Relazione di calcolo strutture interne stazione

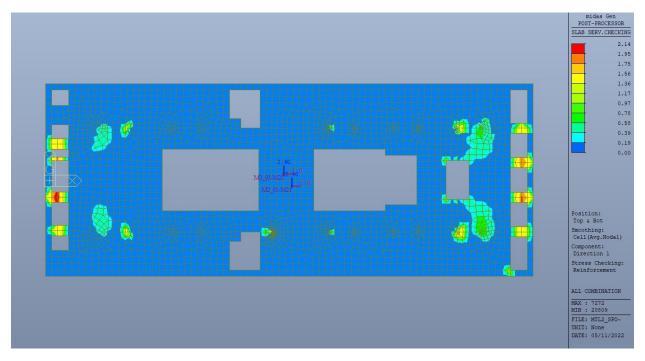


Figura 199. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 1

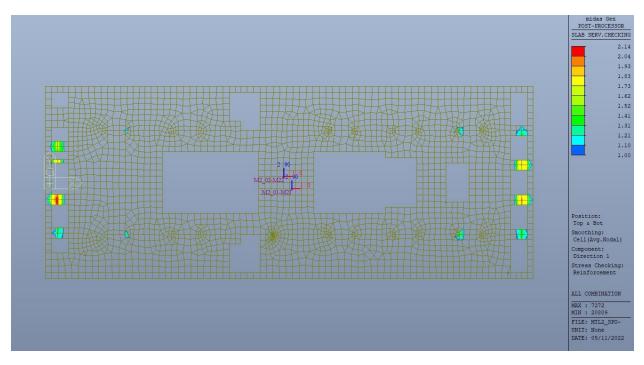


Figura 200. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

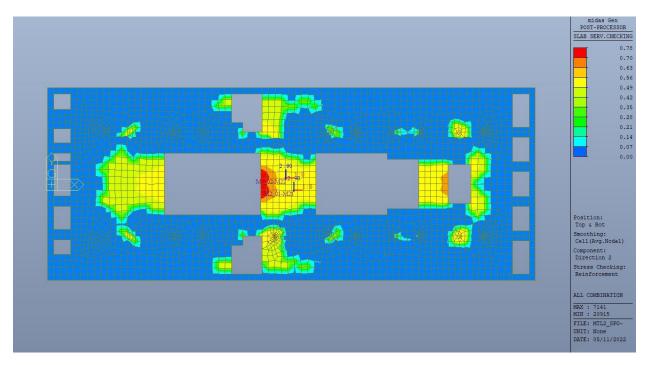


Figura 201. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 2

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni della soletta di piano.

Si può ritenere la verifica soddisfatta.

15. VERIFICA PIANO MEZZANINO (-3)

15.1 Verifica Stati Limite Ultimi – SLU e SLV

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

15.1.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV nelle due direzioni X e Y.

Relazione di calcolo strutture interne stazione

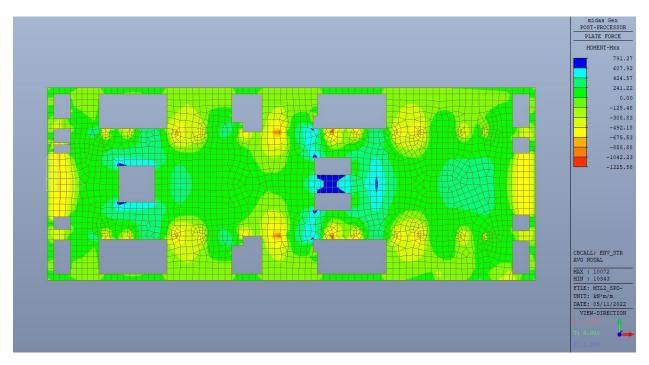


Figura 202. Piano mezzanino (-3) – Inviluppo momento flettente M_{xx} – Direzione X

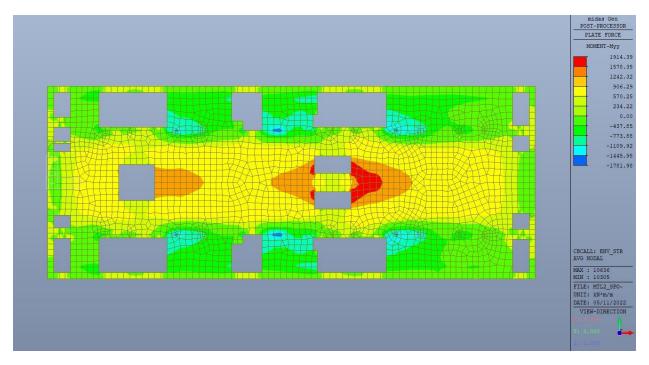


Figura 203. Piano mezzanino (-3) – Inviluppo momento flettente M_{yy} – Direzione Y

Relazione di calcolo strutture interne stazione

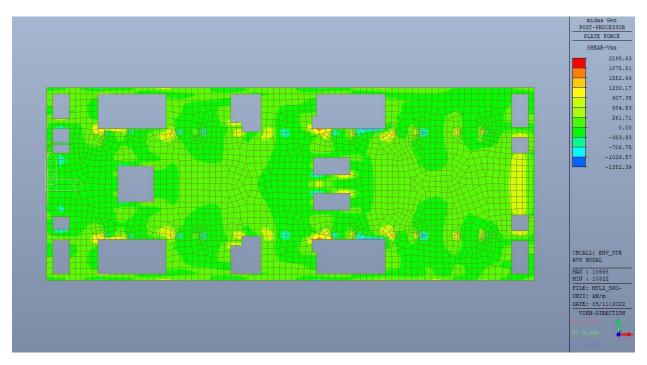


Figura 204. Piano mezzanino (-3) – Inviluppo taglio V_{xx} – Direzione X

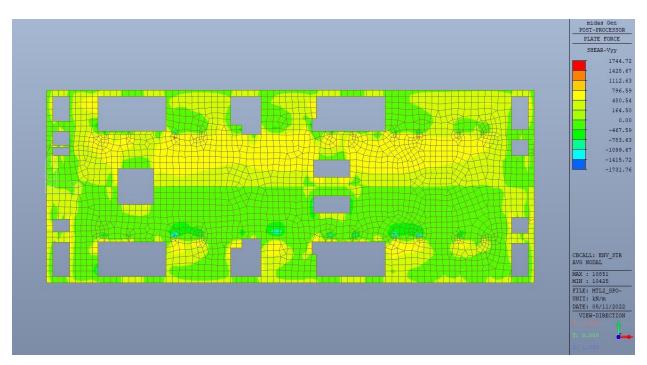


Figura 205. Piano mezzanino (-3) — Inviluppo taglio V_{yy} — Direzione Y

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

15.1.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

Come valore minimo dell'armatura longitudinale si è considerato quanto riportato nel par. 4.1.6 delle NTC2018, ossia il quantitativo minimo riportato per le travi pari a

$$A_{s,min} = 0.26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b_t \cdot h$$

dove:

- f_{ctm} è il valore medio della resistenza a trazione del cls;
- f_{yk} è il valore caratteristico della resistenza a trazione dell'armatura;
- b_t è la larghezza media della zona tesa;
- h è l'altezza della sezione.

Tabella 34. Armatura minima

					D1 - TOP			D1 -BOTTOM	
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Solettone H100	100	100	10000	18.08	16.73	OK	18.08	16.73	OK
			D2 - TOP			D2 -BOTTOM			
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Solettone H100	100	100	10000	22.6	16.73	OK	22.6	16.73	ОК

Nelle immagini seguenti sono riportate le armature superiori e inferiori nelle due direzioni D1 e D2.

Relazione di calcolo strutture interne stazione

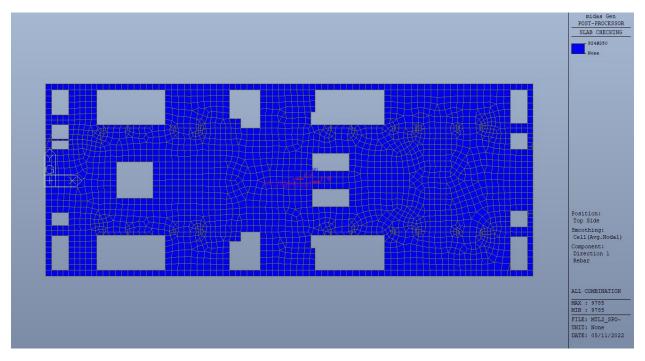


Figura 206. Piano mezzanino (-3) – Armatura superiore direzione D1

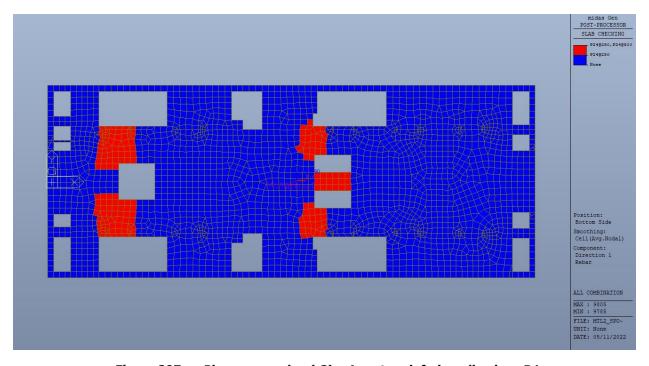


Figura 207. Piano mezzanino (-3) – Armatura inferiore direzione D1

Relazione di calcolo strutture interne stazione

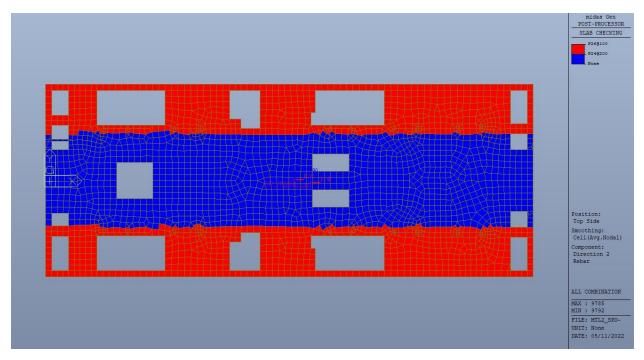


Figura 208. Piano mezzanino (-3) – Armatura superiore direzione D2

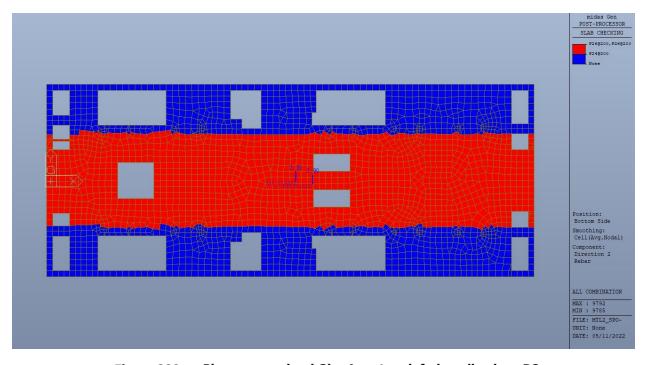


Figura 209. Piano mezzanino (-3) – Armatura inferiore direzione D2

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Nelle seguenti immagini vengono riportati i massimi tassi di lavoro a flessione e taglio dei singoli elementi strutturali nelle due direzioni D1 e D2 evidenziando, nel caso, quelli con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

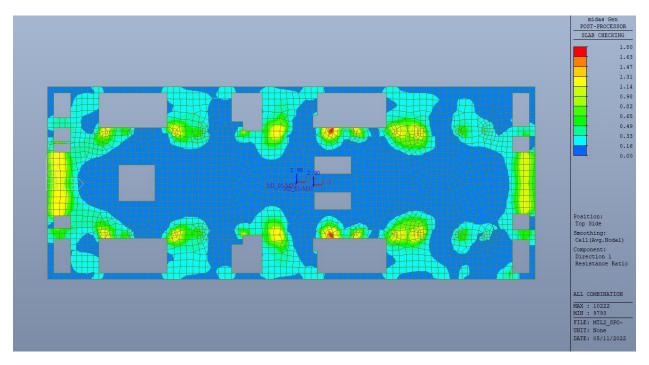


Figura 210. Piano mezzanino (-3) – Tasso di lavoro faccia superiore – Direzione D1

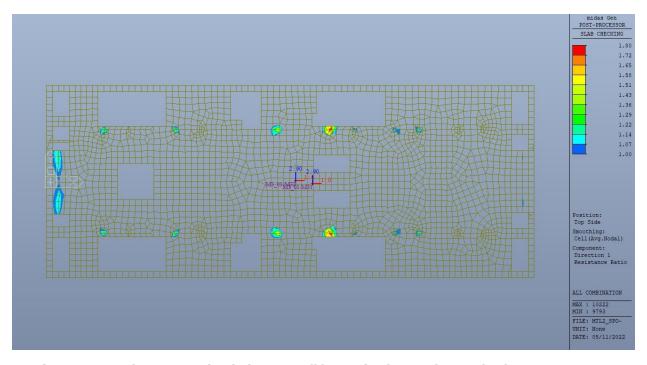


Figura 211. Piano mezzanino (-3) – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

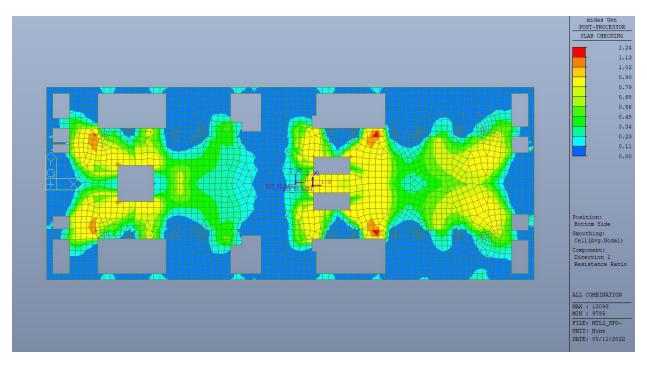


Figura 212. Piano mezzanino (-3) – Tasso di lavoro faccia inferiore – Direzione D1

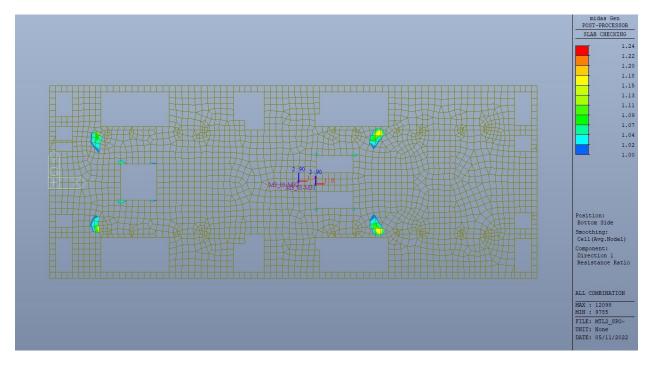


Figura 213. Piano mezzanino (-3) – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

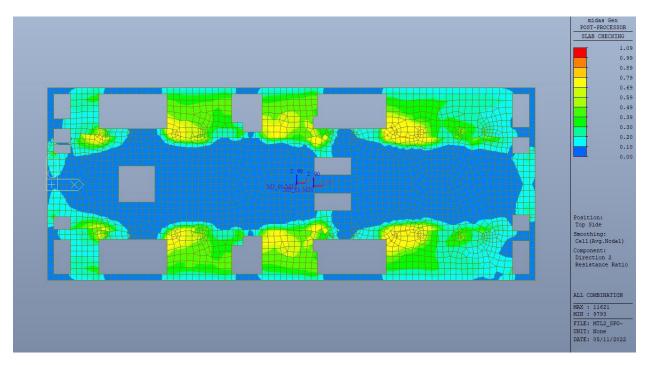


Figura 214. Piano mezzanino (-2) – Tasso di lavoro faccia superiore – Direzione D2

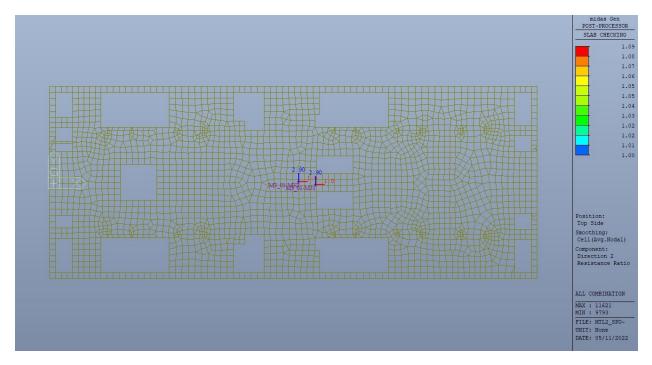


Figura 215. Piano mezzanino (-3) – Tasso di lavoro faccia superiore – Direzione D2 – Zone > 1

Relazione di calcolo strutture interne stazione

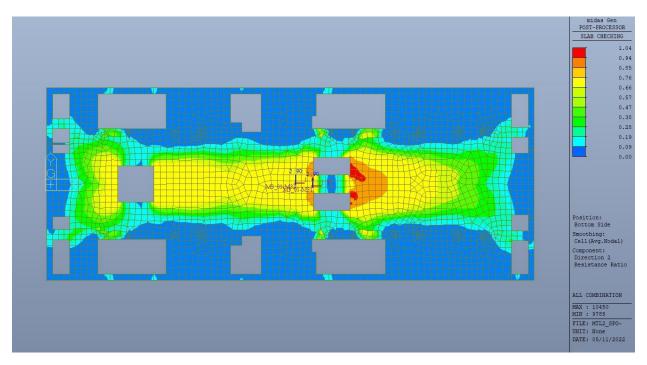


Figura 216. Piano mezzanino (-3) – Tasso di lavoro faccia inferiore – Direzione D2

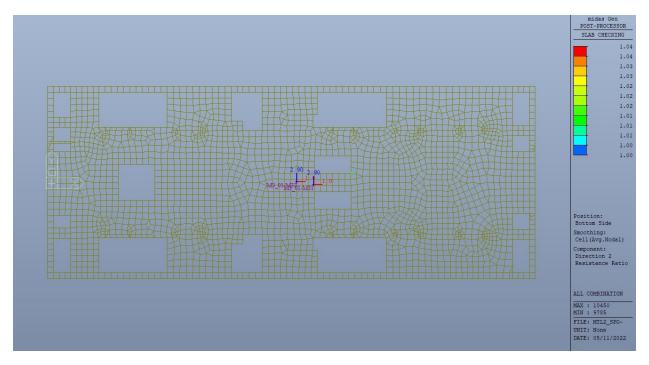


Figura 217. Piano mezzanino (-3) – Tasso di lavoro faccia inferiore– Direzione D2 – Zone > 1

Per entrambe le direzioni, le zone con tasso di lavoro superiore all'unita sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta.

Resistenza a taglio di progetto in direzione X e Y – valore per unità di lunghezza.

Tabella 35. Verifica taglio – Piano mezzanino (-3)

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f_{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γ_{c}	1.5		coefficiente di sicurezza
С	100	mm	copriferro
d	900	mm	altezza utile sezione
k	1.47		
ρ_1	0.20%		rapporto geometrico di armatura longitudinale
V _{min}	0.346		
V_{Rd}	291.45	kN	
$V_{Rd,min}$	311.56	kN	
V _{Rd,c}	311.56	kN	resistenza a taglio NO armatura
NB	4		numero bracci
D	20	mm	diametro armatura a taglio
A _b	3.14	cm2	area barra armatura a taglio
A _{st}	12.56	cm2	area complessiva staffe
st	200	mm	passo staffe
γ_{s}	1.15		
α	90	•	
cotg teta	1		
V_{Rsd}	1990.49	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V_{Rcd}	3523.97	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	1990.49	kN	resistenza a taglio CON armatura

Come riportato dalle immagini successive, le zone in cui la resistenza di progetto a taglio per elementi con armatura dedicata è inferiore al taglio agente V_{xx} sono localizzate e in numero ridotto rispetto alla totalità degli elementi; per il taglio V_{yy} il taglio resistente è sempre maggiore del taglio agente.

Si può considerare la verifica soddisfatta per entrambe le direzioni.

Relazione di calcolo strutture interne stazione

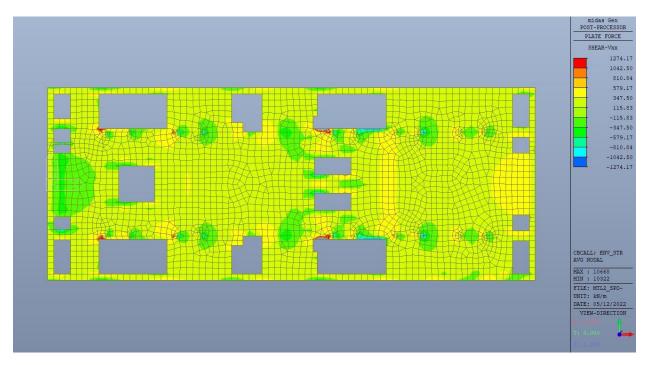


Figura 218. Piano mezzanino (-3) – Resistenza a taglio Direzione X

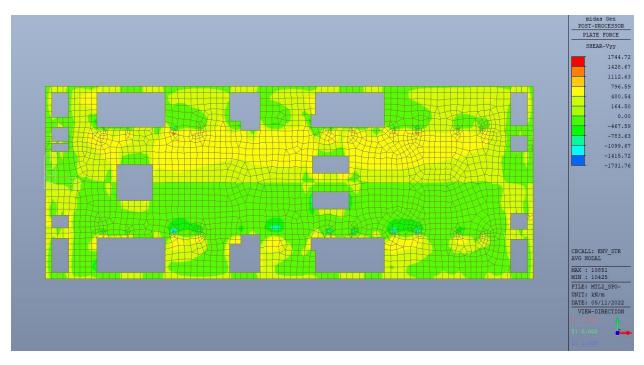


Figura 219. Piano mezzanino (-3) – Resistenza a taglio Direzione Y

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

15.2 Verifica Stati Limite di Esercizio - SLE

Si deve verificare il rispetto dei seguenti stati limite:

- · deformazione;
- fessurazione;
- limitazione delle tensioni di esercizio.

15.2.1 Stato limite di deformazione

I limiti di deformabilità devono essere congruenti con le prestazioni richieste alla struttura anche in relazione alla destinazione d'uso, con riferimento alle esigenze statiche, funzionali ed estetiche.

Si può considerare la deformazione massima a pieno carico pari a 1/250 della luce di calcolo.

L = 28.60 m (tra diaframmi esterni)

 $\delta_{\text{max}} = 114.4 \text{mm}$

Di seguito si riporta la deformata calcolata, a favore di sicurezza, in condizione di creep (effetti a lungo termine dovuti al fluage) con un modulo elastico del cls E_c ridotto di un valore pari a 2.75.

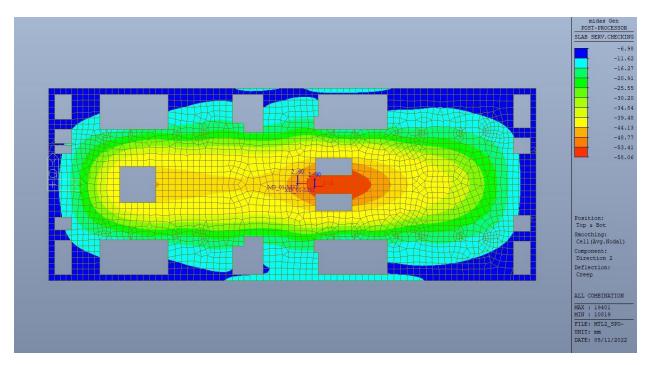


Figura 220. Piano mezzanino (-3) – Massima deformazione

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

Il massimo valore dell'abbassamento relativo in combinazione RARA è pari a 51.08mm, inferiore al valore massimo e compatibile con le prestazioni richieste.

La verifica è soddisfatta.

15.2.2 Stato limite di fessurazione

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, in funzione della classe di esposizione scelta si determina la condizione ambientale:

- ordinarie;
- aggressive;
- molto aggressive.

Stabilito la classe ambientale, in funzione della tipologia di armatura, se sensibile o poco sensibile alla corrosione, si determina il valore limite di apertura delle fessure.

In questo caso:

- classe di esposizione XC3;
- classe ambientale orinaria;
- armatura poco sensibile;
- valore limite apertura delle fessure w₃ (0.4mm) combinazioni SLE Frequente;
- valore limite apertura delle fessure w₂ (0.3mm) combinazioni SLE Quasi Permanente.

Nelle seguenti immagini vengono riportati il ratio tra il valore di apertura delle fessure e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

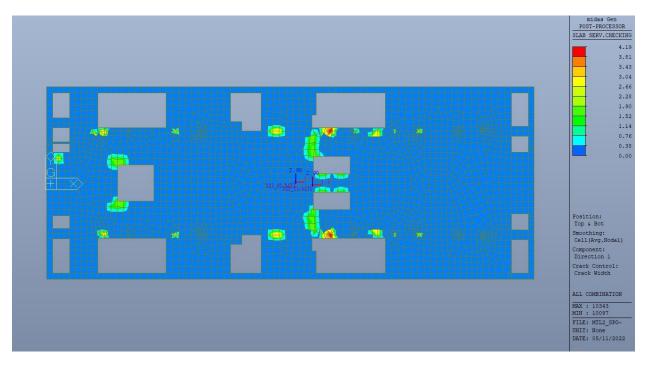


Figura 221. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1

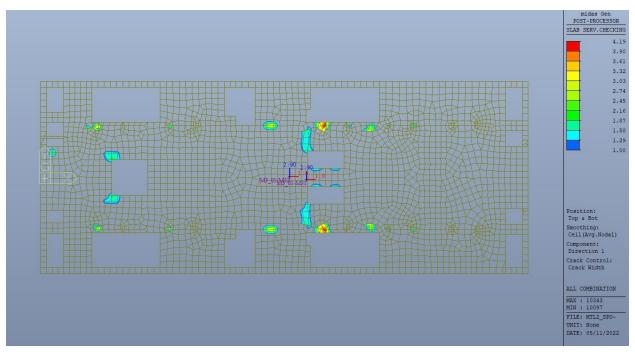


Figura 222. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

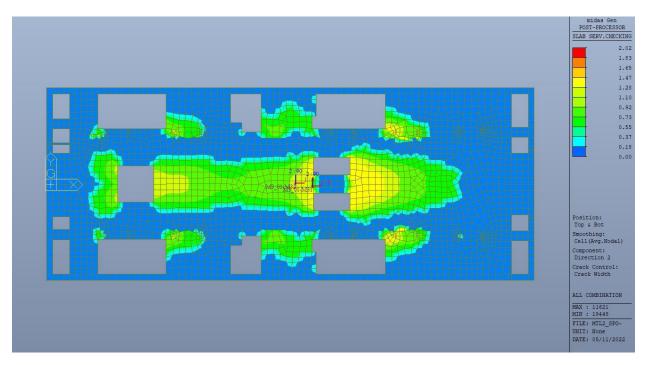


Figura 223. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2

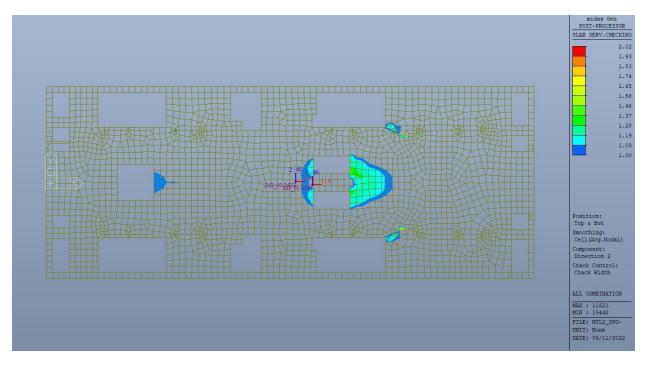


Figura 224. Piano mezzanino (-3) – Apertura delle fessure - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni complessive del solettone; si può ritenere la verifica soddisfatta.

15.2.3 Stato limite di limitazione delle tensioni in esercizio

Si deve verificare che nelle varie parti della struttura le massime tensioni, sia nel calcestruzzo sia nelle armature, dovute alle combinazioni caratteristiche e quasi permanente delle azioni siano inferiori ai massimi valori consentiti:

- $\sigma_{c,max} \leq 0.60 f_{ck}$ per la combinazione caratteristica;
- $\sigma_{c,max} \leq 0.45 f_{ck}$ per la combinazione quasi permanente;
- $\sigma_{s,max} \leq 0.80 \, f_{vk}$ per la combinazione caratteristica.

Nelle seguenti immagini vengono riportati il ratio tra la tensione massima (cls e armatura) e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

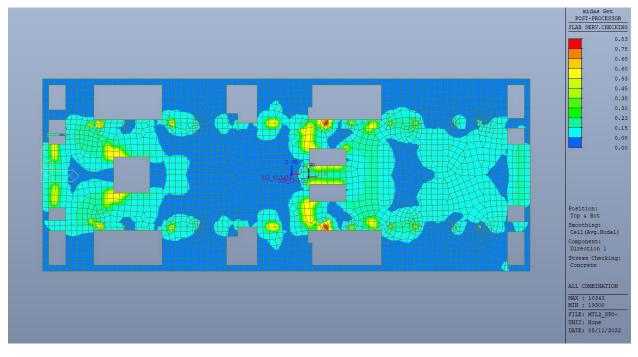


Figura 225. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 1

Relazione di calcolo strutture interne stazione

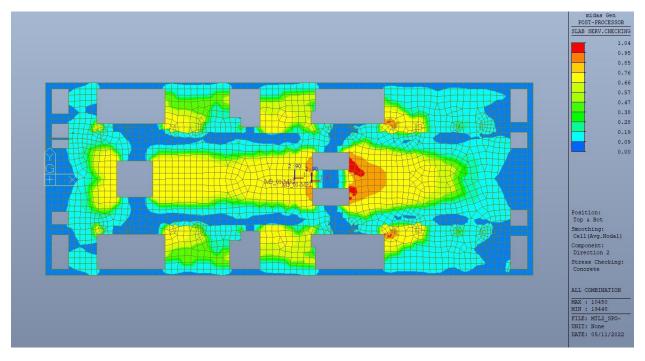


Figura 226. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2

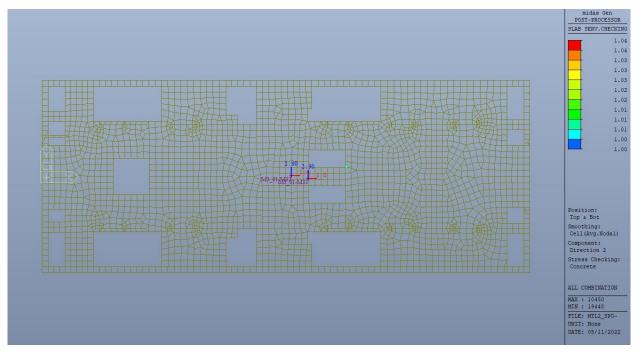


Figura 227. Piano mezzanino (-3) – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1

Relazione di calcolo strutture interne stazione

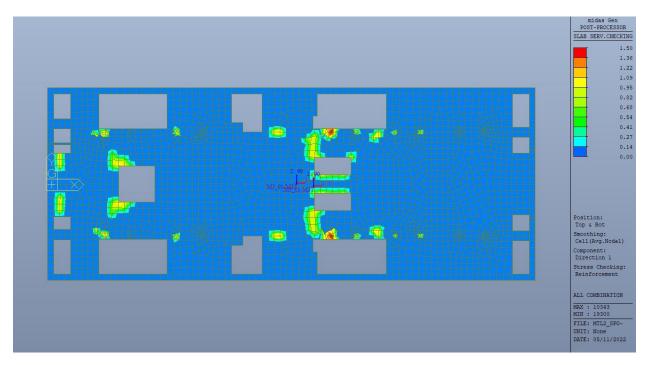


Figura 228. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1

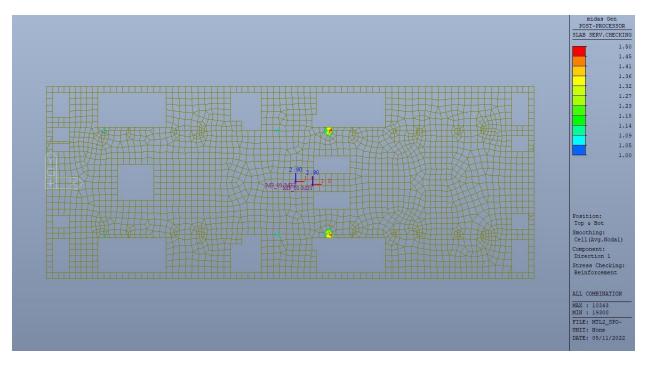


Figura 229. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

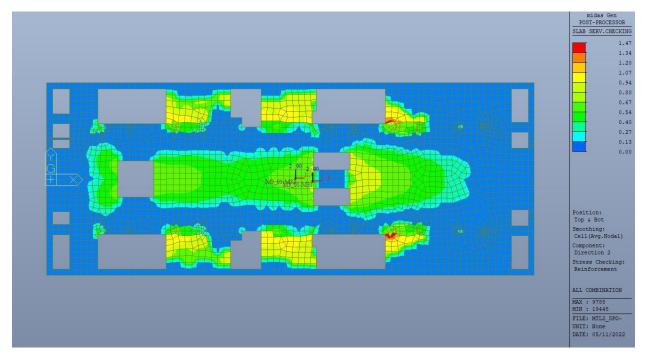


Figura 230. Piano mezzanino (-2) – Tensioni armatura - Ratio Direzione 2

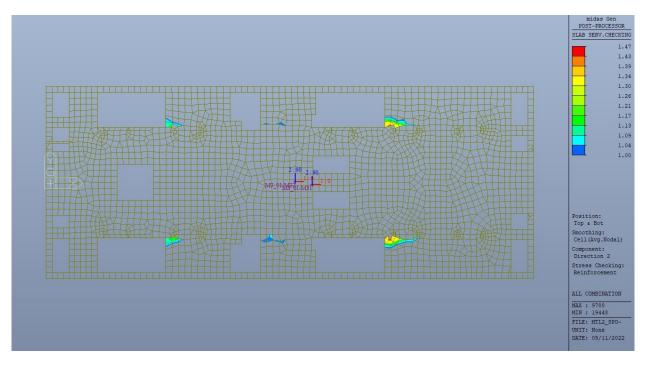


Figura 231. Piano mezzanino (-3) – Tensioni armatura - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni della soletta di piano.

Si può ritenere la verifica soddisfatta.

16. VERIFICA PIANO BANCHINA

16.1 Verifica Stati Limite Ultimi - SLU e SLV

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

16.1.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV nelle due direzioni X e Y.

Relazione di calcolo strutture interne stazione

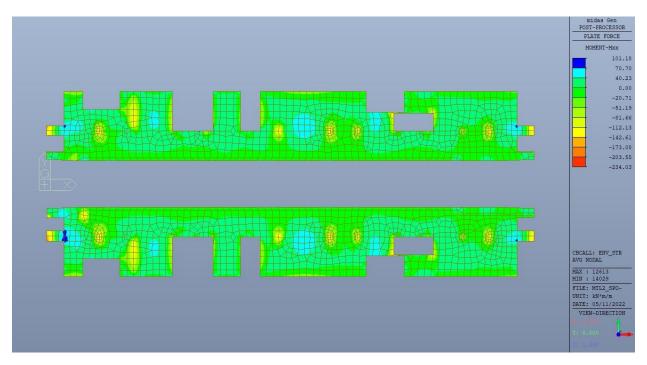


Figura 232. Piano banchina – Inviluppo momento flettente M_{xx} – Direzione X

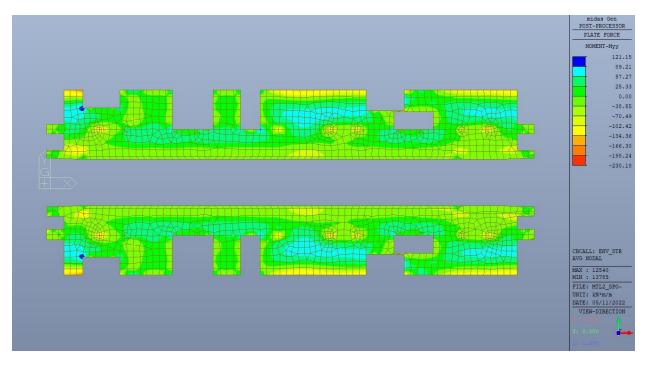


Figura 233. Piano banchina – Inviluppo momento flettente M_{yy} – Direzione Y

Relazione di calcolo strutture interne stazione

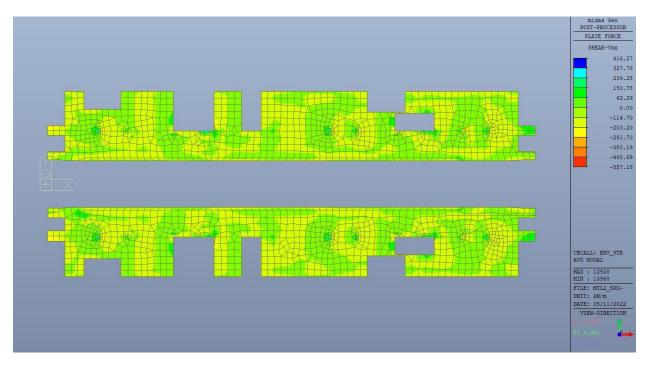


Figura 234. Piano banchina – Inviluppo taglio V_{xx} – Direzione X

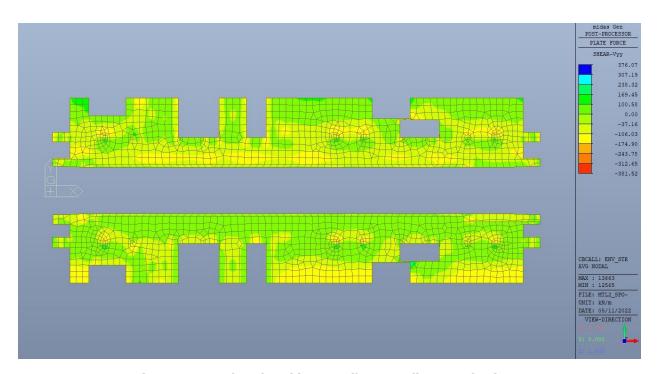


Figura 235. Piano banchina – Inviluppo taglio V_{yy} – Direzione Y

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

16.1.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

Come valore minimo dell'armatura longitudinale si è considerato quanto riportato nel par. 4.1.6 delle NTC2018, ossia il quantitativo minimo riportato per le travi pari a

$$A_{s,min} = 0.26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b_t \cdot h$$

dove:

- f_{ctm} è il valore medio della resistenza a trazione del cls;
- $\bullet \quad f_{yk} \; \grave{e} \; il \; valore \; caratteristico \; della resistenza a trazione dell'armatura;$
- bt è la larghezza media della zona tesa;
- h è l'altezza della sezione.

Tabella 36. Armatura minima

					D1 - TOP			D1 -BOTTOM	
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Banchina H30	100	30	3000	10.05	5.02	OK	10.05	5.02	OK
		D2 - TOP			D2 -BOTTOM				
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Banchina H30	100	30	3000	10.05	5.02	OK	10.05	5.02	ОК

Nelle immagini seguenti sono riportate le armature superiori e inferiori nelle due direzioni D1 e D2.

Relazione di calcolo strutture interne stazione

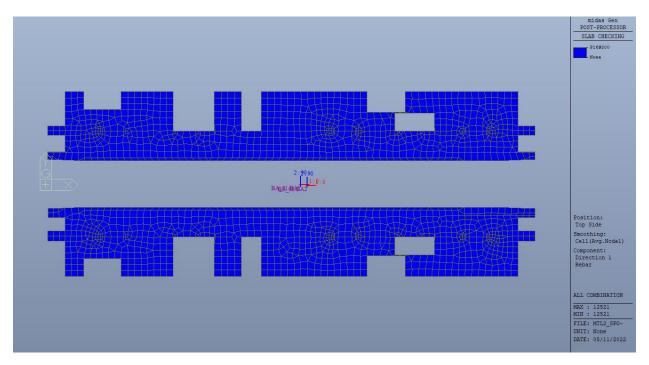


Figura 236. Piano banchina – Armatura superiore direzione D1

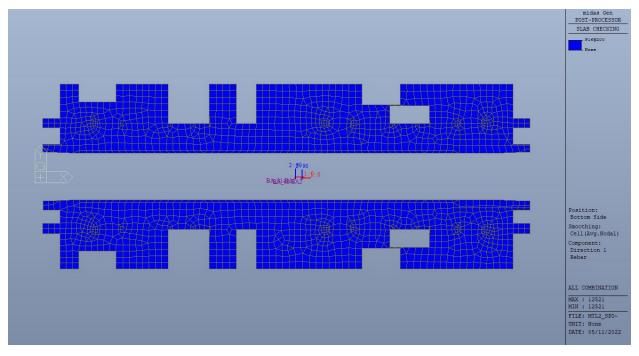


Figura 237. Piano banchina – Armatura inferiore direzione D1

Relazione di calcolo strutture interne stazione

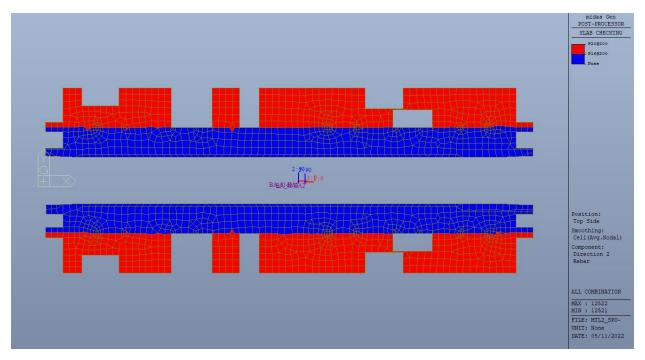


Figura 238. Piano banchina – Armatura superiore direzione D2

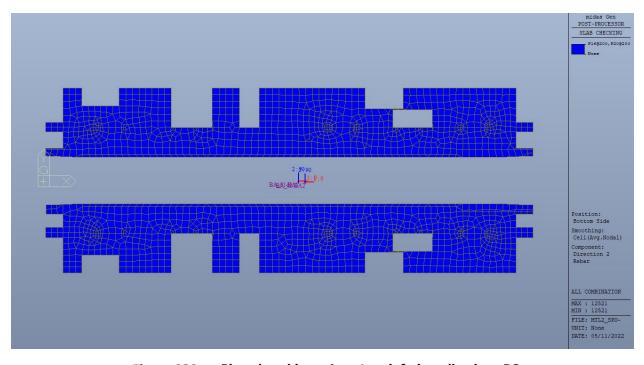


Figura 239. Piano banchina – Armatura inferiore direzione D2

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Nelle seguenti immagini vengono riportati i massimi tassi di lavoro a flessione e taglio dei singoli elementi strutturali nelle due direzioni D1 e D2 evidenziando, nel caso, quelli con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

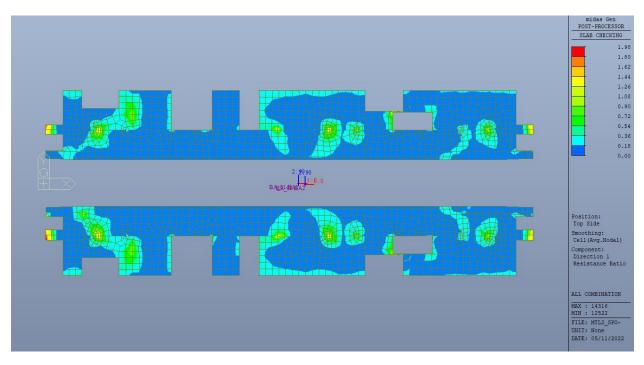


Figura 240. Piano banchina – Tasso di lavoro faccia superiore – Direzione D1

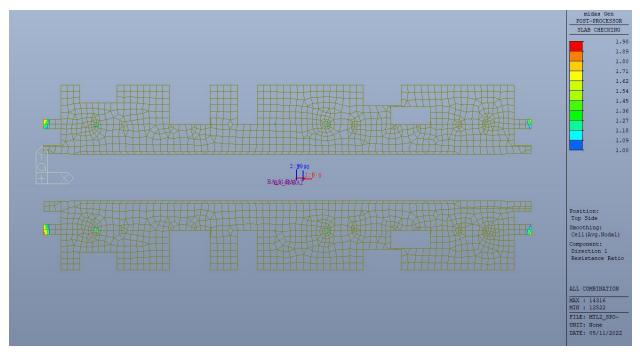


Figura 241. Piano banchina – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

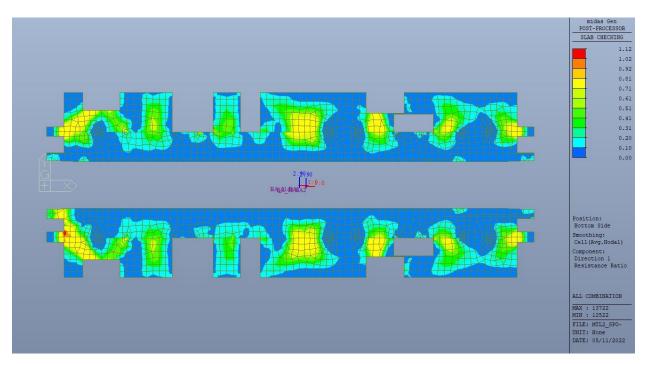


Figura 242. Piano banchina – Tasso di lavoro faccia inferiore – Direzione D1

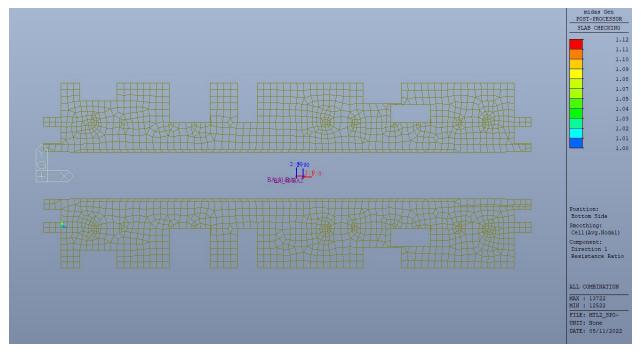


Figura 243. Piano banchina – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

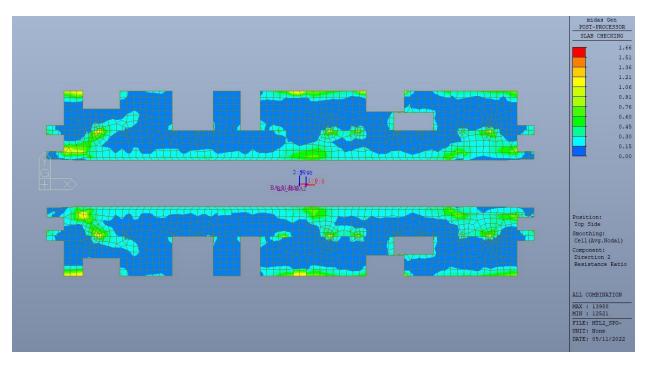


Figura 244. Piano banchina – Tasso di lavoro faccia superiore – Direzione D2

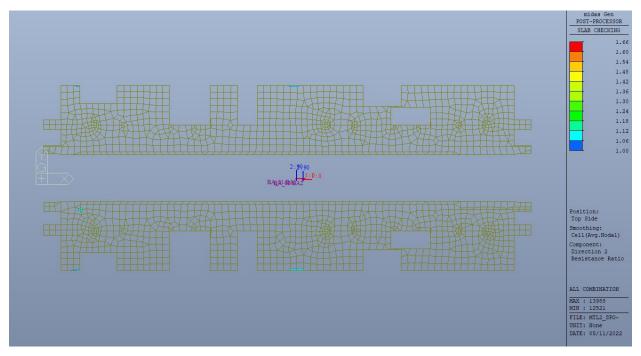


Figura 245. Piano banchina – Tasso di lavoro faccia superiore – Direzione D2 – Zone > 1

Relazione di calcolo strutture interne stazione

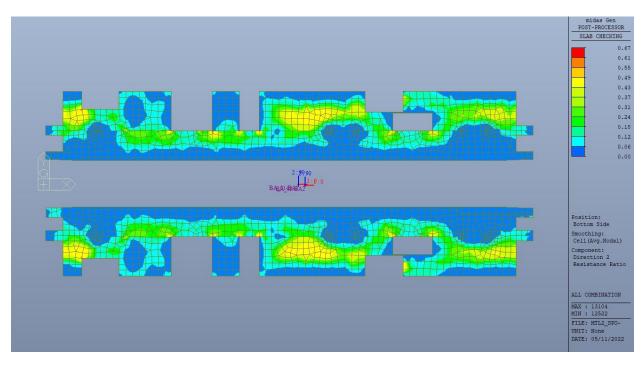


Figura 246. Piano banchina – Tasso di lavoro faccia inferiore – Direzione D2

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Per entrambe le direzioni, le zone con tasso di lavoro superiore all'unita sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta.

Resistenza a taglio di progetto in direzione X e Y – valore per unità di lunghezza.

Tabella 37. Verifica taglio - Piano banchina

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f _{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γc	1.5		coefficiente di sicurezza
С	40	mm	copriferro
d	260	mm	altezza utile sezione
k	1.88		
ρ_1	0.39%		rapporto geometrico di armatura longitudinale
V _{min}	0.499		
V_{Rd}	133.59	kN	
$V_{Rd,min}$	129.69	kN	
$V_{Rd,c}$	133.59	kN	resistenza a taglio NO armatura
NB	2.5		numero bracci
D	8	mm	diametro armatura a taglio
A _b	0.50	cm2	area barra armatura a taglio
A _{st}	1.25	cm2	area complessiva staffe
st	400	mm	passo staffe
γ_{s}	1.15		
α	90	0	
cotg teta	1		
V_{Rsd}	28.61	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V _{Rcd}	1018.04	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	28.61	kN	resistenza a taglio CON armatura

Come riportato dalle immagini successive, le zone in cui la resistenza di progetto a taglio per elementi senza armatura dedicata è inferiore al taglio agente sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta per entrambe le direzioni.

Relazione di calcolo strutture interne stazione

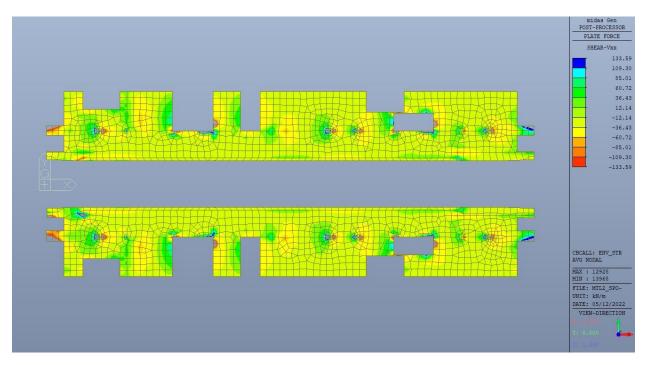


Figura 247. Piano banchina – Resistenza a taglio Direzione X

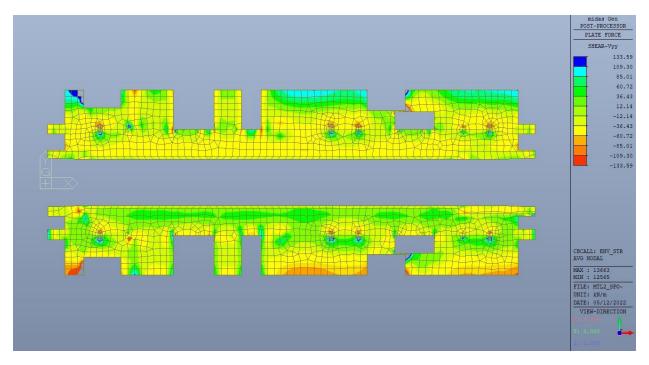


Figura 248. Piano banchina – Resistenza a taglio Direzione Y

Relazione di calcolo strutture interne stazione

3_MTL2T1A2DSTRSPOR003-0-1.DOCX

16.2 Verifica Stati Limite di Esercizio - SLE

Si deve verificare il rispetto dei seguenti stati limite:

- · deformazione;
- fessurazione;
- limitazione delle tensioni di esercizio.

16.2.1 Stato limite di deformazione

I limiti di deformabilità devono essere congruenti con le prestazioni richieste alla struttura anche in relazione alla destinazione d'uso, con riferimento alle esigenze statiche, funzionali ed estetiche.

Si può considerare la deformazione massima a pieno carico pari a 1/250 della luce di calcolo.

L = 9.60 m (tra fodera perimetrale e muretto via di corsa)

 $\delta_{\text{max}} = 38.4 \text{mm}$

Di seguito si riporta la deformata calcolata, a favore di sicurezza, in condizione di creep (effetti a lungo termine dovuti al fluage) con un modulo elastico del cls E_c ridotto di un valore pari a 2.75.

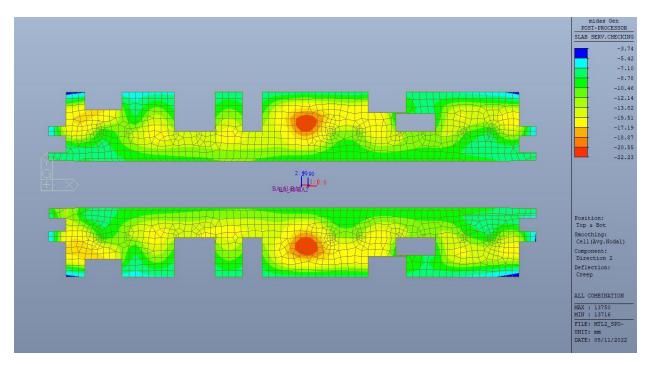


Figura 249. Piano banchina – Massima deformazione

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Il massimo valore dell'abbassamento relativo in combinazione RARA è pari a 18.49mm, inferiore al valore massimo e compatibile con le prestazioni richieste.

La verifica è soddisfatta.

16.2.2 Stato limite di fessurazione

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, in funzione della classe di esposizione scelta si determina la condizione ambientale:

- ordinarie;
- aggressive;
- molto aggressive.

Stabilito la classe ambientale, in funzione della tipologia di armatura, se sensibile o poco sensibile alla corrosione, si determina il valore limite di apertura delle fessure.

In questo caso:

- classe di esposizione XC3;
- classe ambientale orinaria;
- armatura poco sensibile;
- valore limite apertura delle fessure w₃ (0.4mm) combinazioni SLE Frequente;
- valore limite apertura delle fessure w₂ (0.3mm) combinazioni SLE Quasi Permanente.

Nelle seguenti immagini vengono riportati il ratio tra il valore di apertura delle fessure e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

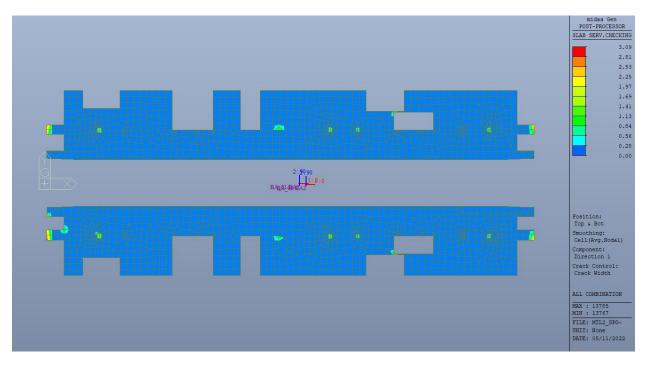


Figura 250. Piano banchina – Apertura delle fessure - Ratio Direzione 1

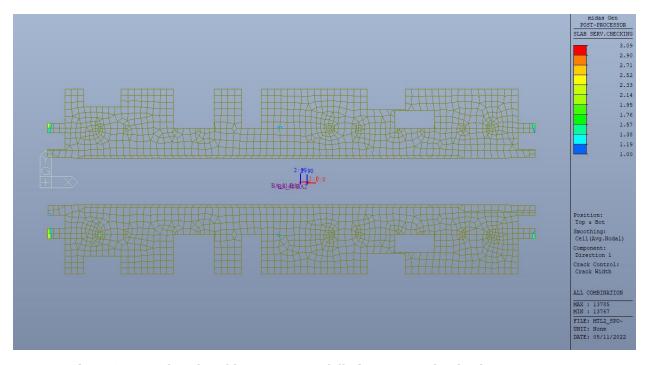


Figura 251. Piano banchina – Apertura delle fessure - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

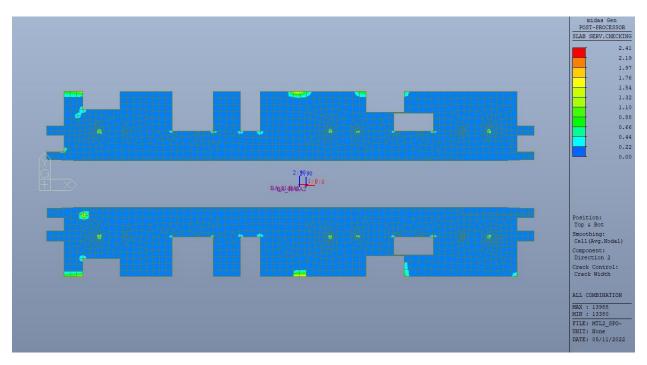


Figura 252. Piano banchina – Apertura delle fessure - Ratio Direzione 2

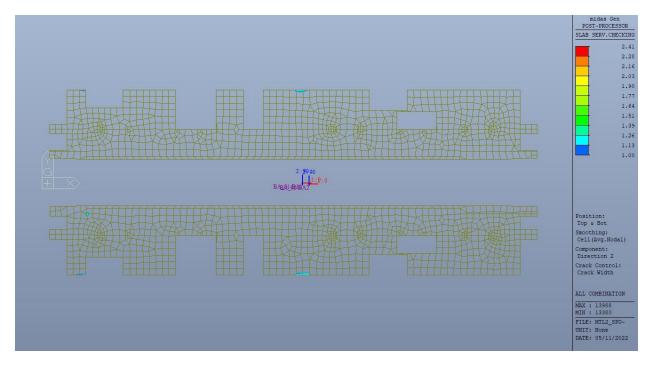


Figura 253. Piano banchina – Apertura delle fessure - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni complessive delle solette di piano; si può ritenere la verifica soddisfatta.

16.2.3 Stato limite di limitazione delle tensioni in esercizio

Si deve verificare che nelle varie parti della struttura le massime tensioni, sia nel calcestruzzo sia nelle armature, dovute alle combinazioni caratteristiche e quasi permanente delle azioni siano inferiori ai massimi valori consentiti:

- $\sigma_{c,max} \leq 0.60 f_{ck}$ per la combinazione caratteristica;
- $\sigma_{c,max} \leq 0.45 f_{ck}$ per la combinazione quasi permanente;
- $\sigma_{s,max} \leq 0.80 \, f_{vk}$ per la combinazione caratteristica.

Nelle seguenti immagini vengono riportati il ratio tra la tensione massima (cls e armatura) e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

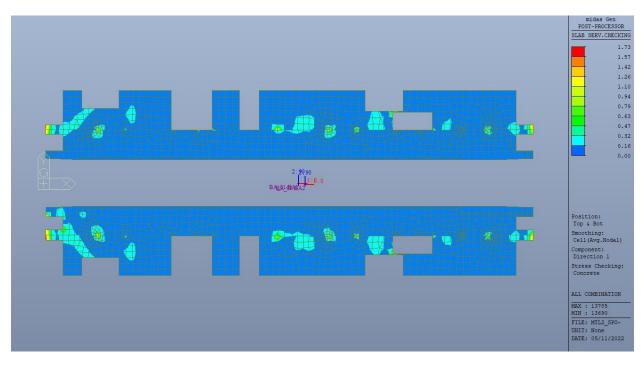


Figura 254. Piano banchina – Tensioni calcestruzzo - Ratio Direzione 1

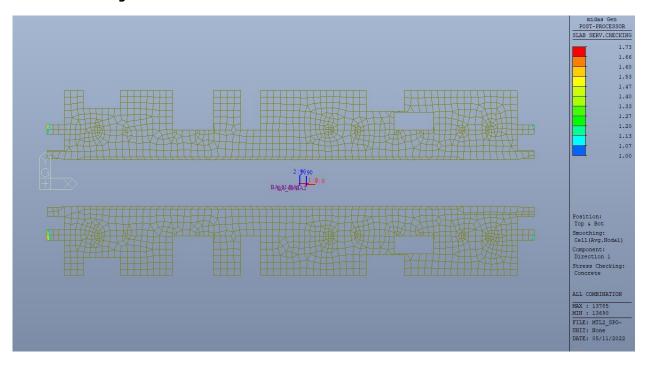


Figura 255. Piano banchina – Tensioni calcestruzzo - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

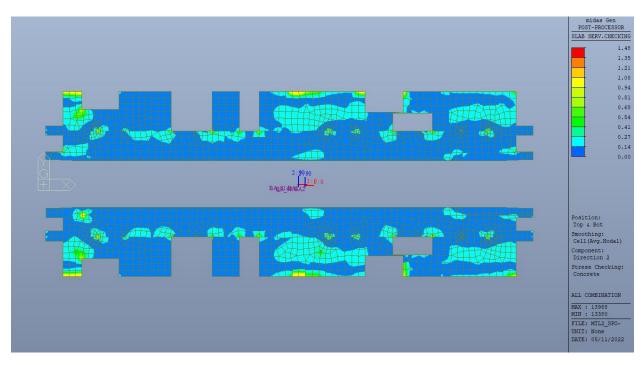


Figura 256. Piano banchina – Tensioni calcestruzzo - Ratio Direzione 2

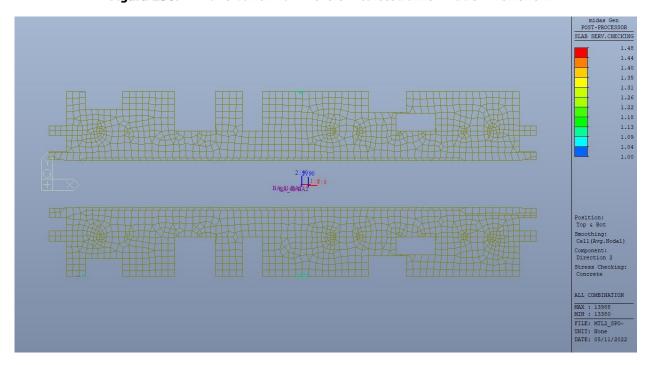


Figura 257. Piano banchina – Tensioni calcestruzzo - Ratio Direzione 2 – Zone > 1

Relazione di calcolo strutture interne stazione

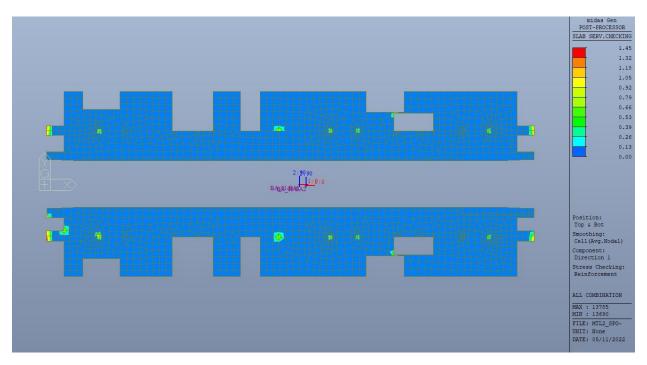


Figura 258. Piano banchina – Tensioni armatura - Ratio Direzione 1

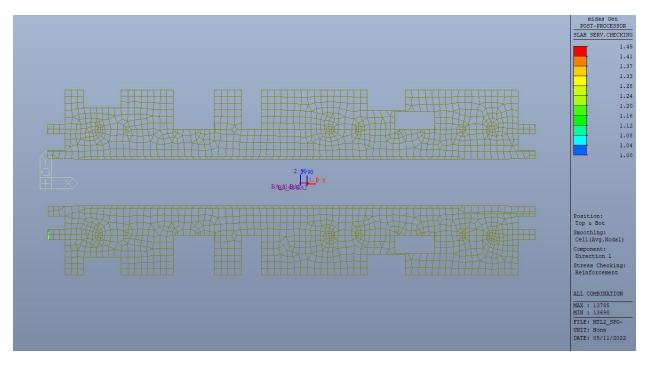


Figura 259. Piano banchina – Tensioni armatura - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

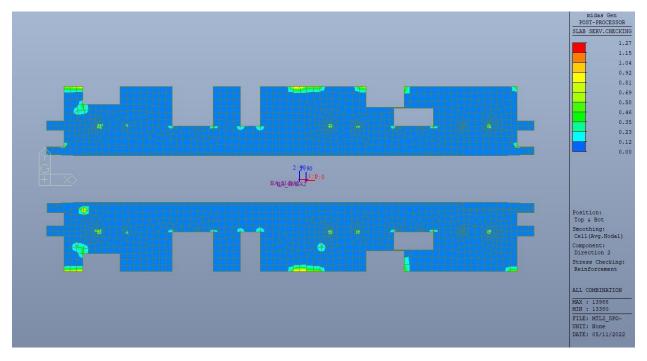


Figura 260. Piano banchina – Tensioni armatura - Ratio Direzione 2

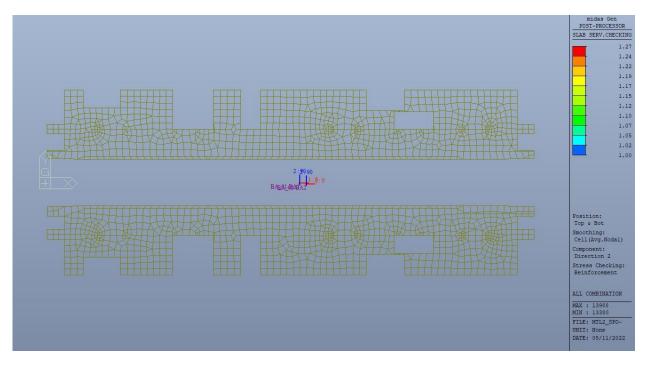


Figura 261. Piano banchina – Tensioni armatura - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni della soletta di piano.

Si può ritenere la verifica soddisfatta.

17. VERIFICA PLATEA

17.1 Verifica Stati Limite Ultimi - SLU e SLV

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

17.1.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV nelle due direzioni X e Y.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

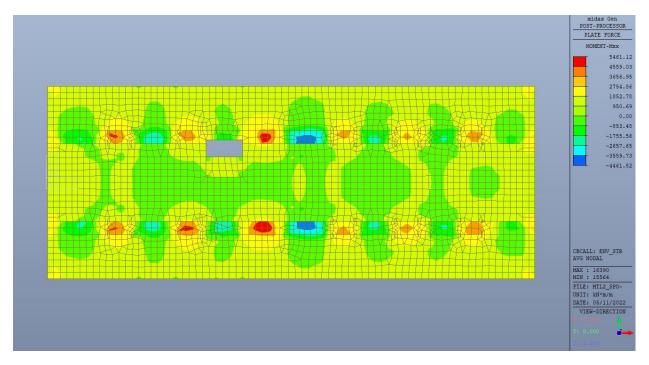


Figura 262. Platea – Inviluppo momento flettente M_{xx} – Direzione X

Relazione di calcolo strutture interne stazione

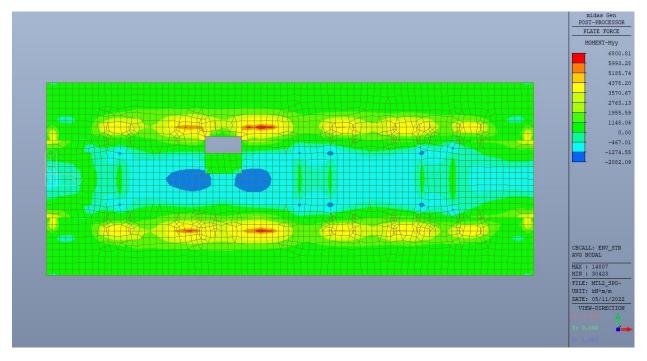


Figura 263. Platea – Inviluppo momento flettente M_{yy} – Direzione Y

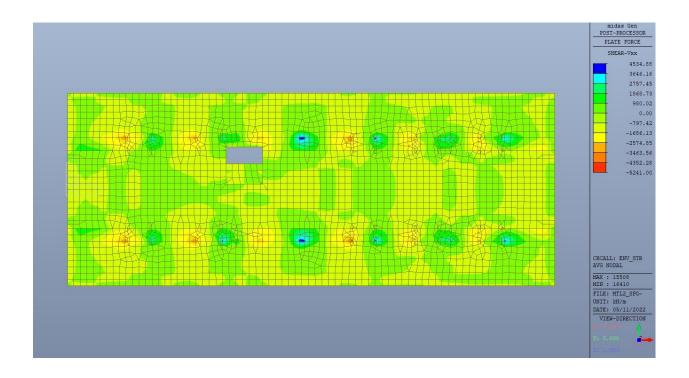


Figura 264. Platea – Inviluppo taglio V_{xx} – Direzione X

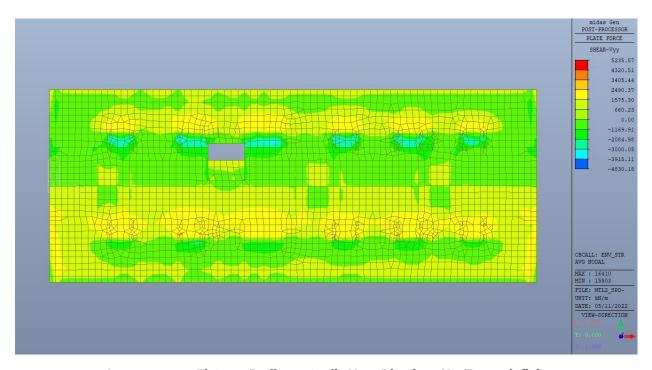


Figura 265. Platea – Inviluppo taglio V_{yy} – Direzione Y – Tempo infinito

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

17.1.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

Come valore minimo dell'armatura longitudinale si è considerato quanto riportato nel par. 7.2.5 delle NTC2018, ossia una percentuale non inferiore allo 0.1% dell'area della sezione trasversale della platea, sia inferiormente sia superiormente, nelle due direzioni ortogonali e per l'intera estensione

Tabella 38. Armatura minima

				D1 - TOP			D1 -BOTTOM		
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Platea H180	100	180	18000	26.55	18.00	OK	26.55	18.00	OK
				D2 - TOP			D2 -BOTTOM		
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	CK
Platea H180	100	180	18000	53.1	18.00	OK	53.1	18.00	OK

Nelle immagini seguenti sono riportate le armature superiori e inferiori nelle due direzioni D1 e D2.

Relazione di calcolo strutture interne stazione

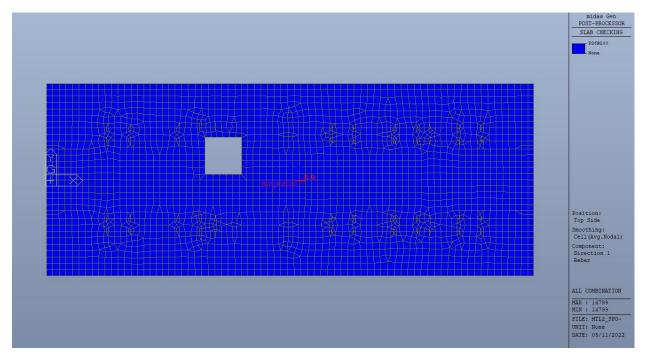


Figura 267. Platea – Armatura superiore direzione D1

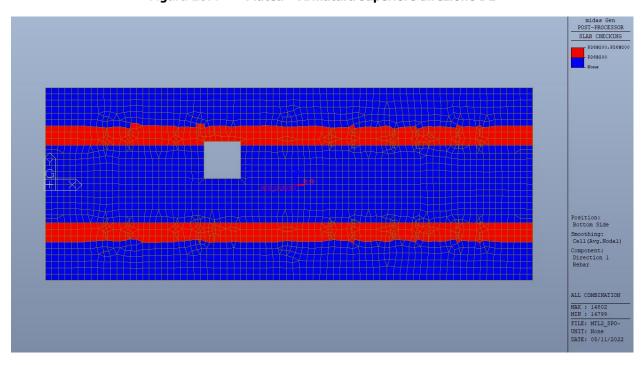


Figura 268. Platea – Armatura inferiore direzione D1

Relazione di calcolo strutture interne stazione

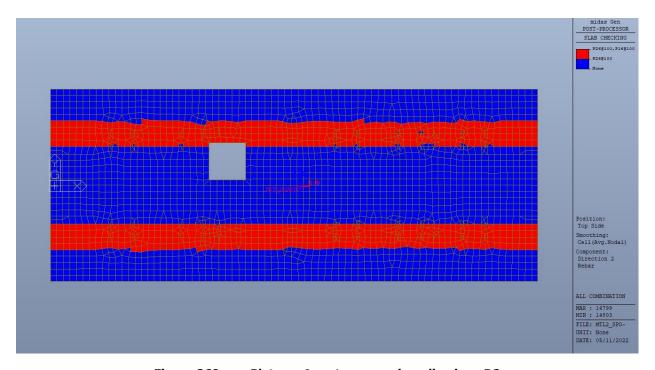


Figura 269. Platea – Armatura superiore direzione D2

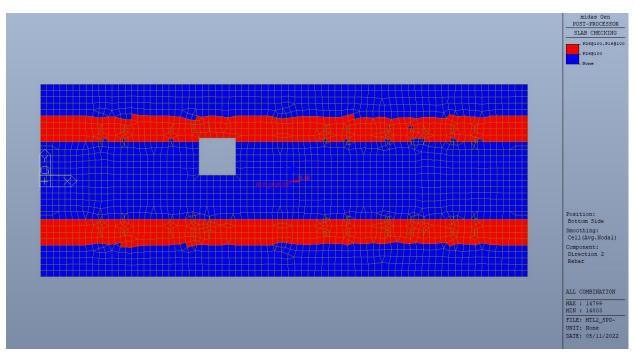


Figura 270. Platea – Armatura inferiore direzione D2

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Nelle seguenti immagini vengono riportati i massimi tassi di lavoro dei singoli elementi strutturali nelle due direzioni D1 e D2 evidenziando, nel caso, quelli con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

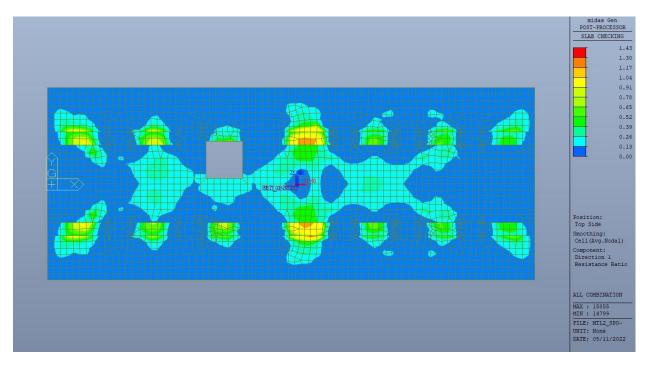


Figura 271. Platea – Tasso di lavoro faccia superiore – Direzione D1

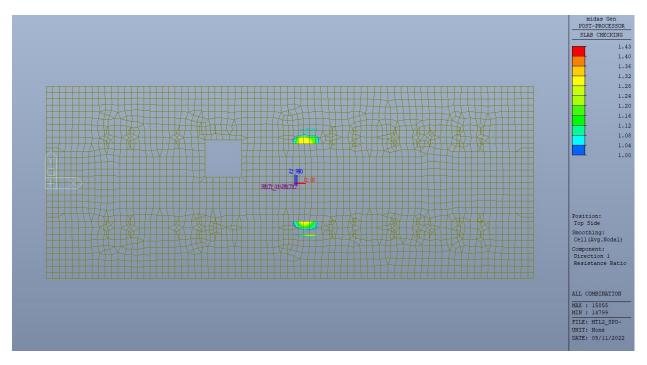


Figura 272. Platea – Tasso di lavoro faccia superiore – Direzione D1 – Zone > 1

Relazione di calcolo strutture interne stazione

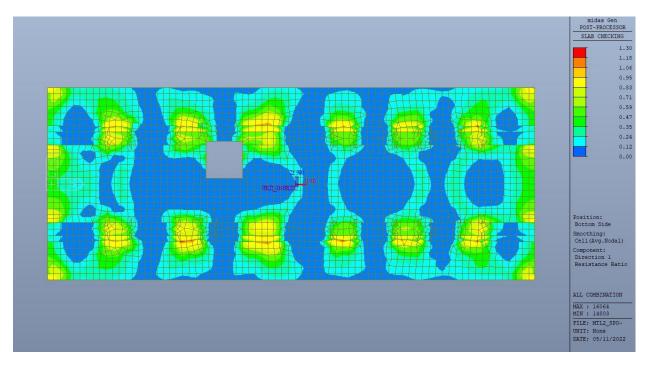


Figura 273. Platea – Tasso di lavoro faccia inferiore – Direzione D1

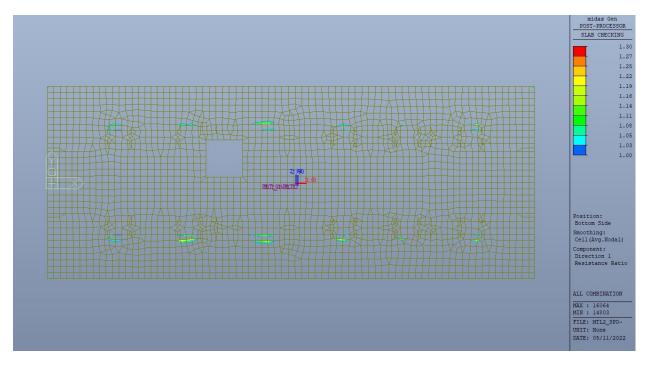


Figura 274. Platea – Tasso di lavoro faccia inferiore – Direzione D1 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

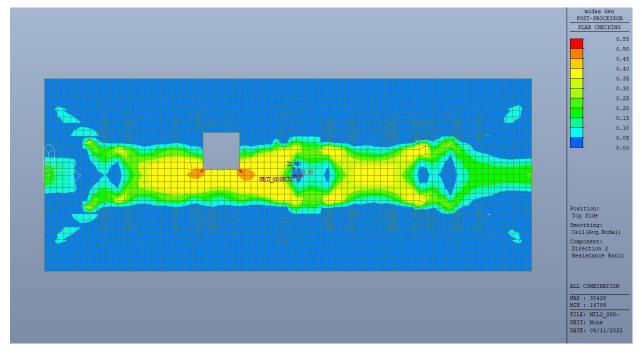


Figura 275. Platea – Tasso di lavoro faccia superiore – Direzione D2

Relazione di calcolo strutture interne stazione

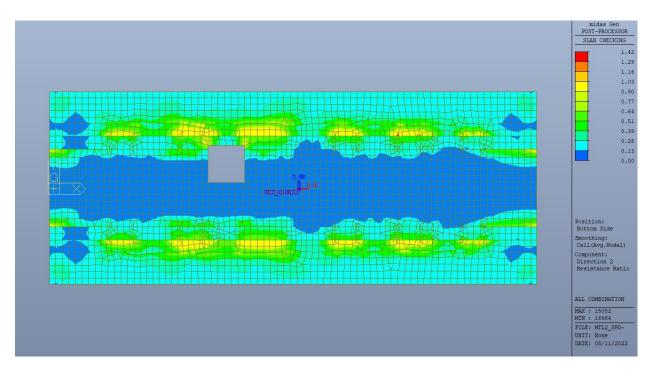


Figura 276. Platea – Tasso di lavoro faccia inferiore – Direzione D2

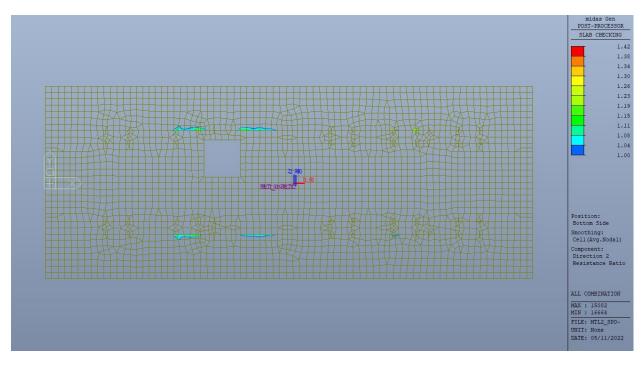


Figura 277. Platea – Tasso di lavoro faccia inferiore – Direzione D2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico	
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX	

Per entrambe le direzioni, le zone con tasso di lavoro superiore all'unita sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta.

Resistenza a taglio di progetto in direzione X e Y – valore per unità di lunghezza.

Tabella 39. Verifica a taglio - Platea di fondazione

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f_{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γς	1.5		coefficiente di sicurezza
С	100	mm	copriferro
d	1700	mm	altezza utile sezione
k	1.46		
ρ_1	0.16%		rapporto geometrico di armatura longitudinale
V _{min}	0.302		
V_{Rd}	462.03	kN	
$V_{Rd,min}$	513.18	kN	
V _{Rd,c}	513.18	kN	resistenza a taglio NO armatura
NB	5		numero bracci
D	20	mm	diametro armatura a taglio
A _b	3.14	cm2	area barra armatura a taglio
A _{st}	15.70	cm2	area complessiva staffe
st	200	mm	passo staffe
γ_{s}	1.15		
α	90	0	
cotg teta	1		
V_{Rsd}	4699.76	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V _{Rcd}	6656.392	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	4699.76	kN	resistenza a taglio CON armatura

Come riportato dalle immagini successive, la resistenza a taglio per elementi con armatura dedicata è superiore al taglio agente in ogni parte della platea di fondazione per entrambe le direzioni, fatta eccezione per zone localizzate e in numero ridotto.

Relazione di calcolo strutture interne stazione

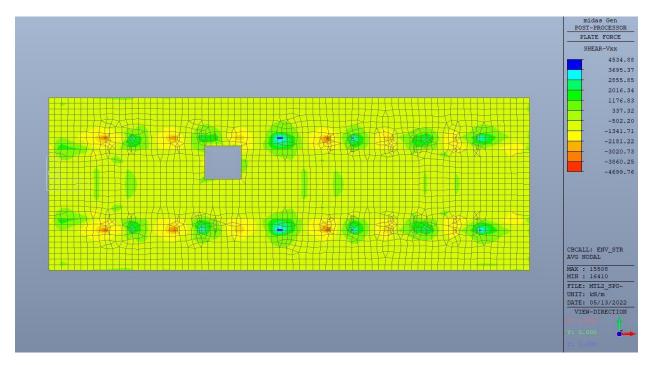


Figura 278. Platea – Resistenza a taglio Direzione X

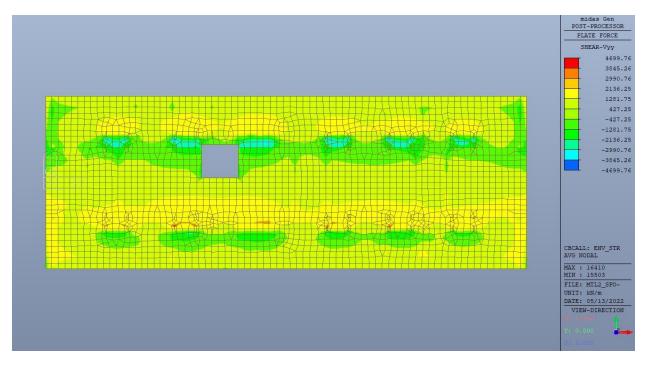


Figura 279. Platea – Resistenza a taglio Direzione Y

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

17.2 Verifica Stati Limite di Esercizio - SLE

Si deve verificare il rispetto dei seguenti stati limite:

- · deformazione;
- fessurazione;
- limitazione delle tensioni di esercizio.

17.2.1 Stato limite di deformazione

I limiti di deformabilità devono essere congruenti con le prestazioni richieste alla struttura anche in relazione alla destinazione d'uso, con riferimento alle esigenze statiche, funzionali ed estetiche.

Si può considerare la deformazione massima a pieno carico pari a 1/500 della luce di calcolo.

L = 6.60 m (tra diaframmi esterni e diaframmi interni)

 $\delta_{\text{max}} = 13.2 \text{mm}$

Di seguito si riporta la deformata calcolata, a favore di sicurezza, in condizione di creep (effetti a lungo termine dovuti al fluage) con un modulo elastico del cls E_c ridotto di un valore pari a 2.75.

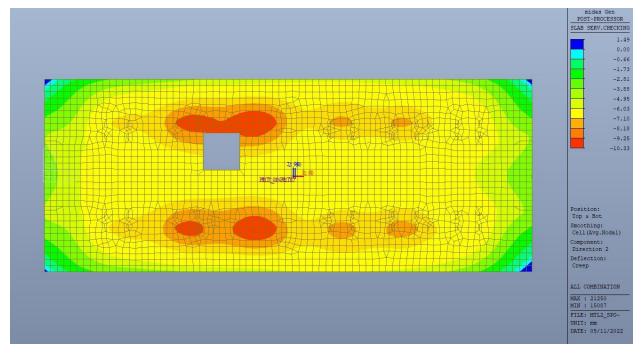


Figura 280. Platea – Massima deformazione

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Il massimo cedimento differenziale risulta essere di 11.82mm inferiore al valore limite sopra indicato e compatibile con le prestazioni richieste.

La verifica è soddisfatta.

17.2.2 Stato limite di fessurazione

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, in funzione della classe di esposizione scelta si determina la condizione ambientale:

- ordinarie;
- aggressive;
- molto aggressive.

Stabilito la classe ambientale, in funzione della tipologia di armatura, se sensibile o poco sensibile alla corrosione, si determina il valore limite di apertura delle fessure.

In questo caso:

- classe di esposizione XC3;
- classe ambientale orinaria;
- armatura poco sensibile;
- valore limite apertura delle fessure w₃ (0.4mm) combinazioni SLE Frequente;
- valore limite apertura delle fessure w₂ (0.3mm) combinazioni SLE Quasi Permanente.

Nelle seguenti immagini vengono riportati il ratio tra il valore di apertura delle fessure e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

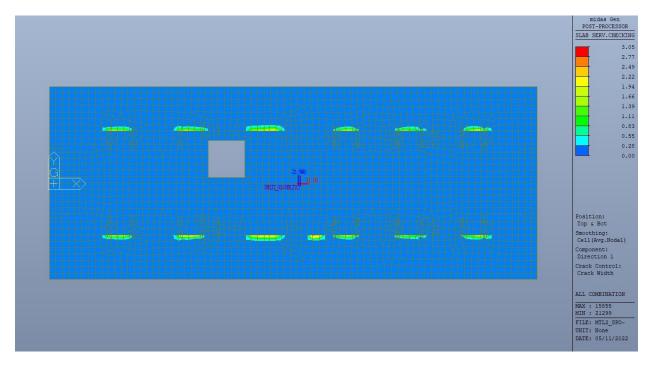


Figura 281. Platea – Apertura delle fessure - Ratio Direzione 1

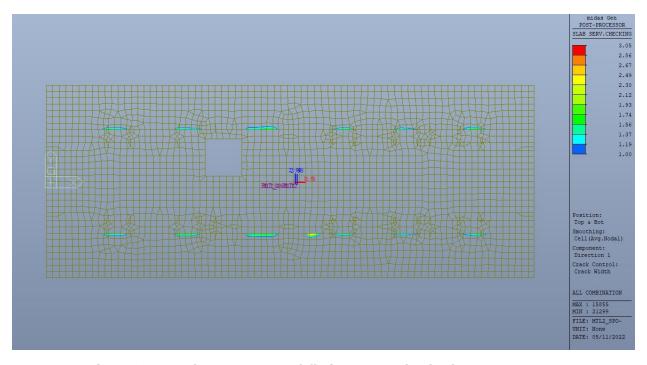


Figura 282. Platea – Apertura delle fessure - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

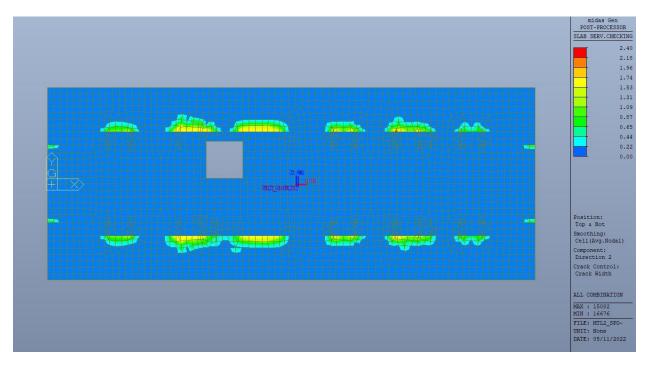


Figura 283. Platea – Apertura delle fessure - Ratio Direzione 2

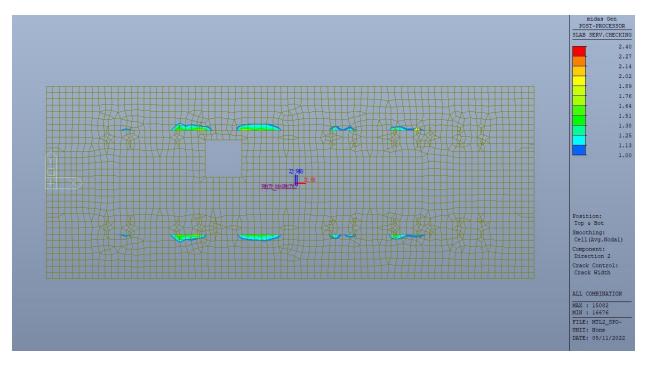


Figura 284. Platea – Apertura delle fessure - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni complessive del solettone di copertura.

Si può ritenere la verifica soddisfatta.

17.2.3 Stato limite di limitazione delle tensioni in esercizio

Si deve verificare che nelle varie parti della struttura le massime tensioni, sia nel calcestruzzo sia nelle armature, dovute alle combinazioni caratteristiche e quasi permanente delle azioni siano inferiori ai massimi valori consentiti:

- $\sigma_{c,max} \leq 0.60 f_{ck}$ per la combinazione caratteristica;
- $\sigma_{c,max} \leq 0.45 f_{ck}$ per la combinazione quasi permanente;
- $\sigma_{s,max} \le 0.80 f_{vk}$ per la combinazione caratteristica.

Nelle seguenti immagini vengono riportati il ratio tra la tensione massima (cls e armatura) e il relativo valore limite nelle due direzioni di armatura; evidenziando, nel caso, le zone con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

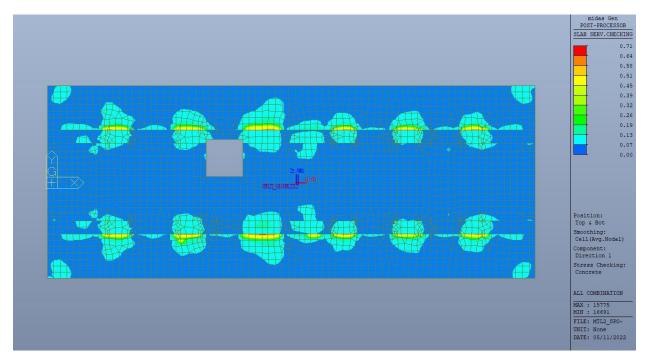


Figura 285. Platea – Tensioni calcestruzzo - Ratio Direzione 1

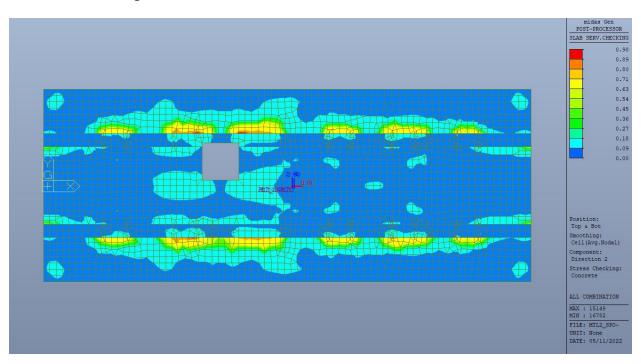


Figura 286. Platea – Tensioni calcestruzzo - Ratio Direzione 2

Relazione di calcolo strutture interne stazione

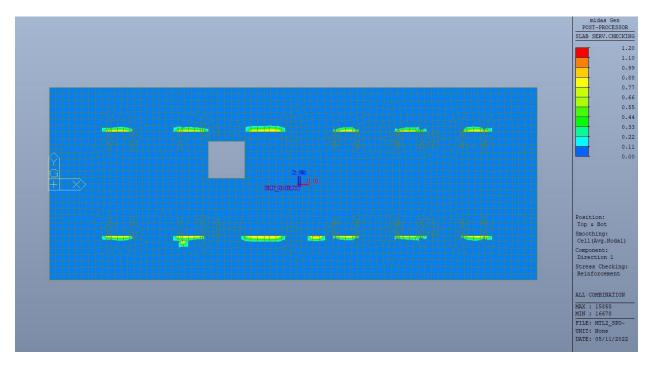


Figura 287. Platea – Tensioni armatura - Ratio Direzione 1

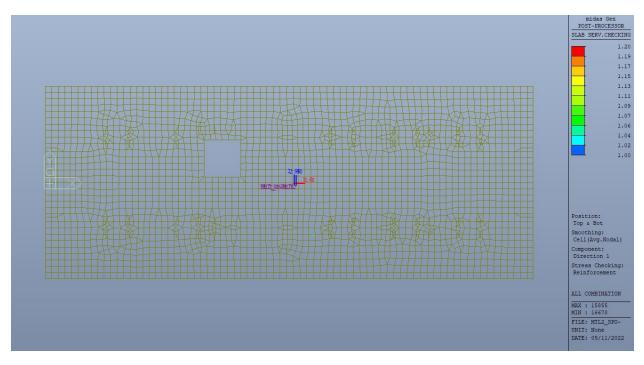


Figura 288. Platea – Tensioni armatura - Ratio Direzione 1 – Zone > 1

Relazione di calcolo strutture interne stazione

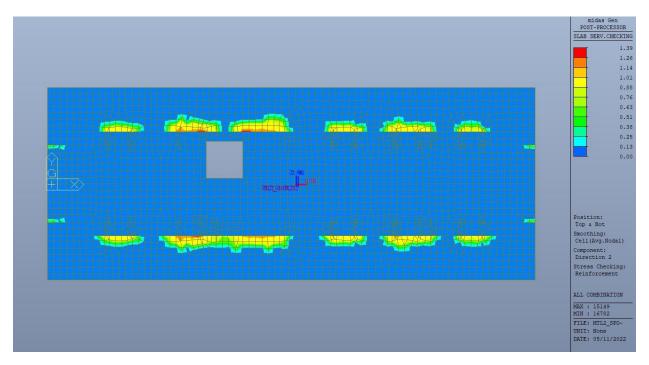


Figura 289. Platea – Tensioni armatura - Ratio Direzione 2

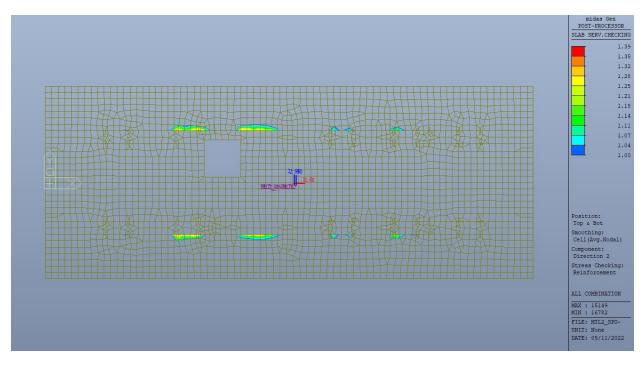


Figura 290. Platea – Tensioni armatura - Ratio Direzione 2 – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Come si evince, le zone in cui il ratio è maggiore di uno, sono localizzate ed in numero limitato rispetto alle dimensioni della soletta di copertura.

Si può ritenere la verifica soddisfatta.

18. VERIFICA FODERE

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

Considerando che le fodere vengono realizzare successivamente alla costruzione dei primi tre solai (solettone di copertura, piano atrio e mezzanino -2) si è optato, a favore di sicurezza, di utilizzare per le verifiche strutturali delle porzioni tra i singoli orizzontamenti uno schema statico cerniera-cerniera.

Dara la presenza del piano banchina, sono stati realizzati due differenti modelli di calcolo per simulare l'interazione della fodera con l'orizzontamento:

- Vincolo orizzontale perfetto;
- Assenza totale di vincolo orizzontale.

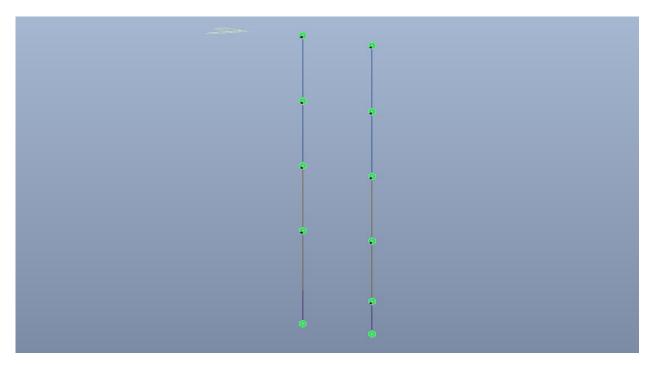


Figura 291. Fodere – Schema statico – Tipologico

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

18.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV per momento flettente e taglio

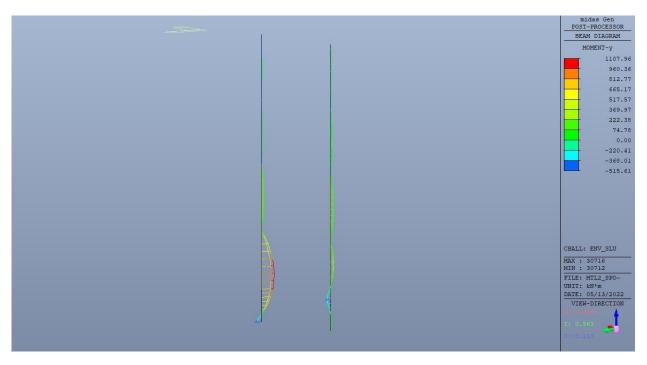


Figura 292. Fodere longitudinali – Inviluppo momento flettente M_y – Tipologico

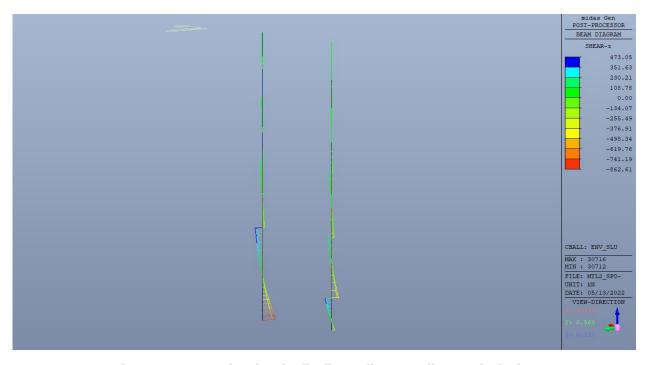


Figura 293. Fodere longitudinali – Inviluppo taglio V_z – Tipologico

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

18.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

Come valore minimo dell'armatura verticale si è considerato quanto riportato nel par. 4.1.6 delle NTC2018, ossia il quantitativo minimo riportato per i pilastri pari a

$$A_{s.min} = 0.003 \cdot A_c$$

• A_c è l'area di cls.

Le fodere hanno tre spessori differenti:

- 100 cm tra platea di fondazione e piano banchina;
- 80 cm tra piano banchina e piano mezzanino -2;
- 60 cm tra piano mezzanino -2 e solettone di copertura.

Tabella 40. Armatura minima

_					VERTICALE			ORIZZONTALE	
Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	CK	A _s [cm ²]	A _{smin} [cm ²]	СК
Fodera 100	100	100	10000	53.1	30.00	OK	15.7	-	-
Fodera 80	100	80	8000	26.55	24.00	OK	2.825	-	-
Fodera 60	100	60	6000	22.6	18.00	OK	1.25	-	-

Nelle seguenti immagini vengono riportati i tassi di lavoro a flessione e taglio dei singoli elementi strutturali evidenziando, nel caso, quelli con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

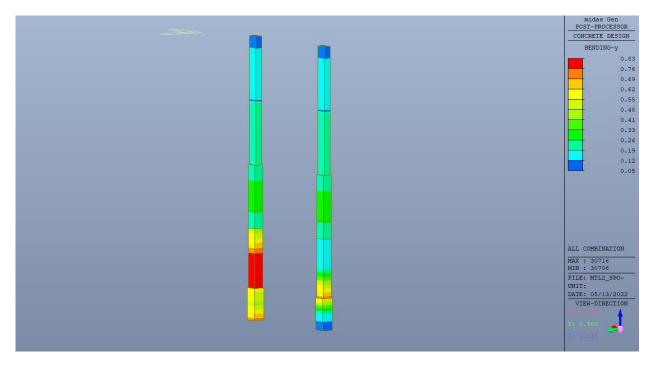


Figura 294. Fodere longitudinali – Tasso di lavoro M_y – Tipologico

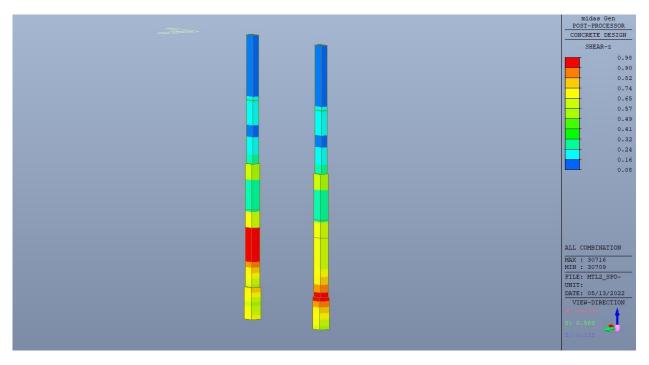


Figura 295. Fodere longitudinali – Tasso di lavoro V_z – Tipologico

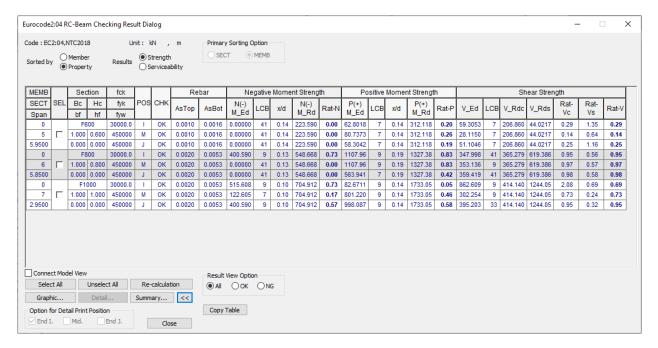


Figura 296. Fodere longitudinali – Tabella riassuntiva verifiche

Di seguito si riporta la verifica per esteso per l'elemento più sollecitato.

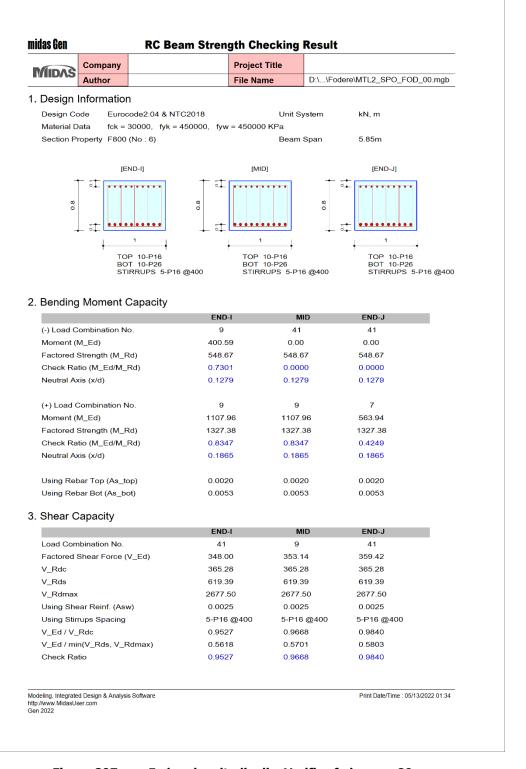


Figura 297. Fodere longitudinali – Verifica fodera sp. 80cm

19. VERIFICA PILASTRI PIANO ATRIO

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

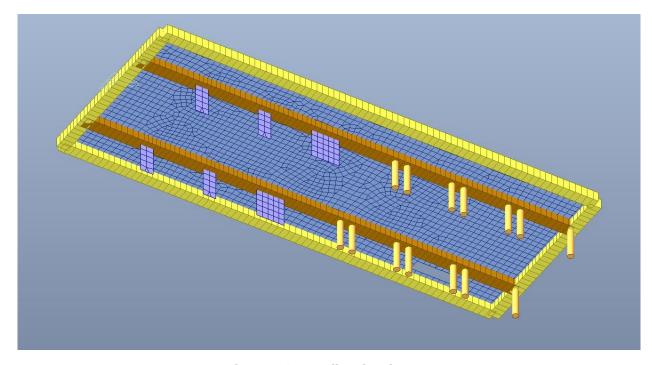


Figura 298. Pilastri – Vista 3D

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

19.1 Sollecitazioni

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU e SLV per momento flettente e taglio

Relazione di calcolo strutture interne stazione

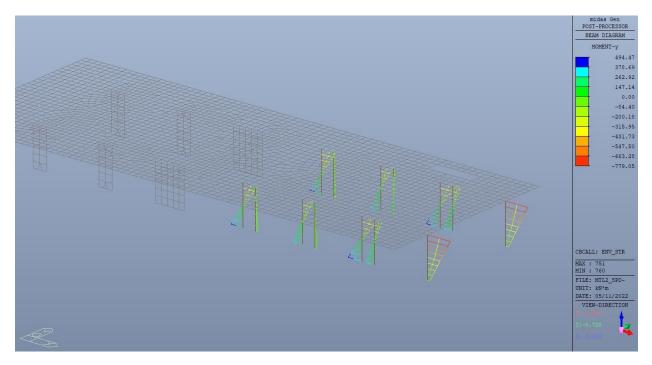


Figura 299. Pilastri – Inviluppo momento flettente M_y

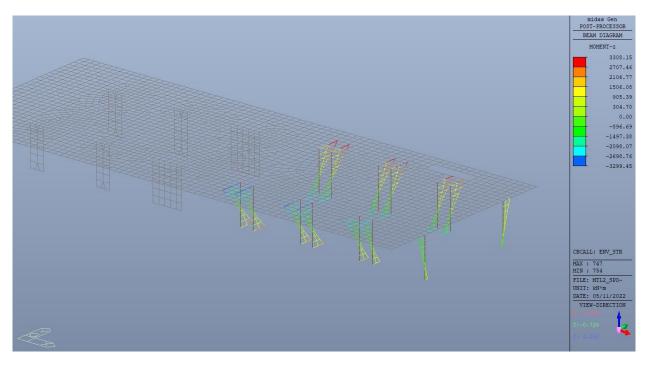


Figura 300. Pilastri – Inviluppo momento flettente Mz

Relazione di calcolo strutture interne stazione

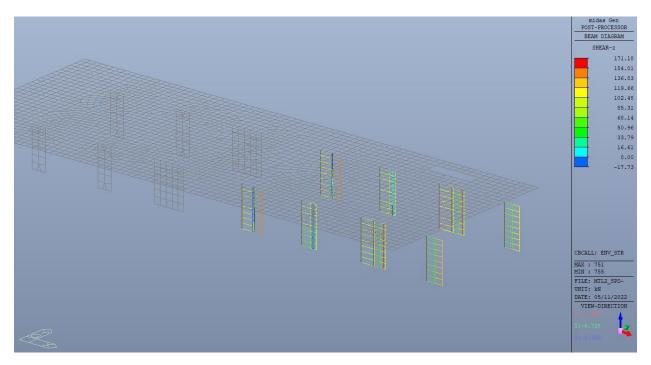


Figura 301. Pilastri – Inviluppo taglio V_z

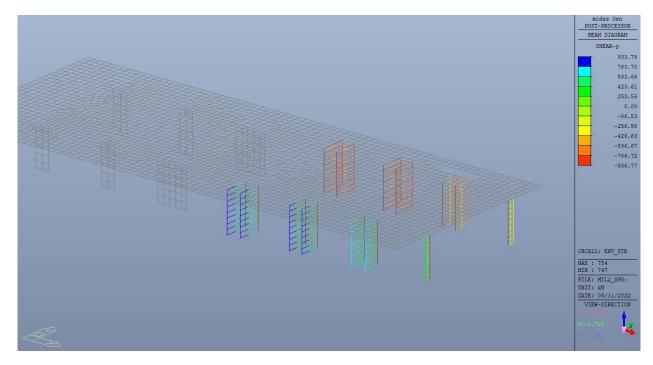


Figura 302. Pilastri – Inviluppo taglio V_y

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

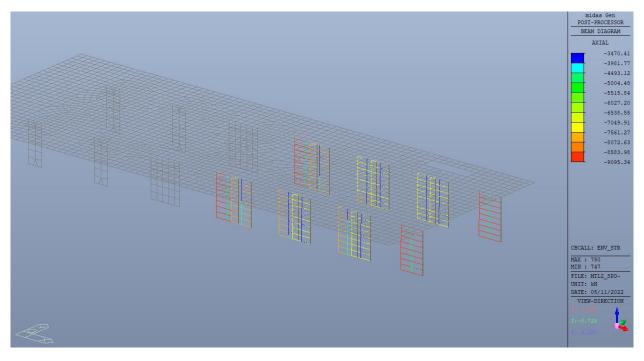


Figura 303. Pilastri – Inviluppo sforzo normale N

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

19.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

A favore di sicurezza sono stati adottati, comunque, i dettagli costruttivi per le strutture a comportamento dissipativo, in particolare le limitazioni geometriche e di armatura per la classe di duttilità B, come riportato nel par. 7.4.6 delle NTC2018.

Tipologia	D [cm]	A _c [cm ²]	A _s [cm ²]	ρ[%]	ρ _{min} [%]	ρ _{max} [%]	CK	p ST [cm]	p _{min} ST [cm]	CK
PIL D100	100	7850	138.06	1.76%	1.0%	4.0%	ОК	15	17.5	ОК

Di seguito si riporta la verifica a flessione eseguita alla sezione di testa del pilastro, ossia alla sezione di attacco con la trave ribassata del solettone di copertura.

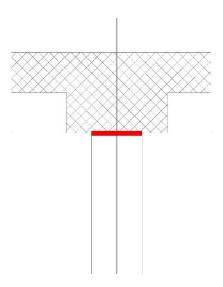
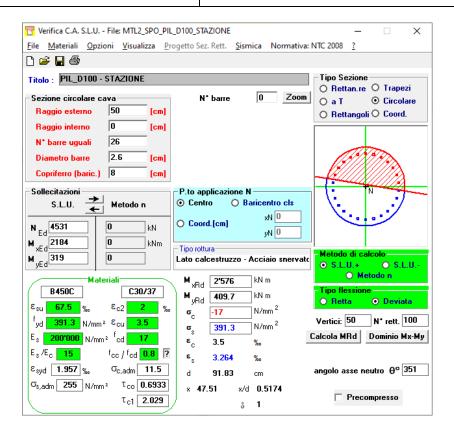



Figura 304. Pilastri – Sezione di verifica

Relazione di calcolo strutture interne stazione

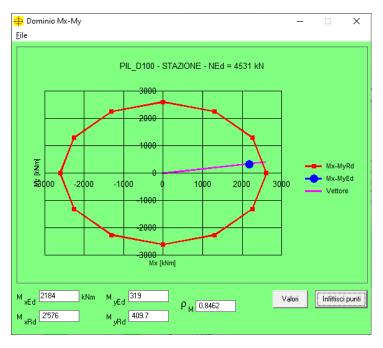


Figura 305. Pilastri – Verifica sezione più sollecitata

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Per la verifica a taglio si considera un pilastro a sezione quadrata di area equivalente avente lato L pari a 88cm, e barre di armatura distribuite sui quattro lati in modo uniforme.

Resistenza a taglio di progetto in direzione X e Y – valore per unità di lunghezza.

Tabella 41. Verifica a taglio – Platea di fondazione

CLS	C30/37		tipologia calcestruzzo
Acciaio	B450C		tipologia acciaio
f _{yk}	450	N/mm2	valore caratteristico della resistenza a trazione acciaio
f _{ck}	30.71	N/mm2	valore caratteristico della resistenza a compressione del cls
γc	1.5		coefficiente di sicurezza
С	80	mm	copriferro
d	800	mm	altezza utile sezione
k	1.50		
ρ_1	0.45%		rapporto geometrico di armatura longitudinale
V _{min}	0.356		
V_{Rd}	304.67	kN	
V _{Rd,min}	250.85	kN	
$V_{Rd,c}$	304.67	kN	resistenza a taglio NO armatura
NB	2		numero bracci
D	16	mm	diametro armatura a taglio
A _b	2.01	cm2	area barra armatura a taglio
A _{st}	4.02	cm2	area complessiva staffe
st	150	mm	passo staffe
γ_s	1.15		
α	90	•	
cotg teta	1		
V_{Rsd}	1132.59	kN	resistenza di progetto a taglio - lato acciaio
α_{c}	1		
ν	0.5		
f _{cd}	17.40	N/mm2	
V _{Rcd}	2756.53	kN	resistenza di progetto a taglio - lato calcestruzzo
VRd	1132.59	kN	resistenza a taglio CON armatura

Come riportato dalle immagini precedenti, la resistenza a taglio per elementi con armatura dedicata è superiore al taglio agente in ogni elemento. Si può ritenere la verifica soddisfatta.

20. VERIFICA DIAFRAMMI INTERNI PROVVISORI

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda sia allo SLV che allo SLU.

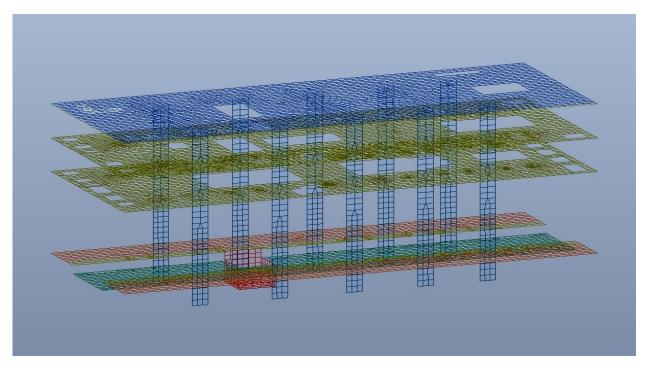


Figura 306. Diaframmi interni provvisori – Vista 3D

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

20.1 Sollecitazioni

Le immagini successive riportano le sollecitazioni per gli Stati Limite SLU per momento flettente, taglio e sforno normale.

Relazione di calcolo strutture interne stazione

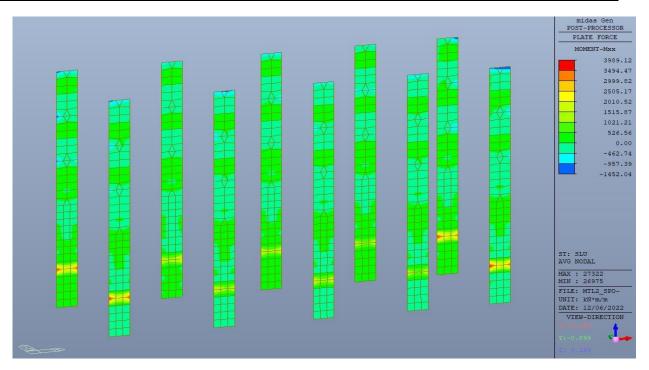


Figura 307. Diaframmi – Momento flettente M_{xx}

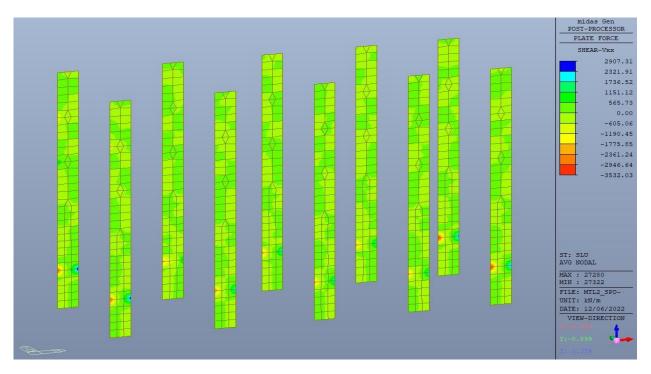


Figura 308. Diaframmi – Taglio agente V_{xx}

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

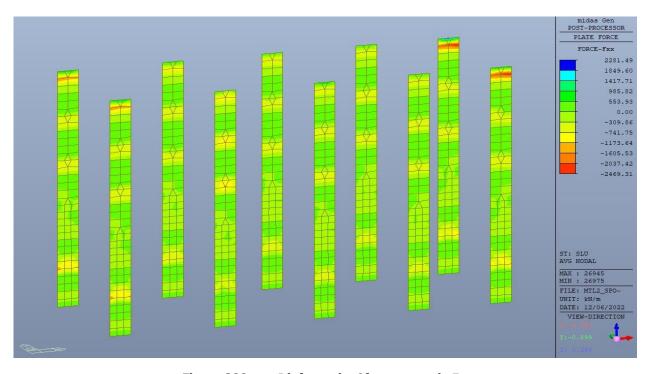


Figura 309. Diaframmi – Sforzo normale F_{xx}

20.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

					VERTICALE			ORIZZONTALE	
Tipologia	b [cm]	h [cm]	Ac [cm2]	As [cm2]	Asmin [cm2]	CK	As [cm2]	Asmin [cm2]	CK
Diaframma provvisorio	100	120	12000	116.82 99.44	-	=	31.40 31.40	-	-

Nelle immagini seguenti sono riportate le armature verticali e orizzontali

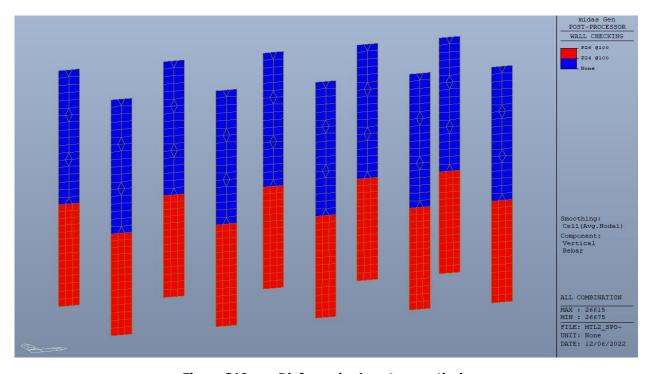


Figura 310. Diaframmi – Armatura verticale

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

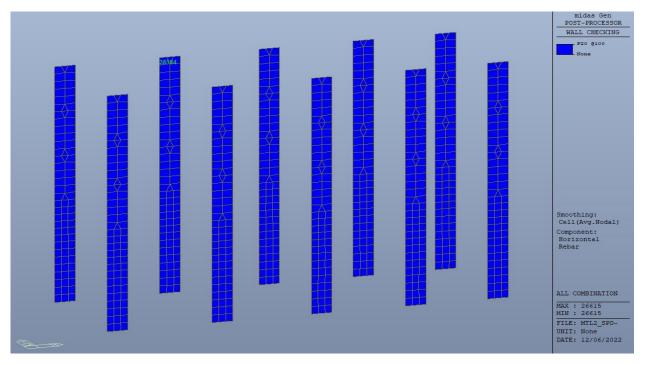


Figura 311. Diaframmi – Armatura orizzontale

Nelle seguenti immagini vengono riportati i massimi tassi di lavoro a flessione e taglio dei singoli elementi strutturali nelle due direzioni verticale e orizzontale evidenziando, nel caso, quelli con un valore superiore all'unità indicatore che la verifica in oggetto non è soddisfatta.

Relazione di calcolo strutture interne stazione

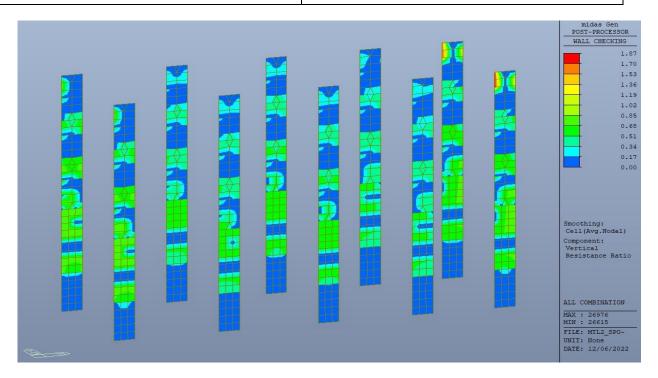


Figura 312. Diaframmi – Tasso di lavoro armatura verticale

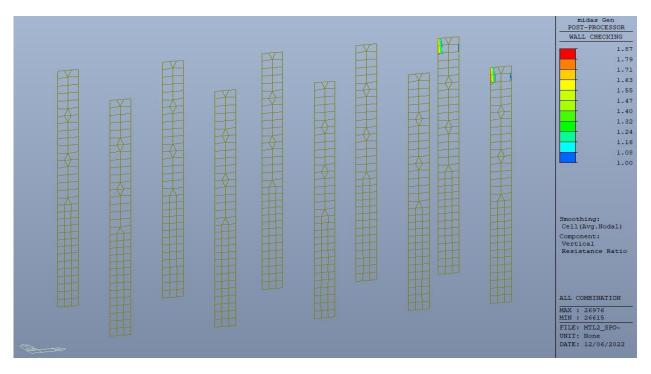


Figura 313. Diaframmi – Tasso di lavoro armatura verticale – Zone > 1

Relazione di calcolo strutture interne stazione

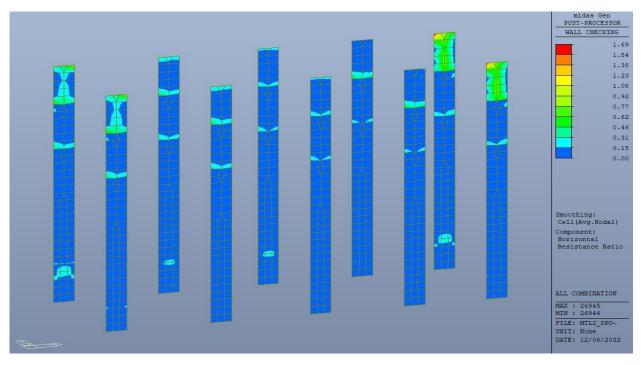


Figura 314. Diaframmi – Tasso di lavoro armatura orizzontale

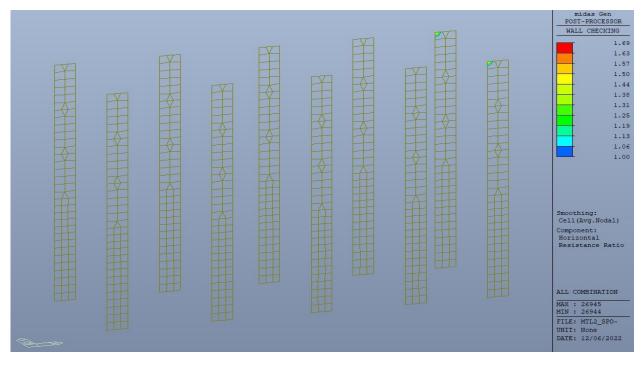


Figura 315. Diaframmi – Tasso di lavoro armatura orizzontale – Zone > 1

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

Per entrambe le direzioni, le zone con tasso di lavoro superiore all'unita sono localizzate e in numero ridotto rispetto alla totalità degli elementi, si può considerare la verifica soddisfatta.

Di seguitosi riportano il massimo sforzo normale in combinazione SLU da utilizzare per la verifica della capacità portante: 2541 kN.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

21. VERIFICA SCALONE DI ACCESSO PASSEGGERI

Lo scalone di accesso passeggeri è a pianta rettilinea avente larghezza 2.40m e caratterizzata da sei rampe e cinque pianerottoli intermedi di riposo; realizzata con soletta piena in c.a. dello spessore di 30 cm, data la sua lunghezza sono stati previsti tre appoggi intermedi.

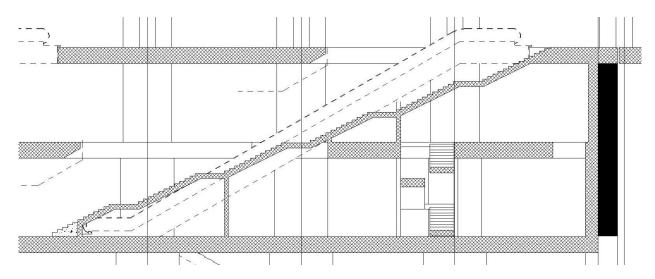


Figura 316. Scalone di accesso passeggeri - Sezione

Nel seguito si riportano sinteticamente i principali risultati delle analisi.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione di calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

21.1 Sollecitazioni

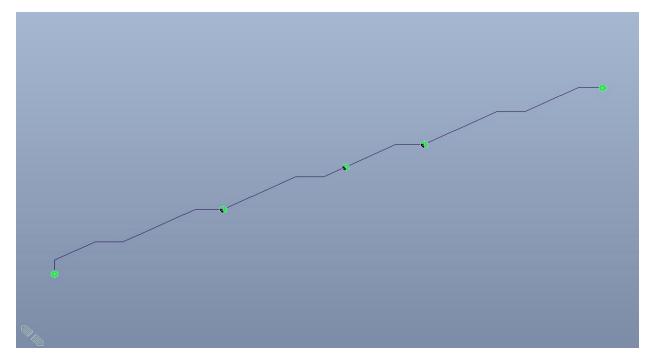


Figura 317. Scalone di accesso passeggeri – Schema statico

Le immagini successive riportano gli inviluppi delle sollecitazioni per gli Stati Limite SLU.

Relazione di calcolo strutture interne stazione

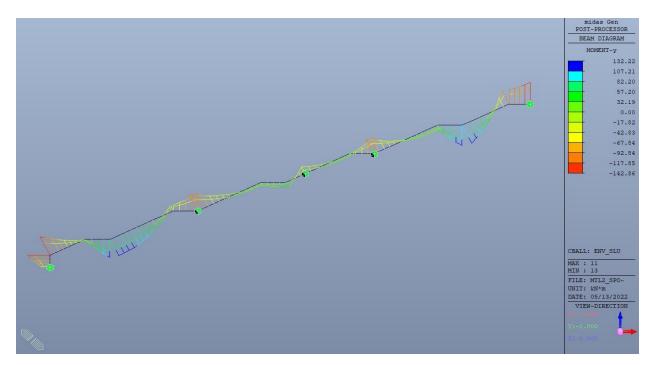


Figura 318. Scalone di accesso passeggeri – Inviluppo momento M_y - SLU

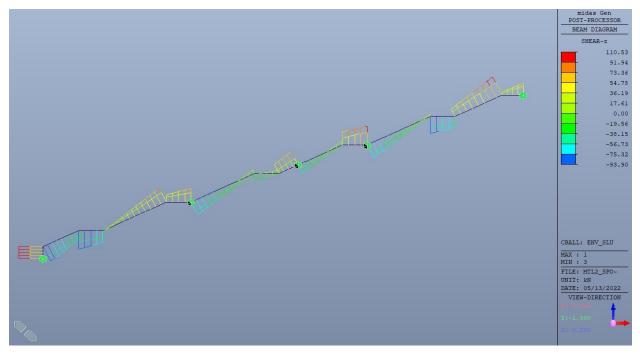


Figura 319. Scalone di accesso passeggeri – Inviluppo taglio V_z - SLU

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

Figura 320. Scalone di accesso passeggeri – Inviluppo sforzo normale N - SLU

21.2 Verifiche strutturali

Trattandosi di struttura a comportamento non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accodo con le regole di cui al par. 4.1 delle citate norme, senza nessun requisito aggiuntivo.

Come valore minimo dell'armatura longitudinale si è considerato quanto riportato nel par. 4.1.6 delle NTC2018, ossia il quantitativo minimo riportato per le travi pari a

$$A_{s,min} = 0.26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b_t \cdot h$$

dove:

- f_{ctm} è il valore medio della resistenza a trazione del cls;
- f_{vk} è il valore caratteristico della resistenza a trazione dell'armatura;
- b_t è la larghezza media della zona tesa;
- h è l'altezza della sezione.

Tabella 42. Armatura minima

Tipologia	b [cm]	h [cm]	A _c [cm ²]	A _s [cm ²]	A _{smin} [cm ²]	СК
Soletta H30	100	30	3000	13.40	5.02	OK

La verifica è stata condotta su una striscia di larghezza unitaria.

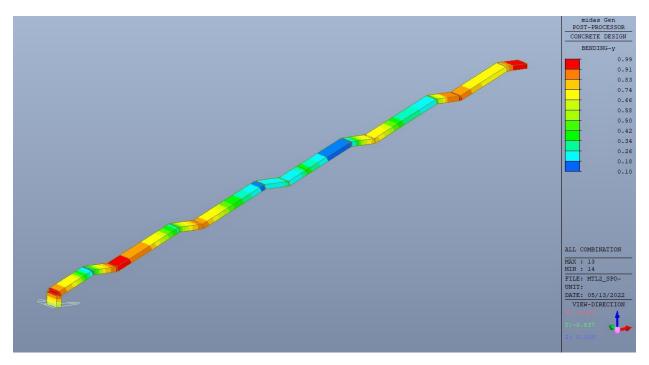


Figura 321. Scalone di accesso passeggeri - Tasso di lavoro flessione M_y - SLU

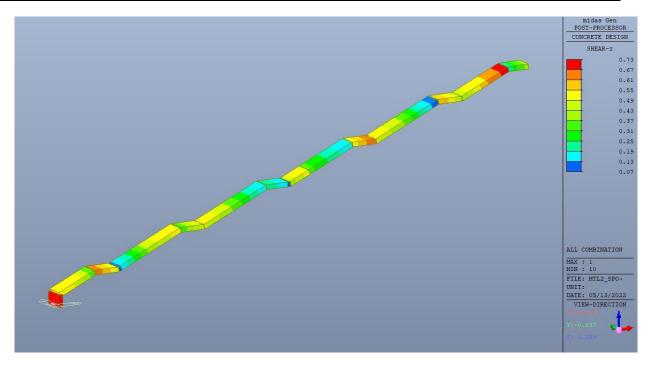


Figura 322. Scalone di accesso passeggeri – Tasso di lavoro taglio V_z – SLU

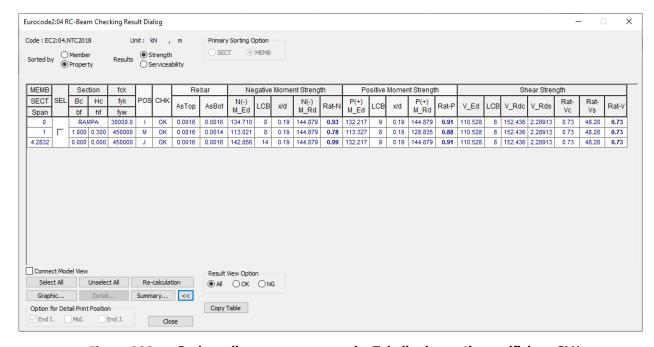


Figura 323. Scalone di accesso passeggeri – Tabella riassuntiva verifiche – SLU

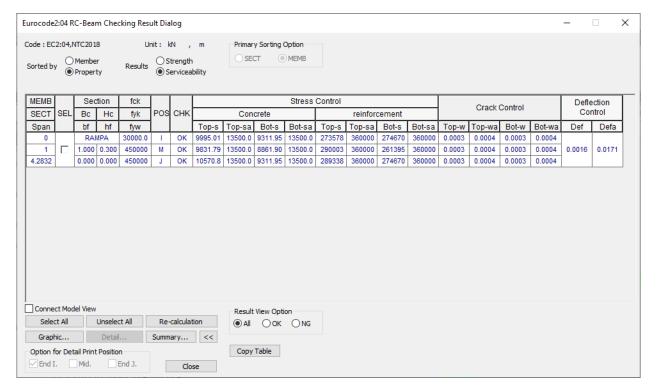


Figura 324. Scalone di accesso passeggeri – Tabella riassuntiva verifiche – SLE

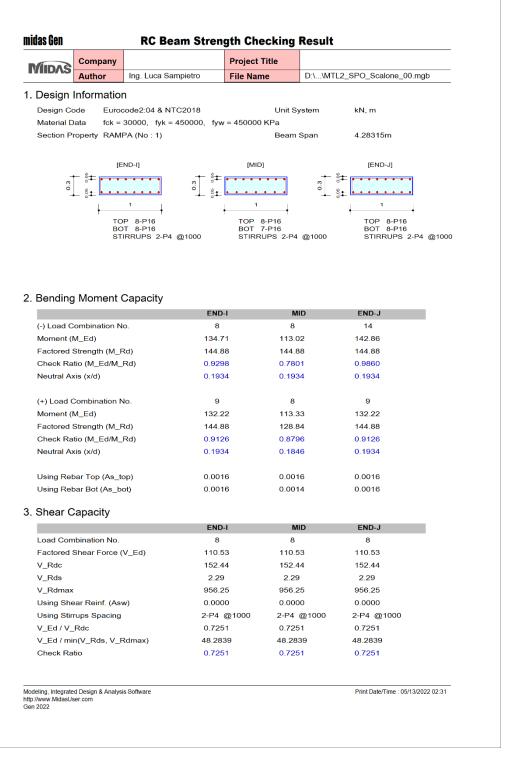


Figura 325. Scalone di accesso passeggeri – Verifica soletta

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

22. ROBUSTEZZA STRUTTURALE

Le azioni eccezionali sono quelle che si presentano in occasione di eventi quali incendi, esplosioni ed urti.

È opportuno che le costruzioni possiedano un grado adeguato di robustezza, in funzione dell'uso previsto della costruzione, individuando gli scenari di rischio e le azioni eccezionali rilevanti ai fini della sua progettazione

22.1 Incendio

Per incendio, si intende la combustione autoalimentata ed incontrollata di materiali combustibili presenti in un compartimento.

Ai fini della presente norma si fa riferimento ad un incendio convenzionale di progetto definito attraverso una curva di incendio che rappresenta l'andamento, in funzione del tempo, della temperatura media dei gas di combustione nell'intorno della superficie degli elementi strutturali. La curva di incendio di progetto può essere:

- nominale: curva adottata per la classificazione delle costruzioni e per le verifiche di resistenza al fuoco di tipo convenzionale;
- naturale: curva determinata in base a modelli d'incendio e a parametri fisici che definiscono le variabili di stato all'interno del compartimento.

Le prestazioni di resistenza al fuoco dei prodotti e degli elementi costruttivi possono essere determinate in base ai risultati di:

- a) prove;
- b) calcoli;
- c) confronti con tabelle.

In accordo con la Committenza, è stata fissata una classe di resistenza al fuoco delle strutture pari a R120.

In tale fase di progettazione viene applicato il metodo tabellare nel quale si verifica che le seguenti grandezze dimensionate con il calcolo a freddo

la distanza a delle armature dallo strato esterno (copriferro);

lo spessore minimo s dell'elemento strutturale;

siano uguali o maggiori dei valori minimi ritenuti sufficienti per la classificazione di elementi costruttivi resistenti al fuoco e riportati nelle successive tabelle.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

Dette condizioni non costituiscono un obbligo qualora si proceda alla determinazione delle prestazioni di resistenza al fuoco secondo gli altri metodi. I valori contenuti nelle tabelle sono il risultato di campagne sperimentali e di elaborazioni numeriche e si riferiscono alle tipologie costruttive e ai materiali di maggior impiego. Detti valori pur essendo cautelativi, non consentono estrapolazioni o interpolazioni tra gli stessi ovvero modifiche delle condizioni di utilizzo.

L'uso delle tabelle è strettamente limitato alla classificazione di elementi costruttivi per i quali è richiesta la resistenza al fuoco nei confronti della curva temperatura-tempo standard e delle altre azioni meccaniche previste in caso di incendio.

SOLETTE PIENE E SOLAI ALLEGGERITI

La tabella seguente riporta i valori minimi (mm) dello spessore totale H di solette e solai, della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito R per le classi indicate.

Tabella 43. Resistenza al fuoco - Solette piene/solai

Classe	30	60	90	120	180	240
Solette piene con armatura monodirezionale	H = 80 / a = 10	120 / 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai misti di lamiera di acciaio con riempimento di calcestruzzo (1)	H = 80 / a = 10	120 / 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai a travetti con alleggerimento (²)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75
Solai a lastra con alleggerimento (3)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di H e a ne devono tenere conto nella seguente maniera: 10 mm di intonaco normale (definizione in D.4.1) equivale a 10 mm di calcestruzzo; 10 mm di intonaco protettivo antincendio (definizione in D.4.1) equivale a 20 mm di calcestruzzo. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

- (1) In caso di lamiera grecata H rappresenta lo spessore medio della soletta. Il valore di a non comprende lo spessore della lamiera. La lamiera ha unicamente funzione di cassero. In caso contrario la lamiera va protetta secondo quanto indicato in D.7.1
- (2) Deve essere sempre presente uno strato di intonaco normale di spessore non inferiore a 20 mm ovvero uno strato di intonaco isolante di spessore non inferiore a 10 mm.
- (3) In caso di alleggerimento in polistirene o materiali affini prevedere opportuni sfoghi delle sovrapressioni.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

TRAVI IN CALCESTRUZZO ARMATO ORDINARIO E PRECOMPRESSO

La tabella seguente riporta i valori minimi (mm) della larghezza b della sezione, della distanza a dall'asse delle armature alla superficie esposta e della larghezza d'anima b_w di travi con sezione a larghezza variabile sufficienti a garantire il requisito R per le classi indicate di travi semplicemente appoggiate. Per travi con sezione a larghezza variabile b è la larghezza in corrispondenza della linea media delle armature tese.

Tabella 44. Resistenza al fuoco - Travi

Classe	combinazioni possibili di b e a			$b_{\rm w}$	
30	b = 80 / a = 25	120 / 20	160 / 15	200 / 15	80
60	b = 120 / a = 40	160 / 35	200 / 30	300 / 25	100
90	b = 150 / a = 55	200 / 45	300 / 40	400 / 35	100
120	b = 200 / a = 65	240 / 60	300 / 55	500 / 50	120
180	b = 240 / a = 80	300 / 70	400 / 65	600 / 60	140
240	b = 280 / a = 90	350 / 80	500 / 75	700 / 70	160

I valori di a devono essere non inferiore ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armature pre-tese aumentare i valori di a di 15 mm. In presenza di intonaco i valori di b e a ne possono tenere conto nella maniera indicata nella tabella D.5.1 Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

PILASTRI IN CALCESTRUZZO ARMATO ORDINARIO E PRECOMPRESSO

La tabella seguente riporta i valori minimi (mm) del lato più piccolo b di pilastri a sezione rettangolare ovvero del diametro di pilastri a sezione circolare e della distanza a dell'asse delle armature alla superficie esposta sufficienti a garantire il requisito R per le classi indicate di pilastri esposti su uno o più lati che rispettano le seguenti limitazioni:

lunghezza effettiva del pilastro (da nodo a nodo) \leq 6 m (per pilastri di piani intermedi) ovvero \leq 4,5 m (per pilastri dell'ultimo piano)

area complessiva di armatura $A_s \le 0.04$ A_c area efficace della sezione trasversale del pilastro.

Relazione di calcolo strutture interne stazione

3 MTL2T1A2DSTRSPOR003-0-1.DOCX

Tabella 45. Resistenza al fuoco - Pilastri

Classe	Esposto su più lati		Esposto su un lato
30	B = 200 / a = 30	300 / 25-	160 / 25
60	B = 250 / a = 45	350 / 40	160 / 25
90	B = 300 / a = 50	450 / 40	160 / 25
120	B = 350 / a = 60	450 / 50	180 / 35
180	B = 450/a = 70	-	230 / 55
240	-	-	300 / 70

I valori di a devono essere non inferiore ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pretesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

PARETI IN CALCESTRUZZO ARMATO ORDINARIO E PRECOMPRESSO

La tabella seguente riporta i valori minimi (mm) dello spessore s e della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito REI per le classi indicate di pareti portanti esposte su uno o due lati che rispettano le seguenti limitazioni:

altezza effettiva della parete (da nodo a nodo) \leq 6 m (per pareti di piani intermedi) ovvero \leq 4,5 m (per pareti dell'ultimo piano);

Tabella 46. Resistenza al fuoco - Pareti/Setti

Classe	Esposto su un lato	Esposto su due lati
30	s = 120 / a = 10	120 / 10
60	s = 130 / a = 10	140 / 10
90	s = 140 / a = 25	170 / 25
120	s = 160 / a = 35	220 / 35
180	s = 210/a = 50	270 / 55
240	s = 270/a = 60	350 / 60

I valori di a devono essere non inferiore ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

Come si evince dalla tabella seguente, tutti i copriferri prescritti per il calcolo a freddo risultano maggiori dei valori minimi per la classe di resistenza R120 richiesta.

Tabella 47. Copriferri a freddo

Elemento	Copriferro minimo (mm)
DIAFRAMMI	75
FONDAZIONE E STRUTTURE INTERNE	40
PILASTRI	45

Eventuali analisi di resistenza al fuoco più approfondite potranno essere eseguite in fase di stesura del progetto esecutivo di dettaglio.

CI	TTA' DI TORINO	Metropolitana di Torino – Linea 2 Tratta: Politecnico - Rebaudengo Lotto Costruttivo 2: Bologna - Politecnico Stazione Politecnico
Relazione d	li calcolo strutture interne stazione	3_MTL2T1A2DSTRSPOR003-0-1.DOCX

22.2 Sovraresistenza

Per garantire che la struttura possegga il grado di robustezza desiderato è necessario progettare adeguati dettagli costruttivi capaci di assorbire una significativa energia di deformazione senza giungere alla rottura, in modo da aumentare la sopravvivenza della struttura dopo un evento eccezionale.

Ciò è possibile realizzando una sufficiente iperstaticità della struttura per facilitare il trasferimento delle azioni sfruttando percorsi di carico alternativi, ossia dotare la struttura di un "serbatoio di resistenza" (sovraresistenza) a cui possa attingere durante un evento eccezionale.

Per la porzione interrata della stazione, tale iperstaticità è stata realizzata nel collegamento tra gli orizzontamenti e i diaframmi esterni in quanto:

- in fase di verifica dei solettoni i vincoli con i diaframmi laterali sono stati modellati come cerniere in modo da massimizzare i momenti positivi nella porzione tra i diaframmi laterali e i diaframmi interni;
- in fase di verifica dei diaframmi il vincolo in testa è stato modellato come cerniera in modo da massimizzare il momento positivo lungo l'asse dell'elemento;
- è stata comunque prevista un'armatura al negativo in corrispondenza del collegamento solettone/diaframma esterno in grado di resistere ad un momento di incastro perfetto.

23. GIUDIZIO MOTIVATO DI ACCETTABILITA' DEI RISULTATI

In accordo al §10.2.1 delle NTC18, nel seguente capitolo si riporta la valutazione dell'accettabilità dei risultati ottenuti mediante il programma ad elementi finiti Midas Gen.

Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In particolare sono state condotte verifiche di equilibrio tra reazioni vincolari e carichi applicati, comparando, per i diversi casi di carico statici, le reazioni vincolari verticali (R_z) ottenute dall'analisi e dalle valutazioni semplificate.

Rz₁ [kN] ∆ [%] CARICHI R₇₂ [kN] **SW** 428088 406684 95% 131059 135333 103% G2 QE 58660 57550 98% 15295 102% 15601 QC5 61721 62130 101% QVC

Tabella 48. Confronto reazioni vincolari

Dove:

- SW è il peso proprio delle strutture modellate;
- G2 sono i carichi permanenti portati (vedere cap. 7.4);
- QE è il carico variabile di cat. E (vedere cap. 7.4);
- QC5 è il carico variabile di cat.C5 (vedere cap. 7.4);
- OVC sono i carichi veicolari (vedere cap. 7.4);
- R_{Z1} è la somma di tutte le reazioni vincolari dell'analisi;
- R_{Z2} è la somma di tutte le reazioni vincolari della valutazione semplificata;
- Δ è la differenza tra i due valori.

Come si evience dalla tabella precedente, le differenze sono contenute all'interno del range ±4%.

Si ritiene pertanto che tale confronto dimostri la robustezza e validità delle analisi effettuate.

