MINISTERO DELLE INFRASTRUTTURE E DELLA MOBILITÀ SOSTENIBILI STRUTTURA TECNICA DI MISSIONE

COMUNE DI TORINO

METROPOLITANA AUTOMATICA DI TORINO LINEA 2 – TRATTA POLITECNICO – REBAUDENGO

PROGETTAZIONE DEFINITIVA

Lotto Costruttivo 2: Bologna - Politecnico

PROGETTO														
DIRETTORE PROGETTAZIONE Responsabile integrazione discipline specialistiche	IL PROGETTISTA							er la mol				INFR	RATRASPO	ORTI.TO S.r.l.
Ing. R. Crova Ordine degli Ingegneri della Provincia di Torino n. 6038S	Ing. F. Rizzo Ordine degli Ingegneri della Provincia di Torino n. 9337K	STRUTTURE E METODI COSTRUTTIVI STAZIONI PROFONDE – STAZIONE PASTRENGO RELAZIONE DI CALCOLO STRUTTURE INTERNE STAZIONE												
					ELAE	3OR	ATO				RE Int.	V. Est.	SCALA	DATA
BIM MANAGER Geom. L. D'Accardi			L2	T1	A2	D	STR	SPA	R	002	0	1	-	30/09/2022

AGGIORNAMENTI Fg. 1 di 1

REV.	DESCRIZIONE	DATA	REDATTO	CONTROLLATO	APPROVATO	VISTO
0	EMISSIONE	22/12/21	SSf	ECA	FRI	RCR
1	EMISSIONE FINALE A SEGUITO DI VERIFICA PREVENTIVA	30/09/22	SSf	ECA	FRI	RCR
-		-	-	-	-	-
-		-	-	-	-	-

L	OTTO 2	CARTELLA	9.2.4	2	MTL2T1A2D	STRSPAR002
---	--------	----------	-------	---	-----------	------------

STAZIONE APPALTANTE

DIRETTORE DI DIVISIONE INFRASTRUTTURE E MOBILITÀ Ing. R. Bertasio

RESPONSABILE UNICO DEL PROCEDIMENTO Ing. A. Strozziero

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

INDICE

1.	PREMESSA	7
1.1	SCOPO E CAMPO DI APPLICAZIONE	8
1.2	DESCRIZIONE DELLE OPERE	8
2.	NORMATIVE DI RIFERIMENTO	10
3.	CARATTERISTICHE DEI MATERIALI	13
3.1 3.1.1 3.1.2	CALCESTRUZZI CALCESTRUZZO UTILIZZATO PER I SOLAI DI STAZIONE E STRUTTURE INTERNE CALCESTRUZZO UTILIZZATO PER DIAFRAMMI	13 13 13
3.2	ACCIAI PER ARMATURE IN C.A.	14
3.3	ACCIAIO PER CARPENTERIA METALLICA	14
4.	CARATTERIZZAZIONE GEOTECNICA	15
5.	PRINCIPALI ASSUNZIONI DELLA PROGETTAZIONE	17
5.1	ANALISI NUMERICHE E PROGETTAZIONE STRUTTURALE	17
5.2	CARATTERIZZAZIONE SISMICA	18
5.3	COMBINAZIONI DI CARICO	19
5.4	CRITERI DELLA MODELLAZIONE NUMERICA	20
5.4.1 5.4.1.1	Carichi Azione sismica	20 20
5.4.1.1	AZIONE SISTIICA	20
6.	ANALISI NUMERICHE E VERIFICHE STRUTTURALI	22
6.1	LA SOVRASTRUTTURA E LE STRUTTURE INTERNE PRINCIPALI	22
6.1.1	GENERALITÀ MODELLO GENERALITÀ	22
6.1.2 6.1.3	Modello strutturale Carichi e combinazioni	24 26
6.1.4	RISULTATI E VERIFICHE STRUTTURALI	33
6.1.4.1	Soletta di copertura	34
6.1.4.2	Soletta intermedia livello atrio	42
6.1.4.3	Soletta intermedia livello primo mezzanino	49
6.1.4.4	Soletta intermedia livello secondo mezzanino	56
6.2	SOLETTA DI FONDAZIONE	64
6.2.1	GENERALITÀ	64
6.2.2	CARICHI E COMBINAZIONI	66
6.2.3	RISULTATI E VERIFICHE STRUTTURALI	69
6.3	ALTRE STRUTTURE INTERNE	76

Stazione Pastrengo – Relazione di calcolo strutture interne stazione MTL2T1A2DSTRSPAR002-0-1

6.3.1	GENERALITÀ	76
6.3.2	FODERE INTERNE	76
6.3.2.1	Analisi dei carichi	77
6.3.2.2	Combinazione dei carichi	81
6.3.2.3	Risultati dell'analisi	82
6.3.2.4	Verifiche strutturali	83
6.3.3	BANCHINE E MURI SOTTO BANCHINE	87
6.3.3.1	Risultati dell'analisi	90
6.3.3.2	Verifiche strutturali	92
6.3.4	SCALE FISSE	96
6.3.4.1	Carichi e combinazioni	97
6.3.4.2	Risultati dell'analisi	99
6.3.4.3	Verifiche strutturali	102
6.3.5.	VASCA AGGOTTAMENTO	110
6.3.5.1.	Carichi e combinazioni	111
6.3.4.4	Risultati dell'analisi	112
6.3.4.5	Verifiche strutturali	114
6.4	VALIDAZIONE DEI MODELLI DI CALCOLO	118
ALLEGA [*]	то а	120
ALLEGA [*]	то в	127
ALLEGA [*]	то с	132
ALLEGA [*]	то D	137
ALLEGA [*]	то е	142
ALLEGA [*]	TO F	147
ALLEGA [*]	то G	154
ALLEGA [*]	то н	158

INDICE DELLE FIGURE

Figura 1.	Key-plan della linea 2 – tratta funzionale Politecnico-Rebaudengo	7
Figura 2.	Modello 3D – Stazione Pastrengo	8

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Figura 3.	Stralcio stratigrafia stazione Pastrengo	15
Figura 4.	Schematizzazione metodo di Wood	21
Figura 5.	Modello di visualizzazione	22
Figura 6.	Modello 3D schematico	23
Figura 7.	Soletta di copertura (livello strada)	24
Figura 8.	Soletta intermedia (livello atrio)	25
Figura 9.	Soletta intermedia (livello primo mezzanino)	25
Figura 10.	Soletta intermedia (livello secondo mezzanino)	26
Figura 11.	Carichi permanenti sulla soletta di copertura	27
Figura 12.	Carichi variabili sulla soletta di copertura	28
Figura 13.	Carichi permanenti sulla soletta intermedia – livello atrio	29
Figura 14.	Carichi variabili sulla soletta di intermedia – livello atrio	29
Figura 15.	Carichi permanenti sulla soletta intermedia – primo mezzanino	30
Figura 16.	Carichi variabili sulla soletta di intermedia – primo mezzanino	31
Figura 17.	Carichi permanenti sulla soletta intermedia – secondo mezzanino	32
Figura 18.	Carichi variabili sulla soletta di intermedia – secondo mezzanino	32
Figura 19.	Deformazione della struttura sotto carichi gravitazionali	33
Figura 20.	Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale	35
Figura 21.	Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale	35
Figura 22.	Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale	36
Figura 23.	Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale	36
Figura 24.	Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione longitudinale	37
Figura 25.	Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione longitudinale	37
Figura 26.	Taglio massimo	38
Figura 27.	Momento flettente M22 (direzione trasversale) – SLE	39
Figura 28.	Momento flettente M11 (direzione longitudinale) – SLE	39
Figura 29.	Deformazione verticale Uz – SLE	41
Figura 30.	Acciaio di rinforzo As (cm²/cm) faccia inferiore – direzione trasversale	43
Figura 31.	Acciaio di rinforzo As (cm²/cm) faccia superiore – direzione trasversale	43
Figura 32.	Acciaio di rinforzo As (cm²/cm) faccia inferiore – direzione longitudinale	44
Figura 33.	Acciaio di rinforzo As (cm²/cm) faccia superiore – direzione longitudinale	44
-	Taglio massimo	45
Figura 35.	Momento flettente M22 (direzione trasversale) – SLE	46
Figura 36.	Momento flettente M11 (direzione longitudinale) – SLE	46
Figura 37.	Deformazione verticale Uz – SLE	48
Figura 38.	Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale	50
Figura 39.	Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale	50
Figura 40.	Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione longitudinale	51
Figura 41.	Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione longitudinale	51

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Figura 42. Taglio massimo	52
Figura 43. Momento flettente M22 (direzione trasversale) – SLE	53
Figura 44. Momento flettente M11 (direzione longitudinale) – SLE	53
Figura 45. Deformazione verticale Uz – SLE	55
Figura 46. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale	57
Figura 47. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale	57
Figura 48. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione longitudinale	58
Figura 49. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione longitudinale	58
Figura 50. Taglio massimo	59
Figura 51. Momento flettente M22 (direzione trasversale) – SLE	60
Figura 52. Momento flettente M11 (direzione longitudinale) – SLE	60
Figura 53. Deformazione verticale Uz – SLE	62
Figura 54. Modello solettone di fondo	64
Figura 55. Carichi gravitazionali dalla sovrastruttura	67
Figura 56. Sottopressione idrostatica a lungo termine	68
Figura 57. Deformazione della soletta di fondo	69
Figura 58. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale	70
Figura 59. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale	70
Figura 60. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione longitudinale	71
Figura 61. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione longitudinale	71
Figura 62. Taglio massimo	72
Figura 63. Momento flettente M22 (direzione trasversale) – SLE	73
Figura 64. Momento flettente M11 (direzione longitudinale) – SLE	74
Figura 65. Deformazione verticale Uz – SLE	75
Figura 106. Momento flettente M22 (direzione trasversale)	121
Figura 107. Momento flettente M11 (direzione longitudinale)	121
Figura 108. Forza di taglio V13	122
Figura 109. Forza di taglio V23	122
Figura 110. Momento flettente M22 (direzione trasversale)	128
Figura 111. Momento flettente M11 (direzione longitudinale)	128
Figura 112. Forza di taglio V13	129
Figura 113. Forza di taglio V23	129
Figura 114. Momento flettente M22 (direzione trasversale)	133
Figura 115. Momento flettente M11 (direzione longitudinale)	133
Figura 116. Forza di taglio V13	134
Figura 117. Forza di taglio V23	134
Figura 118. Momento flettente M22 (direzione trasversale)	138
Figura 119. Momento flettente M11 (direzione longitudinale)	138
Figura 120. Forza di taglio V13	139

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

Figura 121. Forza di taglio V23	139
Figura 122. Momento flettente M22 (direzione trasversale)	143
Figura 123. Momento flettente M11 (direzione longitudinale)	143
Figura 124. Forza di taglio V13	144
Figura 125. Forza di taglio V23	144

Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo

Lotto Costruttivo 2: Bologna-Politecnico

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

INDICE DELLE TABELLE

rabella i Parametri geotecnici	Τρ
Tabella 2 Parametri colonne Jet grouting	16
Tabella 3 Livelli di falda	16
Tabella 4 Probabilità di superamento PVR con SLV	18
Tabella 5 Parametri sismici del sito	18
Tabella 6 Coefficienti parziali per le azioni o per l'effetto delle azioni (Tab. 6.2.I)	19
Tabella 7 Coefficienti parziali per i parametri geotecnici del terreno (Tab. 6.2.II)	20
Tabella 8 Coefficienti parziali per le verifiche agli stati limite ultimi STR e GEO di muri di	
sostegno (Tab. 6.5.I)	20
Tabella 9 Armature soletta di copertura	38
Tabella 10 Capacità delle sezioni tipologiche	40
Tabella 11 Verifica deformazione	42
Tabella 12 Armature della soletta intermedia (Atrio)	45
Tabella 13 Capacità delle sezioni tipologiche	47
Tabella 14 Verifica deformazione	49
Tabella 15 Armature della soletta intermedia (Primo mezzanino)	52
Tabella 16 Capacità delle sezioni tipologiche	54
Tabella 17 Verifica deformazione	56
Tabella 18 Armature della soletta intermedia (Secondo mezzanino)	59
Tabella 19 Capacità delle sezioni tipologiche	61
Tabella 20 Verifica deformazione	63
Tabella 21 Armature soletta di fondo	72
Tabella 22 Capacità delle sezioni tipologiche	74
Tabella 23 Verifica deformazione	75
Tabella 24 Spessore delle fodere	77
Tabella 25 Calcolo carichi da quota -3,30m a -7,95m	78
Tabella 26 Calcolo carichi da quota -9,15m a -13,80m	78
Tabella 27 Combinazione dei carichi	81
Tabella 28 Armature fodere	84
Tabella 29 Verifica deformazione	86
Tabella 30 Verifica deformazione	95
Tabella 31 Verifica deformazione	109
Tabella 32 Verifica deformazione	118
Tabella 1. Tabella 25 Risultati estratti da Plaxis e SAP2000 con la variazione percentuale	119
Tabella 33 Calcolo incremento dinamico	148

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

1. PREMESSA

La presente relazione si inserisce nell'ambito dell'affidamento dei servizi di ingegneria relativi alla Progettazione Definitiva della tratta Politecnico-Rebaudengo 1 della Linea 2 della Metropolitana, disciplinato dal Contratto tra la Città di Torino e la società Infratrasporti.TO s.r.l., ed ha per oggetto le analisi strutturali e le verifiche relative alle strutture interne della Stazione Pastrengo.

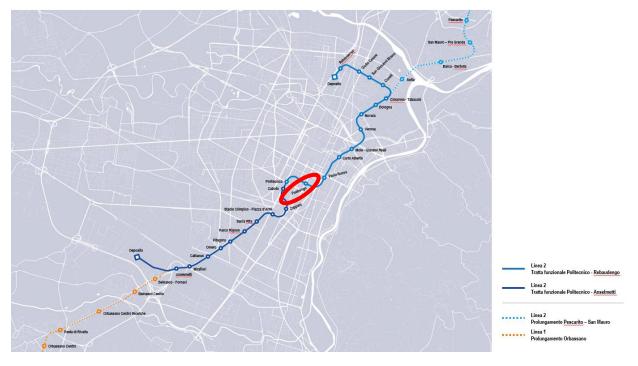


Figura 1. Key-plan della linea 2 – tratta funzionale Politecnico-Rebaudengo

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

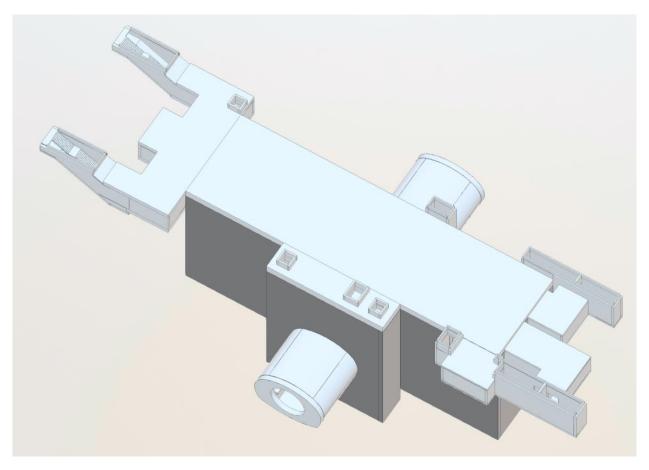


Figura 2. Modello 3D – Stazione Pastrengo

1.1 Scopo e campo di applicazione

In questa relazione sono stati presentati gli studi numerici e le verifiche strutturali relative alle strutture permanenti e alle barrette provvisorie realizzate per sostenere le solette di copertura e quelle intermedie durante le fasi di scavo.

1.2 Descrizione delle opere

La stazione Pastrengo è un manufatto interrato a quattro livelli, con fondo scavo posto alla profondità di -27.3 m rispetto al piano campagna. Al suo interno troviamo un solettone di fondo di spessore variabile e sagomato per consentire il passaggio a vuoto della TBM, un livello quota banchina, tre solai intermedi ed uno di copertura il cui estradosso è posto ad una quota pari a -1.80 m rispetto al piano campagna.

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

La stazione è realizzata con la tecnica del top-down e sarà caratterizzata da uno scavo sostenuto da diaframmi contrastati da solai permanenti. I diaframmi presentano spessore di 1.20 m ed un immorsamento al di sotto del fondo scavo di 10.0 m. al fine di garantire l'impermeabilità del fondo scavo viene realizzato un tampone di fondo in jet-grouting.

Il sistema di costruzione dei diaframmi in calcestruzzo armato consiste nel realizzare prima i primari e poi i secondari con una sovrapposizione compresa tra i 10 e i 30cm. In relazione a tale tecnica esecutiva, anche le gabbie di armatura saranno calibrate per prevedere la sovrapposizione dei diaframmi secondari sui primari. L'esecuzione delle paratie è preceduta dalla costruzione di coree guida che seguono il tracciato.

Il collegamento tra il solaio e le paratie è realizzato per mezzo di tasche d'appoggio rettangolari, realizzate grazie all'inserimento di scatole metalliche, già assemblate nelle gabbie d'armatura dei diaframmi.

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

2. NORMATIVE DI RIFERIMENTO

La progettazione è stata realizzata facendo riferimento alle Normative Nazionali sottoelencate:

- Legge nº1086 del 05/11/1971: "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica"
- DM 17 gennaio 2018: Aggiornamento delle "Norme Tecniche per le costruzioni" (GU n.42 del 20/02/2018);
- 3. Circolare 21 gennaio 2019 n.7: Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"»
- 4. D.M. 21/10/2015: "Approvazione della regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio delle metropolitane";
- 5. D.M. 16/02/2007 Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione.
- 6. UNI 9502-2001: "Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso".
- 7. UNI 9503-2007: "Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi in acciaio".
- 8. UNI EN 206-1:2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità".
- 9. UNI 11104-2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".
- 10. Legge 2 febbraio 1974, n. 64: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"
- 11. D.G.R. 30 Dicembre 2019, n. 6-887: "Presa d'atto e approvazione dell'aggiornamento della classificazione sismica del territorio della Regione Piemonte"

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

12. D.G.R. 26 Novembre 2021, n. 10-4161: "Approvazione delle nuove procedure di semplificazione attuative di gestione e controllo delle attivita' urbanistico-edilizie ai fini della prevenzione del rischio sismico".

Quando necessario, saranno altresì assunti a riferimento i Codici Normativi Europei elencati di sequito:

Eurocode 0 - Basis of structural design

EN 1990 Basis of structural design.

Eurocode 1 - Actions on structures

- EN 1991-1-1 Part 1-1: General actions Densities, self-weight, imposed loads for buildings
- EN 1991-1-2 Part 1-2: General actions Actions on structures exposed to fire.
- EN 1991-1-3 Part 1-3: General actions Snow loads.
- EN 1991-1-4 Part 1-4: General actions Wind actions.
- EN 1991-1-5 Part 1-5: General actions Thermal actions.
- EN 1991-1-6 Part 1-6: General actions Actions during execution.
- EN 1991-1-7 Part 1-7: General actions Accidental Actions.
- EN 1991-2 Part 2: Traffic loads on bridges.
- EN 1991-3 Part 3: Actions induced by cranes and Machinery.
- EN 1991-4 Part 4: Silos and tanks.

Eurocode 2 - Design of concrete structures

- EN 1992-1-1 Part 1-1: General rules and rules for Buildings.
- EN 1992-1-2 Part 1-2: General rules Structural fire Design.
- EN 1992-3 Part 3: Liquid retaining and containment Structures.

Eurocode 3 - Design of steel structures

- EN 1993-1-1 Part 1-1: General rules and rules for Buildings
- EN 1993-1-2 Part 1-2: General rules Structural fire design
- EN 1993-1-3 Part 1-3: General rules Supplementary rules for cold-formed members and sheeting
- EN 1993-1-4 Part 1-4: General rules Supplementary rules for stainless steels
- EN 1993-1-5 Part 1-5: Plated structural elements
- EN 1993-1-6 Part 1-6: Strength and Stability of Shell Structures
- EN 1993-1-7 Part 1-7: Plated structures subject to out of plane loading
- EN 1993-1-8 Part 1-8: Design of joints

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo	MTL2T1A2DSTRSPAR002-0-1	

- EN 1993-1-9 Part 1-9: Fatigue
- EN 1993-1-10 Part 1-10: Material Toughness and through-thickness properties
- EN 1993-1-11 Part 1-11: Design of structures with tension components
- EN 1993-1-12 Part 1-12: Additional rules for the extension of EN 1993 up to steel grades S 700
- EN 1993-2 Part 2: Steel Bridges
- EN 1993-3-1 Part 3-1: Towers, masts, and chimneys -Towers and masts
- EN 1993-3-2 Part 3-2: Towers, masts, and chimneys Chimneys
- EN 1993-4-1 Part 4-1: Silos
- EN 1993-4-2 Part 4-2: Tanks
- EN 1993-4-3 Part 4-3: Pipelines
- EN 1993-5 Part 5: Piling
- EN 1993-6 Part 6: Crane supporting structures

Eurocode 4 - Design of composite steel and concrete structures

- EN 1994-1-1 Part 1-1: General rules and rules for Buildings
- EN 1994-1-2 Part 1-2: General rules Structural Fire Design
- EN 1994-2 Part 2: General rules and rules for bridges

Eurocode 7 - Geotechnical design

- EN 1997-1 Part 1: General rules
- EN 1997-2 Part 2: Ground investigation and testing
- EN 1997-3 Part 3: Design assisted by field testing

Eurocode 8 – Design of structures for earthquake resistance

- EN 1998-1 Part 1: General rules, seismic actions, and rules for buildings
- EN 1998-2 Part 2: Bridges
- EN 1998-3 Part 3: Assessment of retrofitting of buildings
- EN 1998-4 Part 4: Silos, tanks, and pipelines
- EN 1998-5 Part 5: Foundations, retaining structures and geotechnical aspects
- EN 1998-6 Part 6: Towers, masts, and chimneys

Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo

Lotto Costruttivo 2: Bologna-Politecnico

Stazione Pastrengo – Relazione di calcolo

strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

3. CARATTERISTICHE DEI MATERIALI

3.1 Calcestruzzi

3.1.1 Calcestruzzo utilizzato per i solai di stazione e strutture interne

Tipo: C30/37

Modulo di deformazione: E_c=32000 MPa

Resistenza caratteristica cubica: R_{ck}=37 MPa

Resistenza caratteristica cilindrica: f_{ck} =30 MPa

Peso per unità di volume: Y=25 KN/m³

Classe di Esposizione XC3 (Calcestruzzo all'interno di edifici con

umidità dell'aria moderata oppure elevata / Calcestruzzo esposto all'esterno protetto dalla

pioggia)

3.1.2 Calcestruzzo utilizzato per diaframmi

Tipo: C25/30

Modulo di deformazione: $E_c=30000 \text{ MPa}$

Resistenza caratteristica cubica: R_{ck} =30 MPa

Resistenza caratteristica cilindrica: $f_{ck}=25 \text{ MPa}$

Peso per unità di volume: $\Upsilon=25 \text{ KN/m}^3$

Classe di Esposizione XC2 (Superfici di calcestruzzo a contatto con

acqua per lungo tempo / Molte fondazioni)

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

3.2 Acciai per armature in c.a.

Tipo B450C saldabile (ex FeB44K saldabile), per diametri compresi tra 6 e 40 mm:

f_{ynom}=450 MPa

 $f_{tnom} = 540 \text{ MPa}$

 $f_{yk} \ge f_{ynom}$ frattile 5%

 $f_{tk} \ge f_{tnom}$ frattile 5%

 $1.15 \le (f_t/f_y) \text{ k} \le 1.35 \text{ frattile } 10\%$

 (f_y/f_{ynom}) k \leq 1.25 frattile 10%

Allungamento $(A_{gt})k \ge 7.5\%$ frattile

10%

Reti e tralicci elettrosaldati:

 $f_{yk} \ge 450 \text{ MPa}$

 $f_{tk} \ge 540 \text{ MPa}$

 $(f_{tk}/f_{yk}) \ge 1.10$

3.3 Acciaio per carpenteria metallica

Tipo: S355 J0

t≤40mm 40mm<t≤80mm

Modulo di deformazione: $E_c=210 \text{ GPa}$ $E_c=210 \text{ GPa}$

Resistenza a snervamento caratteristica: f_{vk} =355 MPa f_{vk} =335 MPa

Resistenza a snervamento di progetto: f_{vd} =338 MPa f_{vd} =319 MPa

Resistenza a rottura caratteristica: $f_{yk}=510 \text{ MPa}$ $f_{yk}=470 \text{ MPa}$

Peso per unità di volume: $Y=78 \text{ KN/m}^3 \text{ y}=78 \text{ KN/m}^3$

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

4. CARATTERIZZAZIONE GEOTECNICA

Lo scavo della stazione denominata Pastrengo, come si evince dalla sezione stratigrafica riportata nel seguito, , è interessato da una coltre di terreno superficiale denominato Unità 1, seguito da strati di materiale ghiaioso/sabbioso con grado di cementazione variabile, denominate Unità 2/2B.

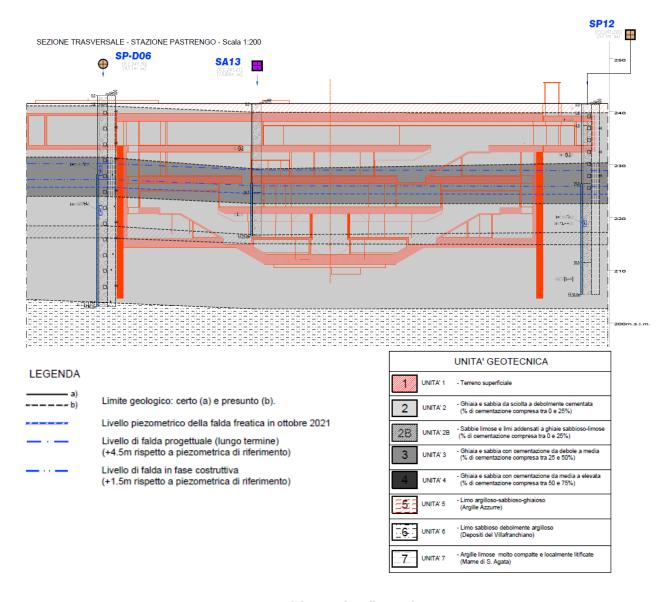


Figura 3. Stralcio stratigrafia stazione Pastrengo

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

I parametri geotecnici utilizzati per il presente progetto sono riportati nella seguente tabella:

Tabella 1 Parametri geotecnici

	γ	φ	С	ν	E
	[kN/m3]	[°]	[kPa]	[-]	[Mpa]
U1	19	29	0	0.3	15
U2	19	36	10	0.3	150
U7	20	28	25	0.35	150

I parametri utilizzati per la modellazione delle colonne di Jet grouting costituenti il tampone di fondo sono riassunti nella seguente tabella:

Tabella 2 Parametri colonne Jet grouting

Parametri JG					
γ	φ	С	UCS	E	v
[kN/m³]	[°]	[kPa]	[kPa]	[MPa]	[-]
22	36	150	590	450	0.3

Il livello della falda considerato è distinto per condizioni di breve periodo e lungo periodo considerando il livello di piano campagna ed è pari a:

Tabella 3 Livelli di falda

Livello piezometrico (da MTL2T1A0DGEOSPAT001)	-17,2	+224.55
Livello piezometrico di riferimento (2018)	-16,5	+225.05
B T (+1.5 da livello piezometrico di riferimento) - Fase costruttiva	-15,0	+226.55
L T (+3 da breve termine) - Ultimo stage	-12,0	+229.55

In via cautelativa tali livelli di falda sono piu' alti rispetto a queli indicati nel profilo geotecnico MTL2T1A0DGEOSPAT001-0-0 e tengono conto della campagna indagini del 2018.

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

5. PRINCIPALI ASSUNZIONI DELLA PROGETTAZIONE

5.1 Analisi numeriche e progettazione strutturale

Per l'analisi e la progettazione strutturale delle strutture interne definitive, ogni stazione è stata schematizzata utilizzando diversi modelli strutturali rappresentativi dei principali componenti costituenti la struttura.

Il primo corrisponde alla <u>sovrastruttura e alle strutture interne principali</u> per le quali è stato sviluppato un modello tridimensionale agli elementi finiti che considera il solaio di copertura e i solai intermedi.

Il secondo componente si tratta della soletta <u>di fondazione</u> per la quale è stato creato un modello bidimensionale agli elementi finiti con i carichi verticali considerando l'effetto dell'interazione tra la piastra di fondazione e il terreno con le fondazioni sottostanti.

Infine, per le <u>altre strutture interne</u>, sono stati sviluppati una serie di modelli specifici per detti componenti strutturali, tra cui spiccano le fodere interne e altri componenti secondari quali scale fisse, banchine, muri di sottobanchina, ecc., che consentono di determinare le sollecitazioni da considerare nei modelli precedenti.

L'analisi strutturale è stata implementata tramite i programmi Sap2000 di CSI e Robot di Autodesk. In tutti i casi sono stati utilizzati elementi di tipo "frame/beam" per modellare elementi unidimensionali come pilastri e travi, ed elementi "shell" per modellare elementi bidimensionali come solai, che sono stati disposti in corrispondenza del baricentro della sezione del componente strutturale.

Per la verifica strutturale degli stati limite di resistenza (SLU) e di esercizio (SLE), vengono utilizzati i fattori e le combinazioni dei carichi, nonché i coefficienti di sicurezza dei materiali indicati nelle NTC2018. I metodi di analisi utilizzati sono della tipo statico lineare.

Per lo stato limite di esercizio (SLE) vengono verificate le aperture delle fessure e le tensioni massime nei materiali ed in particolare, per considerare gli effetti del fluage a lungo termine del calcestruzzo sotto carichi costanti e per il controllo delle deformazioni, è prevista una riduzione del modulo di elasticità del calcestruzzo pari 2,75.

Per lo stato limite ultimo (SLU) vengono verificati gli elementi frame/beam soggetti a carico assiale, momento flettente e taglio, secondo le specifiche NTC2018. Negli elementi shell, per incorporare gli effetti dei momenti torsionali nella progettazione delle solette, viene utilizzato il metodo di Wood & Armer (1968). Questa metodologia è implicitamente incorporata nel cosiddetto sandwich *model* implementato nel programma Sap2000. (*Ref. Concrete shell reinforcement design. Technical Note. Design Information. CSI Computer and structures, inc. February 2017*).

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

5.2 Caratterizzazione sismica

Secondo quanto prescritto dal D.M. 17 gennaio 2018, ai fini delle verifiche di sicurezza delle strutture devono essere definiti i seguenti parametri:

- Vita nominale dell'opera: intesa come il numero di anni nei quali la struttura deve poter essere utilizzata per lo scopo al quale è stata destinata senza necessita di manutenzioni. Per l'opera oggetto di questo elaborato si considera una vita nominale VN=100 anni;
- Classe d'uso: in presenza di azioni sismiche, in relazione alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi z<d'uso. Nel caso in esame si fa riferimento alla classe d'uso III (coefficiente pari a 1.5);
- Periodo di riferimento per l'azione sismica: viene definito come il prodotto tra la vita nominale ed il coefficiente d'uso. Per il caso in esame il periodo di riferimento è di 150 anni.

A partire dalla posizione sul territorio nazionale dell'opera, e in dipendenza dei parametri su descritti, vengono definiti i parametri sismici necessari per le verifiche:

- Vita nominale dell'opera (V_N) : nel caso delle stazioni è di **100 anni**;
- Classe d'uso (Cu): In caso di costruzioni che prevedono affollamenti significativi la classe è III, a cui è associato un coefficiente di 1.5;
- *Periodo di riferimento (V_R)*: prodotto tra la vita nominale e la classe d'uso ed è pari a **150 anni**.
- Periodo di ritorno (T_R): $T_R = -V_R$ / In (1- P_{VR}), considerando P_{VR} la probabilità di superamento nel periodo di riferimento e considerando la condizione SLV, ovvero lo stato limite di salvaguardia della vita.

Tabella 4 Probabilità di superamento PVR con SLV

VN [anni]	Cu	VR [anni]	PVR	TR [anni]
100	1.5	150	10%	1424

In relazione al tempo di ritorno e alla probabilità di superamento dello stato limite considerato è possibile dedurre i parametri di accelerazione massima (a_g) e i parametri spettrali (F_0, T^*c) .

Tabella 5 Parametri sismici del sito

Stazione	a _g [g]	F0	T*c [sec]
PASTRENGO	0.067	2.890	0.292

Vi saranno effetti amplificativi dovuti alla stratigrafia ed alla topografia del suolo, tenuti in conto con i seguenti coefficienti:

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

- Coefficiente topografico (S_T) : per superfici pianeggianti è considerato pari a **1**.
- Coefficiente stratigrafico (S_S): Per sottosuolo di categoria B è considerato pari a 1.2.

Di conseguenza il valore dell'accelerazione orizzontale massima in superficie è:

$$a_{max}/g = S_s \cdot S_T \cdot a_g/g = 1.2 \cdot 1 \cdot 0.067 = 0.0804$$

5.3 Combinazioni di carico

In accordo con le NTC2018 le combinazioni di carico considerate e verificate nel seguito sono:

•	Stato limite di servizio	SLE
•	Stato limite ultimo verifiche STR: Combinazione A1+M1	SLU1
•	Stato limite ultimo verifiche GEO: Combinazione A2+M2	SLU2
•	Sisma verifiche STR: Combinazione A1 (unitari)+M1	SISMA STR
•	Sisma verifiche GEO: Combinazione A2 (unitari)+M2	SISMA GEO

A seconda della verifica che si intende effettuare, verranno utilizzati coefficienti che riducono i parametri meccanici di resistenza del terreno o coefficienti che amplificano gli effetti delle azioni.

In particolare, sono stati considerati i seguenti coefficienti per le verifiche:

Tabella 6 Coefficienti parziali per le azioni o per l'effetto delle azioni (Tab. 6.2.I)

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_{ extsf{F}}$ (o $\gamma_{ extsf{E}}$)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	ΥGI	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ _{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ G1

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

Tabella 7 Coefficienti parziali per i parametri geotecnici del terreno (Tab. 6.2.II)

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c'_k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	$\gamma_{ m cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 8 Coefficienti parziali per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno (Tab. 6.5.I)

 $ext{Tab. } 6.5. ext{I}$ - Coefficienti parziali $extstyle \gamma_{ extstyle R}$ per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

5.4 Criteri della modellazione numerica

5.4.1 Carichi

5.4.1.1 Azione sismica

L'azione sismica valutata secondo il metodo di Wood (1973), che fornisce la sovraspinta sismica del terreno su una parete interrata.

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

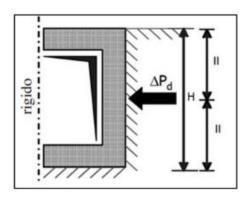
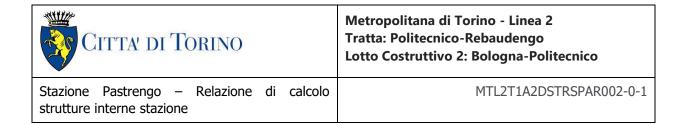


Figura 4. Schematizzazione metodo di Wood

Il metodo di Wood è utilizzato nel caso di manufatti scatolari e l'incremento di spinta legato al sisma può essere stimato secondo la relazione:

$$\Delta P_d = \frac{a_g}{g} \cdot S \cdot \gamma \cdot H^2$$


In cui γ è il peso specifico del terreno supposto uniforme, dove $\frac{a_g}{g}$ è l'accelerazione orizzontale massima in superficie $(\frac{a_{max}}{g})$. Poiché tale risultate ha il punto di applicazione a metà dell'altezza H del muro, è possibile assumere considerare una pressione uniforme di entità pari a:

$$\Delta p_d = \frac{a_g}{g} \cdot S \cdot \gamma \cdot H$$

L'impatto dell'azione sismica viene valutata per una condizione di carico di lungo periodo in cui sono presenti le fodere interne della struttura alle quali è affidata la spinta idrostatica della falda. Pertanto, la paratia è scaricata della spinta dell'acqua e l'azione sismica è ripartita tra la paratia e le fodere interne secondo la relazione:

$$p_{paratia} = P_{Tot} \frac{I_{paratia}}{I_{paratia} + I_{fodera}} \\ p_{Fodera} = P_{Tot} \frac{I_{Fodera}}{I_{paratia} + I_{fodera}}$$

6. ANALISI NUMERICHE E VERIFICHE STRUTTURALI

6.1 La Sovrastruttura e le strutture interne principali

6.1.1 Generalità

La sovrastruttura e le strutture principali interne considerano il solaio di copertura (piano stradale), i solai intermedi (piano atrio, primo mezzanino e secondo mezzanino), per le quali è stato sviluppato un modello tridimensionale agli elementi finiti. La Figura 5 mostra una vista tridimensionale del modello utilizzato presso la stazione Pastrengo (SNO) nella configurazione finale. La Figura 6 mostra uno schema semplificato del modello di analisi strutturale, evidenziando la disposizione degli elementi bidimensionali di tipo shell per modellare il solaio di copertura, la soletta di fondazione, l'atrio e le mezzanine.

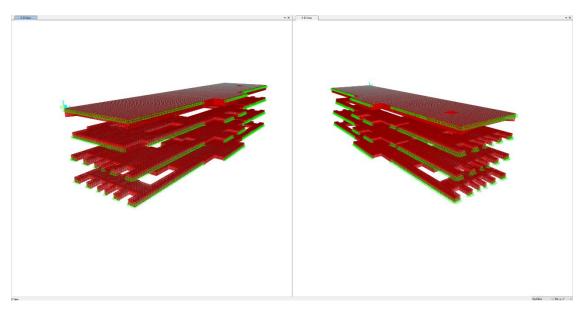


Figura 5. Modello di visualizzazione

TO S	CITTA'	DI TORI	NO

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

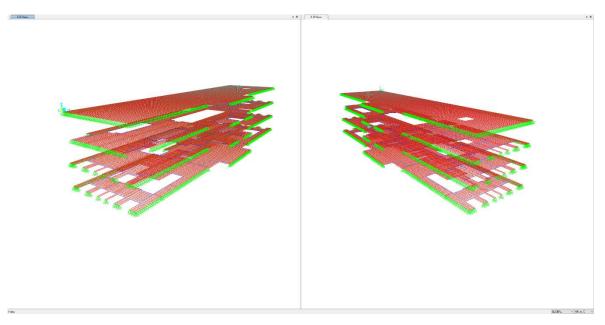


Figura 6. Modello 3D schematico

Il solaio di copertura è costituito da una soletta piena di spessore variabile fra 1,20-2,00m, tranne nella zona centrale (tra gli assi 3-4) dove lo spessore aumenta di 15 cm estradosso. Per la progettazione sono state considerate due situazioni; la prima, considera l'incastro con i diaframmi perimetrali modellati attraverso una molla rotazionale di rigidità equivalente Kt = 4EI/L, e la seconda, semplicemente appoggiato ai diaframmi perimetrali di spessore 1,20m.

I solai intermedie sono costituiti da una soletta piena di spessore 1,20m, semplicemente appoggiato sui diaframmi perimetrali dove, per garantire l'appoggio per la connessione, è prevista una scanalatura profonda 0,20m e alta 1,30m, con una tolleranza di ± 15 cm.

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

6.1.2 Modello strutturale

I modelli strutturale consistono di un modello tridimensionale agli elementi finiti che considera il solaio di copertura, i solai intermedi (atrio e mezzanine).

Il modello strutturale riproduce fedelmente la distribuzione delle aperture disposte sulla soletta di copertura e sui solai intermedi. Le Figure allegate mostrano le viste in pianta dei solai. Sia la soletta di copertura che le solette intermedie risultano essere semplicemente appoggiate sul loro perimetro sostenute dai diaframmi perimetrali.

Per tutti gli elementi *shell*, il sistema di assi locali è stato definito in modo tale che la direzione 1-1 corrisponda alla direzione longitudinale della stazione, e la direzione 2-2 corrisponda alla direzione trasversale della stazione.

Figura 7. Soletta di copertura (livello strada)

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Figura 8. Soletta intermedia (livello atrio)

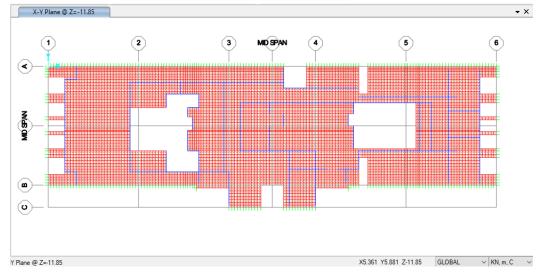


Figura 9. Soletta intermedia (livello primo mezzanino)

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

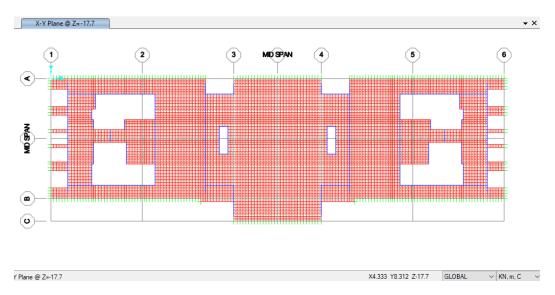


Figura 10. Soletta intermedia (livello secondo mezzanino)

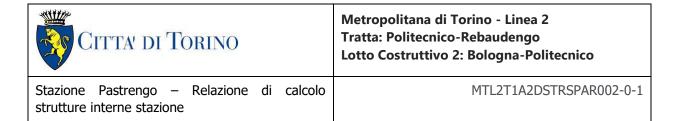
6.1.3 Carichi e combinazioni

- Soletta di copertura:

Carichi permanenti:

Peso proprio (calcolato automaticamente) = spessore x 25 kN/m 3 (G₁-Dead)

Massetto per formazione pendenze = $0.15 \text{m} \times 24 \text{ kN/m}^3 = 3.60 \text{ kN/m}^2 \text{ (G}_2 - \text{S} \text{ Dead)}$


Rinterro zona laterale (assi 1-3/4-6) = (1,65 + 0,50) m x 20 kN/m³ = 43,0 kN/m² (G₃ - Rinterro)

Rinterro zona centrale (assi 3-4) = (1,50 + 0,50) m x 20 kN/m³ = 40,0 kN/m² (G₃ - Rinterro)

Carichi variabili:

Sovraccarichi esterni = $20.0 \text{ kN/m}^2 (Q_1 - \text{Live})$

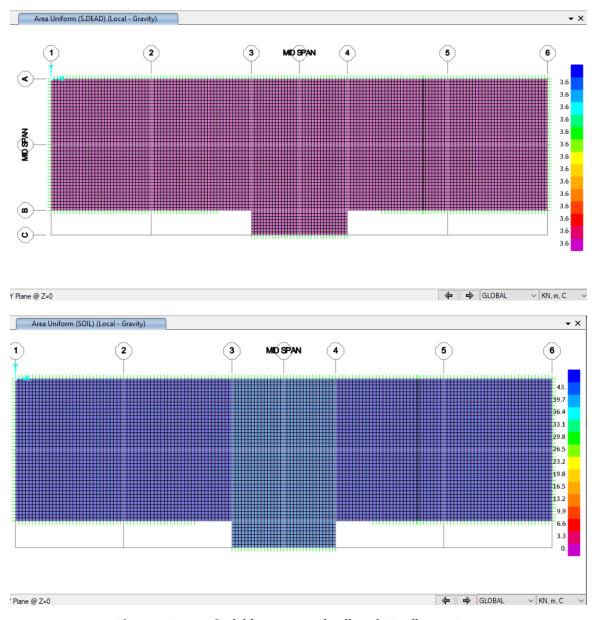


Figura 11. Carichi permanenti sulla soletta di copertura

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

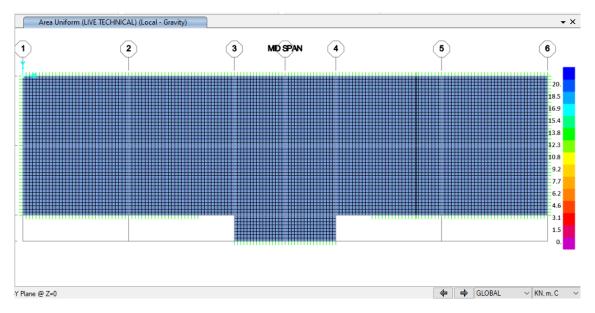


Figura 12. Carichi variabili sulla soletta di copertura

- Solaio intermedio (livello atrio):

Carichi permanenti:

Peso proprio (calcolato automaticamente) 1,20m x 25kN/m³= 30,0 kN/m² (G₁-Dead)

Pavimentazione = $0.15 \text{m x } 24 \text{ kN/m}^3 = 3.60 \text{ kN/m}^2 (G_2 - S_Dead)$

Divisori interni = $P \times H (kN/m) = 3,30 kN/m^2 \times 4,65m = 15,35 kN/m (G_2 - S_Dead)$

Peso tramezzi e della struttura di supporto $P = 3,30 \text{ kN/m}^2$

Altezza libera delle divisioni interni H(m) = 4,65m (Nota 1)

Carichi variabili: (Q1 - Live)

Sovraccarichi nelle aree pubbliche = 5,0 kN/m²

Sovraccarichi aree tecniche (non sistema) = 10,0 kN/m²

Sovraccarichi aree tecniche (sistema) = 20,0 kN/m²

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

Nota 1: Per l'applicazione dei carichi lineari, sono stati incorporati elementi virtuali del tipo a *frame* (*section none*) in corrispondenza della loro posizione sul solaio, e i carichi applicati agli elementi come carichi distribuiti calcolato come PxH, in modo che il loro effetto si traduca in carichi puntuali sui nodi di *meshing*.

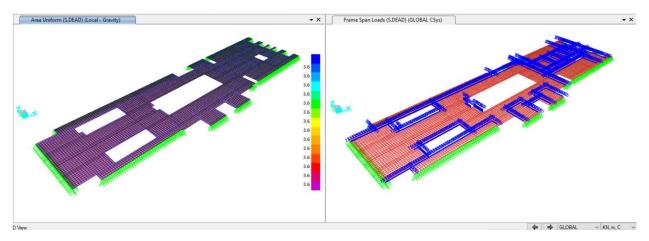


Figura 13. Carichi permanenti sulla soletta intermedia – livello atrio

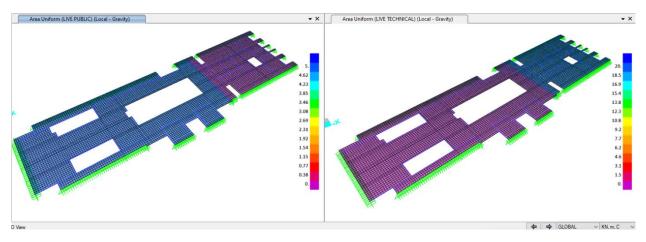


Figura 14. Carichi variabili sulla soletta di intermedia – livello atrio

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

- Solaio intermedio (livello primo mezzanino):

Carichi permanenti:

Peso proprio (calcolato automaticamente) 1,20m x 25kN/m³= 30,0 kN/m² (G₁-Dead)

Pavimentazione = $0.15 \text{m x } 24 \text{ kN/m}^3 = 3.60 \text{ kN/m}^2 (G_2 - S_Dead)$

Divisori interni = $P \times H (kN/m) = 3,30 kN/m^2 \times 4,65m = 15,35 kN/m (G_2 - S_Dead)$

Peso tramezzi e della struttura di supporto $P = 3,30 \text{ kN/m}^2$

Altezza libera delle divisioni interni H (m) = 4,65m (Nota 1)

Carichi variabili: (Q₁ - Live)

Sovraccarichi nelle aree pubbliche = 5,0 kN/m²

Sovraccarichi aree tecniche (non sistema) = $10,0 \text{ kN/m}^2$

Sovraccarichi aree tecniche (sistema) = 20,0 kN/m²

Nota 1: Per l'applicazione dei carichi lineari, sono stati incorporati elementi virtuali del tipo a *frame* (*section none*) in corrispondenza della loro posizione sul solaio, e i carichi applicati agli elementi come carichi distribuiti calcolato come PxH, in modo che il loro effetto si traduca in carichi puntuali sui nodi di *meshing*.

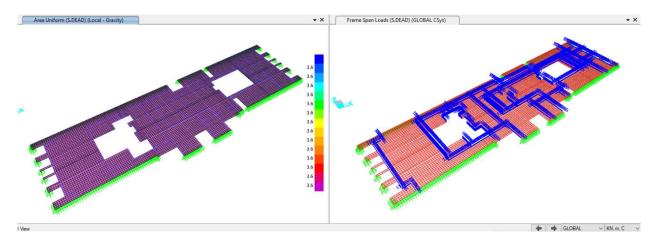


Figura 15. Carichi permanenti sulla soletta intermedia – primo mezzanino

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

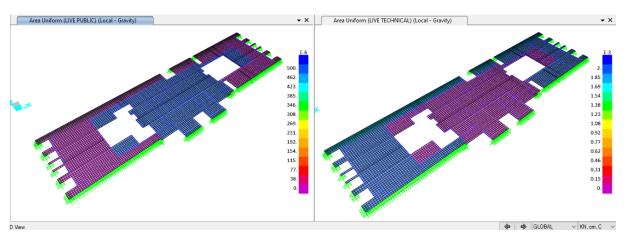


Figura 16. Carichi variabili sulla soletta di intermedia – primo mezzanino

- Solaio intermedio (livello secondo mezzanino):

Carichi permanenti:

Peso proprio (calcolato automaticamente) 1,20m x 25kN/m³ = 30,0 kN/m² (G₁-Dead)

Pavimentazione = $0.15 \text{m x } 24 \text{ kN/m}^3 = 3.60 \text{ kN/m}^2 \text{ (G}_2 - \text{S} \text{ Dead)}$

Divisori interni = $P \times H (kN/m) = 3,30 kN/m^2 \times 4,65m = 15,35 kN/m (G_2 - S_Dead)$

Peso tramezzi e della struttura di supporto $P = 3,30 \text{ kN/m}^2$

Altezza libera delle divisioni interni H(m) = 4,65m (Nota 1)

Carichi variabili: (Q₁ - Live)

Sovraccarichi nelle aree pubbliche = 5,0 kN/m²

Sovraccarichi aree tecniche (non sistema) = 10,0 kN/m²

Sovraccarichi aree tecniche (sistema) = 20,0 kN/m²

Nota 1: Per l'applicazione dei carichi lineari, sono stati incorporati elementi virtuali del tipo a *frame* (*section none*) in corrispondenza della loro posizione sul solaio, e i carichi applicati agli elementi come carichi distribuiti calcolato come PxH, in modo che il loro effetto si traduca in carichi puntuali sui nodi di *meshing*.

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Figura 17. Carichi permanenti sulla soletta intermedia – secondo mezzanino

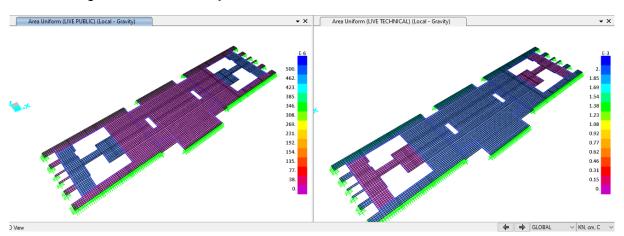


Figura 18. Carichi variabili sulla soletta di intermedia – secondo mezzanino

Per la verifica strutturale degli stati limite di resistenza (SLU) e di esercizio (SLE), vengono utilizzati i fattori e le combinazioni indicate nelle NTC2018.

SLU:
$$1,30 G_1 + 1,50 G_2 + 1,50 G_3 + 1,50 Q_1$$

SLE:
$$G_1 + G_2 + G_3 + \Psi_{2,1} Q_1$$
 dove $\Psi_{2,1} = 1,00$ conservativamente, per combinazione

conservativamente, per combinazione quasi-permanente a lungo termine

I coefficienti parziali di sicurezza dei materiali sono:

Calcestruzzo: $\gamma_c = 1,50$

Acciaio di rinforzo: $\gamma_s = 1,15$

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

6.1.4 Risultati e verifiche strutturali

Nei paragrafi seguenti sono riportati i risultati della combinazione SLE e gli inviluppi delle combinazioni SLU.

I risultati della combinazione SLE sono stati utilizzati per la verifica delle tensioni in esercizio, controllo della fessurazione e deformazione.

Gli inviluppi della combinazione SLU sono stati utilizzati per la verifica flessione e taglio della sezione in c.a.

La Figura mostra una vista della deformazione della struttura sotto carichi gravitazionali.

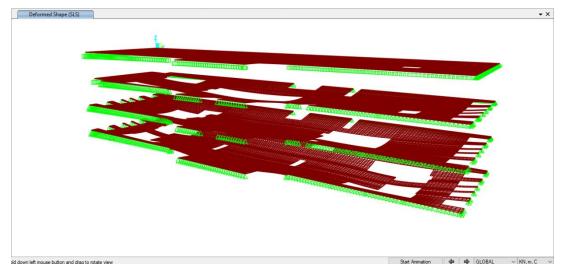


Figura 19. Deformazione della struttura sotto carichi gravitazionali

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

6.1.4.1 Soletta di copertura

L'ALLEGATO A presenta graficamente i risultati rilevanti della soletta di copertura

- Verifiche SLU – Soletta di copertura (livello strada)

i) Verifica a flessione:

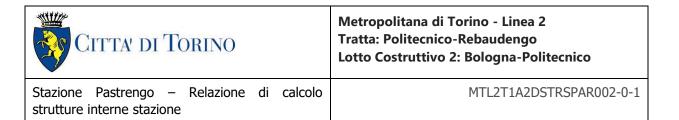
spessore di soletta minimo = 120cm

separazione di barra = 200 / 100 cm

armatura minima: NTC2018 §4.1.6.1.1.

$$A_{\text{s,min}} = 0.26 \, \frac{f_{\text{cm}}}{f_{\text{vk}}} b_t \cdot d \qquad \qquad A_{\text{s, min}} = 0.26 \, (2.90/450) \, 100 \times 115 = \, 19.27 \, \text{cm}^2 / \text{m} \, --- \, \phi 24/200$$

Di seguito vengono presentati graficamente i risultati dei requisiti delle armature di rinforzo su ciascuna faccia e in ciascuna direzione delle solette Ast (cm²/cm).


Assi locali: 1-Longitudinale 2-Trasversale 3-Verticale

Per le verifiche SLU della soletta di copertura sono considerate due condizione; la prima, considera l'incastro con i diaframmi perimetrali modellati attraverso una molla rotazionale di rigidità equivalente Kt = 4EI/L, e la seconda, semplicemente appoggiato ai diaframmi perimetrali di spessore 1,20m.

E = 30000 MPa
$$I = 1x (1.2)^3/12 = 0.144m^4$$
 L = 5m

$$Kt = 4EI/L = 4x30x10^6x0.144/5 = 3.456x10^6 \text{ kN.m/rad /m}$$

- Caso 1: Incastro

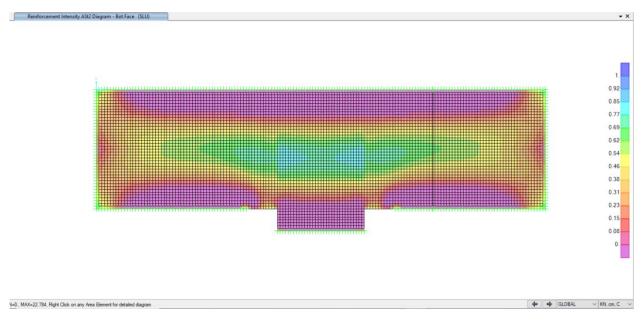


Figura 20. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale

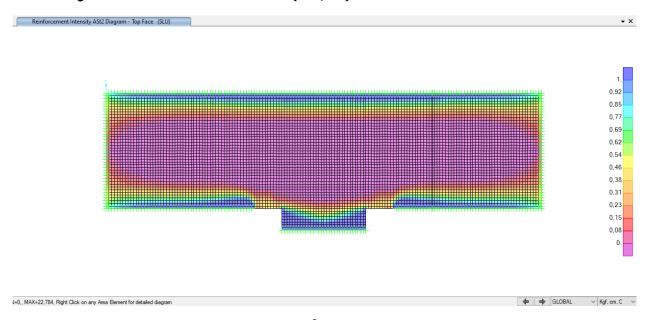
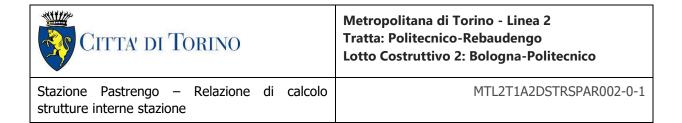



Figura 21. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale

- Caso 2: Cerniera

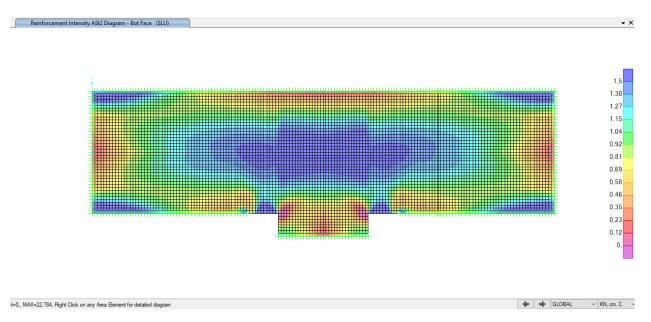


Figura 22. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale

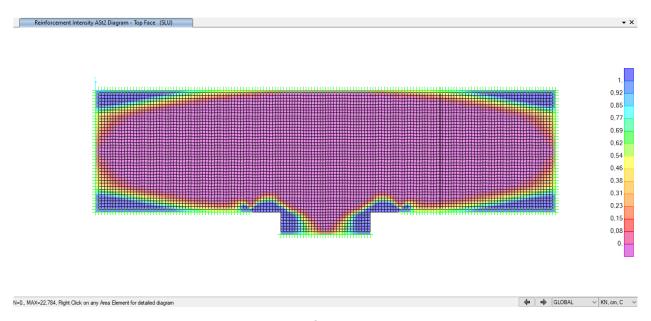
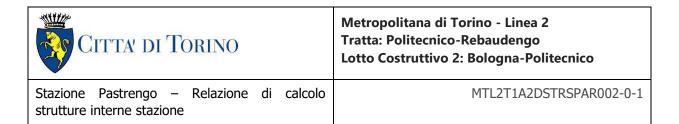



Figura 23. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale

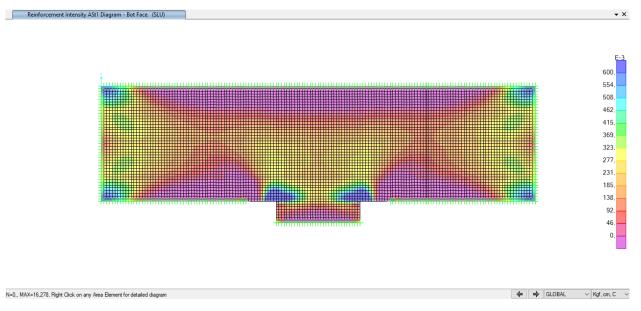


Figura 24. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione longitudinale

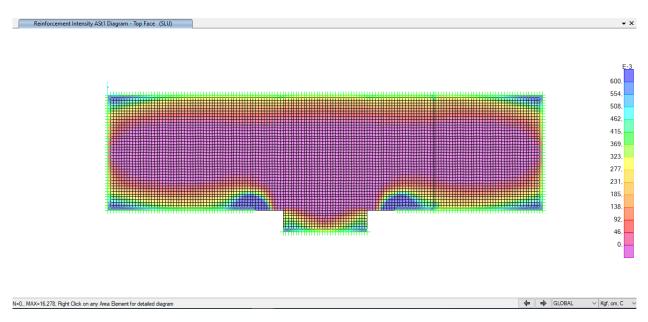


Figura 25. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione longitudinale

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Nella tabella seguente sono riepilogate l'inviluppo delle armature della soletta di copertura:

Tabella 9 Armature soletta di copertura

Tra assi	Posizione	Supporto sinistro	Campata	Supporto destro
	Trasv. Superiore	2φ32/100	φ26/100	2φ32/100
1-3	Trasv. Inferiore	φ26/100	2φ32/100	φ26/100
4-6	Long. Superiore	φ26/100	φ26/100	φ26/100
	Long. Inferiore	φ26/100	φ26/100	φ26/100
	Trasv. Superiore	2φ32/100	φ26/100	2φ32/100
3-4	Trasv. Inferiore	φ26/100	2φ32/100	φ26/100
	Long. Superiore	φ26/100	φ26/100	φ26/100
	Long. Inferiore	φ26/100	φ26/100	φ26/100

ii) Verifica al taglio:

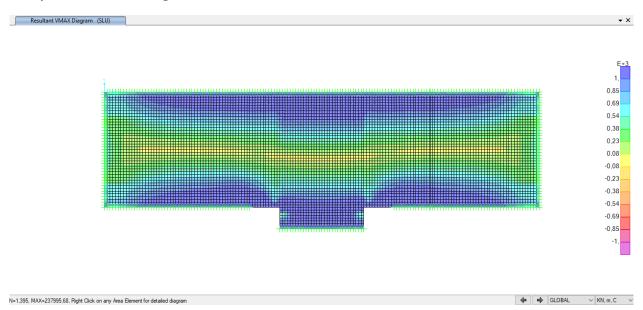


Figura 26. Taglio massimo

$$V_{max} = \sqrt{V_{13}^2 + V_{23}^2}$$

Zona 1: Entro 2d del cambio di sezione $A_{st} = 4\phi 20/20$ $V_{Rd} = 3553$ kN/m > Vmax

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Zona 2: Resto soletta

 $A_{st} = 2\phi 20/40$ $V_{Rd} = 888 \text{ kN/m}$

- Verifiche SLE - Soletta di copertura

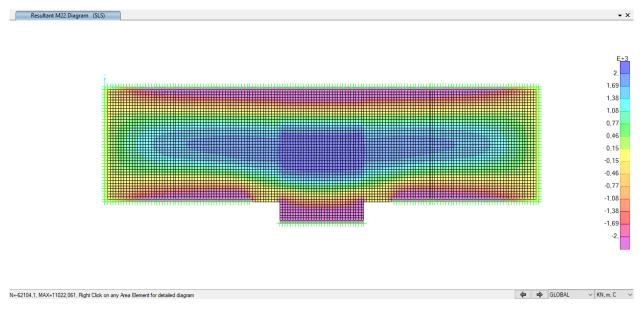


Figura 27. Momento flettente M22 (direzione trasversale) – SLE

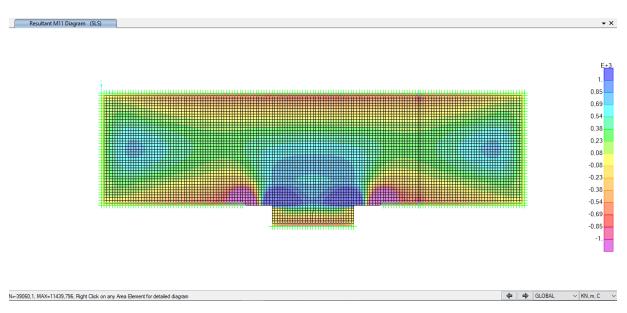


Figura 28. Momento flettente M11 (direzione longitudinale) – SLE

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

i) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

$$M_{lim} = min [M_{-0.30}; M_{-\sigma_c}; M_{-\sigma_s}]$$

Dove,

 $M_{-0.30} = Mmax$ per una fessura limite $w_2 = 0.30mm$ NTC2018 §4.1.2.2.4.

 $M_{\sigma_c} = Mmax per \sigma_{c, max} = 0.45 f_{ck}$ NTC2018 §4.1.2.2.5.1.

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{yk}$ NTC2018 §4.1.2.2.5.2.

Tabella 10 Capacità delle sezioni tipologiche

Sezione	Н	d	As	As'	M _{lim}	M_{Rd}
	(cm)	(cm)	(cm ² /m)	(cm ² /m)	(kN.m/m)	(kN.m/m)
T1	120	112.5	2φ32/100	φ26/100	3500	6175
T2	135	127.5	2φ32/100	φ26/100	3900	7120
T3	200	192.5	2φ32/100	φ26/100	6200	11212
T4	215	207.5	2φ32/100	φ26/100	6700	12155
L1	120	110	φ26/100	φ26/100	970	2160
L2	135	125	φ26/100	φ26/100	1100	2470
L3	200	190	φ26/100	φ26/100	1400	3820
L4	215	205	φ26/100	φ26/100	1500	4130

Dal confronto dei momenti flettenti massimi M_{max} per SLE con i momenti limite M_{lim} di ciascuna sezione tipologica utilizzata, si verifica che $M_{max} < M_{lim}$

L'allegato A include come riferimento un esempio di calcolo dei momenti flettenti M_{lim} e M_{Rd} per la sezione T1, ottenuto tramite il software RC-SEC

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

ii) Verifica deformazione

NTC2018 §4.1.2.2.2. / Eurocode 2 § 7.4

Per garantire l'aspetto e l'utilità generale della struttura, e prevenire le flessioni che potrebbero danneggiare le parti adiacenti della struttura è fissato il limite di deformabilità a carichi quasi permanenti = luce/250. L'abbassamento viene valutato rispetto ai supporti. Per compensare parte della deflessione viene stabilita una contro freccia centrale δ_{cf} = 4cm (~1/500)

La Figura mostra i risultati degli spostamenti verticali assoluti ottenuti considerando una riduzione del modulo di elasticità del calcestruzzo pari a 2,75.



Figura 29. Deformazione verticale Uz – SLE

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

 $\Delta = \delta_{camp} - \delta_{sup} \dots$ Abbassamento rispetto ai supporti

L ... Luce libera della campata

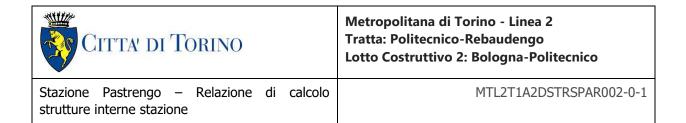


Tabella 11 Verifica deformazione

Tubella 11 Vermea derormazione			
		Δ = δ_{camp} - δ_{supp}	
Assi	L (m)	(cm)	Δ/L < 1/250
2	20,80	2,17	1/960
3	24,70	2,91	1/850
mid span	24,70	3,10	1/800
4	24,70	2,91	1/850
5	20,80	2,17	1/960

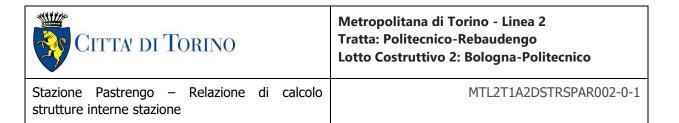
6.1.4.2 Soletta intermedia livello atrio

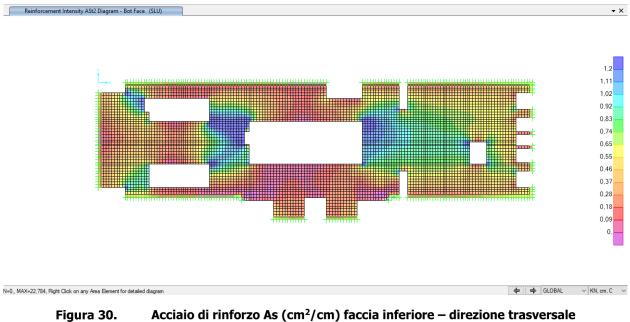
L'ALLEGATO B presenta graficamente i risultati rilevanti della soletta intermedia

- Verifiche SLU Soletta intermedia (livello Atrio)
- i) Verifica a flessione:

spessore di soletta = 120cm

separazione di barra = 200 / 100 cm

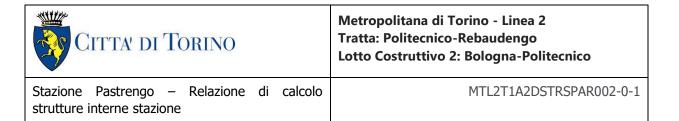

armatura minima: NTC2018 §4.1.6.1.1.


$$A_{s,min} = 0.26 \frac{f_{cm}}{f_{yk}} b_t \cdot d$$

$$A_{s, min} = 0.26 \ (2.90/450) \ 100 x 115 = 19.27 \ cm^2/m --- \ \phi 24/200$$

Di seguito vengono presentati graficamente i risultati dei requisiti delle armature di rinforzo su ciascuna faccia e in ciascuna direzione delle solette Ast (cm²/cm).

Assi locali: 1-Longitudinale 2-Trasversale 3-Verticale



Reinforcement Intensity ASt2 Diagram - Top Face (SLU)

Figura 31. Acciaio di rinforzo As (cm²/cm) faccia superiore – direzione trasversale

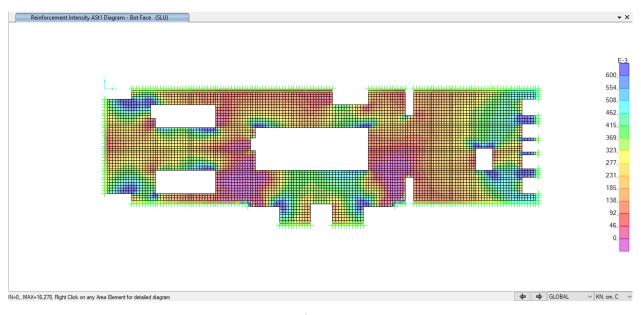


Figura 32. Acciaio di rinforzo As (cm²/cm) faccia inferiore – direzione longitudinale

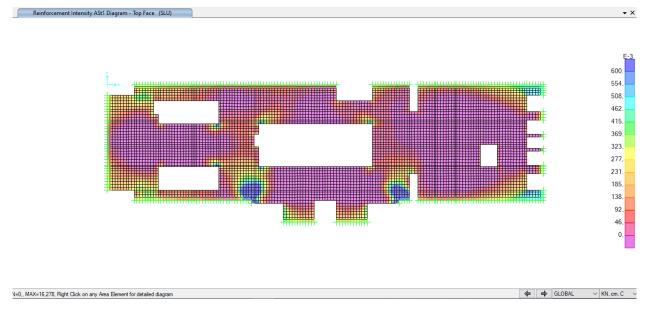


Figura 33. Acciaio di rinforzo As (cm²/cm) faccia superiore – direzione longitudinale

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Nella tabella seguente sono riepilogate le armature della soletta di atrio:

Tabella 12 Armature della soletta intermedia (Atrio)

Tra assi	Posizione	Supporto sinistro	Campata	Supporto destro
	Trasv. Superiore	φ26/100	φ26/100	φ26/100
	Trasv. Inferiore	φ32/100	2φ32/100	φ32/100
1-6	Long. Superiore	φ26/100	φ26/100	φ26/100
	Long. Inferiore	φ26/100	φ26/100	φ26/100

ii) Verifica al taglio:

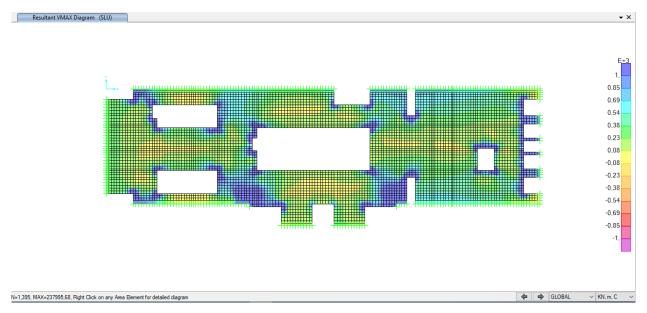
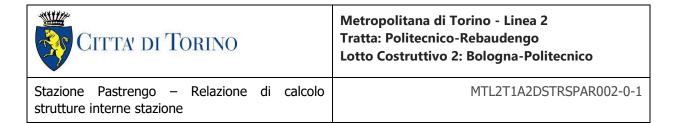


Figura 34. Taglio massimo

$$V_{max} = \sqrt{V_{13}^2 + V_{23}^2}$$


Zona 1: Entro d della faccia diaframmi e angoli $A_{st} = 4\phi 20/$

 $A_{st} = 4\phi 20/20$ $V_{Rd} = 3553$ kN/m > Vmax

Zona 2: Resto soletta A_{st}

 $A_{st} = 2\phi 20/40$ $V_{Rd} = 888$ kN/m

- Verifiche SLE - Soletta intermedia

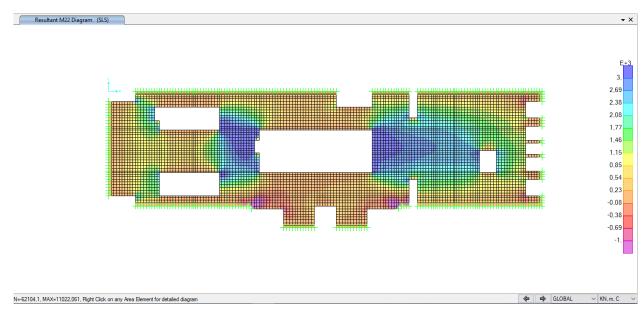


Figura 35. Momento flettente M22 (direzione trasversale) – SLE

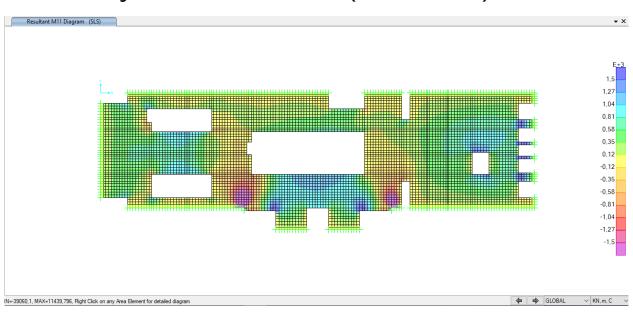


Figura 36. Momento flettente M11 (direzione longitudinale) – SLE

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

i) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

$$M_{lim} = min [M_{-0.30}; M_{-\sigma_c}; M_{-\sigma_s}]$$

Dove,

 $M_{-0.30} = Mmax per una fessura limite w₂ = 0,30mm NTC2018 §4.1.2.2.4.$

 $M_{\sigma_c} = Mmax per \sigma_{c, max} = 0.45 f_{ck}$ NTC2018 §4.1.2.2.5.1.

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{yk}$ NTC2018 §4.1.2.2.5.2.

Tabella 13 Capacità delle sezioni tipologiche

Sezione	H (cm)	d (cm)	As (cm²/m)	As' (cm²/m)	M _{lim} (kN.m/m)	M _r (kN.m/m)
T1	120	112.5	2φ32/100	φ26/100	3500	6175
T2	120	112.5	φ32/100	φ26/100	1800	3345
L1	120	110	φ26/100	φ26/100	970	2160

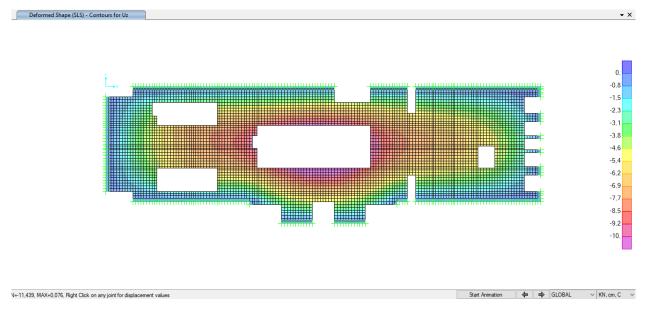
Dal confronto dei momenti flettenti massimi M_{max} per SLE con i momenti limite M_{lim} di ciascuna sezione tipologica utilizzata, si verifica che $M_{max} < M_{lim}$

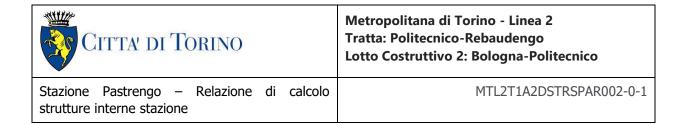
CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

ii) Verifica deformazione

Per garantire l'aspetto e l'utilità generale della struttura, e prevenire le flessioni che potrebbero danneggiare le parti adiacenti della struttura è fissato il limite di deformabilità a carichi quasi permanenti = luce/250. L'abbassamento viene valutato rispetto ai supporti. Per compensare parte della deflessione viene stabilita una contro freccia centrale δ_{cf} = 4cm (~1/500)

La Figura mostra i risultati degli spostamenti verticali assoluti ottenuti considerando una riduzione del modulo di elasticità del calcestruzzo pari a 2,75.




Figura 37. Deformazione verticale Uz – SLE

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

 $\Delta = \delta_{camp} - \delta_{cf} \dots$ Abbassamento compensato dalla contro freccia

L ... Luce libera della campata

Tabella 14 Verifica deformazione

Assi	L (m)	Δ = δ_{camp} - δ_{cf} (cm)	Δ/L < 1/250
2	20,80	2,87	1/720
3	24,70	5,54	1/440
4	24,70	6,05	1/410
5	20,80	2,65	1/780

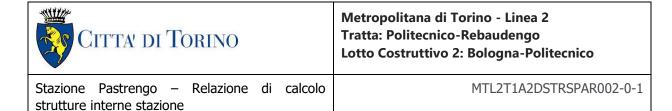
6.1.4.3 Soletta intermedia livello primo mezzanino

L'ALLEGATO C presenta graficamente i risultati rilevanti della soletta primo mezzanino

- Verifiche SLU Soletta intermedia (livello Primo mezzanino)
- i) Verifica a flessione:

spessore di soletta = 120cm

separazione di barra = 200 / 100 cm


armatura minima: NTC2018 §4.1.6.1.1.

$$A_{s,min} = 0.26 \frac{f_{cm}}{f_{yk}} b_t \cdot d$$

$$A_{s, min} = 0.26 \ (2.90/450) \ 100x115 = 19.27 \ cm^2/m --- \ \phi 24/200$$

Di seguito vengono presentati graficamente i risultati dei requisiti delle armature di rinforzo su ciascuna faccia e in ciascuna direzione delle solette Ast (cm²/cm).

Assi locali: 1-Longitudinale 2-Trasversale 3-Verticale

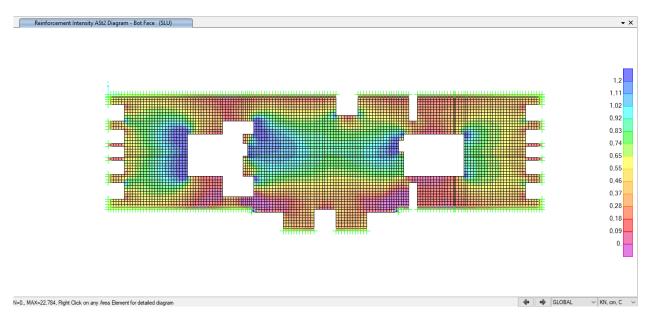


Figura 38. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale

Figura 39. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

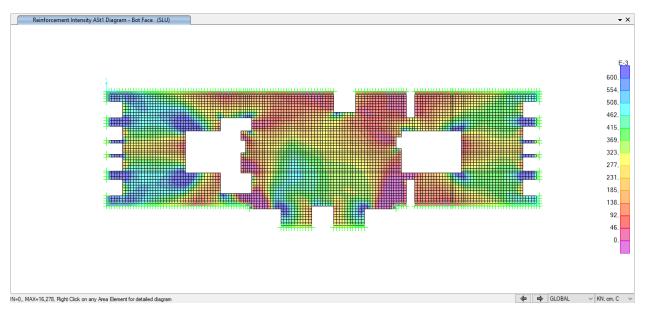


Figura 40. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione longitudinale

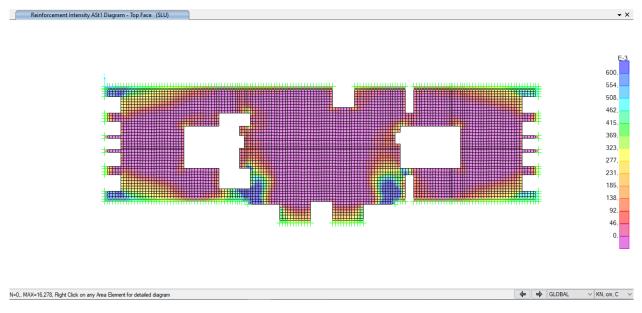


Figura 41. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione longitudinale

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Nella tabella seguente sono riepilogate le armature della soletta di Primo mezzanino:

Tabella 15 Armature della soletta intermedia (Primo mezzanino)

Tra assi	Posizione	Supporto sinistro	Campata	Supporto destro
	Trasv. Superiore	φ26/100	φ26/100	φ26/100
	Trasv. Inferiore	φ32/100	2φ32/100	φ32/100
1-6	Long. Superiore	φ26/100	φ26/100	φ26/100
	Long. Inferiore	φ26/100	φ26/100	φ26/100

ii) Verifica al taglio:

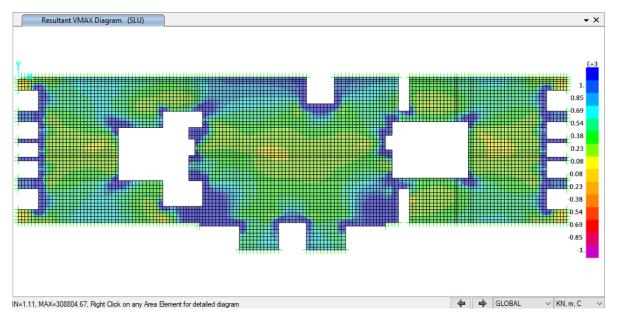


Figura 42. Taglio massimo

$$V_{max} = \sqrt{V_{13}^2 + V_{23}^2}$$

Zona 1: Entro d della faccia diaframmi e angoli Ast = $4\phi 20/20$ V_{Rd} =3553 kN/m > Vmax

Zona 2: Resto soletta Ast = $2\phi 20/40$ V_{Rd} =888 kN/m

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

- Verifiche SLE – Soletta intermedia (livello Primo mezzanino)

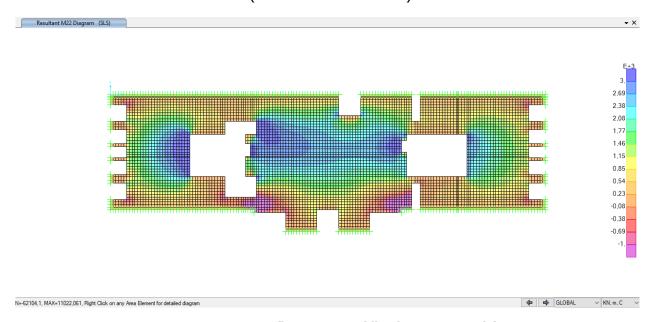


Figura 43. Momento flettente M22 (direzione trasversale) – SLE



Figura 44. Momento flettente M11 (direzione longitudinale) – SLE

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

i) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

$$M_{lim} = min [M_{-0.30}; M_{-\sigma_c}; M_{-\sigma_s}]$$

Dove,

 $M_{-0.30} = Mmax per una fessura limite w₂ = 0,30mm NTC2018 §4.1.2.2.4.$

 $M_{\sigma_c} = Mmax per \sigma_{c, max} = 0.45 f_{ck}$ NTC2018 §4.1.2.2.5.1.

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{yk}$ NTC2018 §4.1.2.2.5.2.

Tabella 16 Capacità delle sezioni tipologiche

Sezione	H (cm)	d (cm)	As (cm²/m)	As' (cm²/m)	M _{lim} (kN.m/m)	M _r (kN.m/m)
T1	120	112.5	2φ32/100	φ26/100	3500	6175
T2	120	112.5	φ32/100	φ26/100	1800	3345
L1	120	110	φ26/100	φ26/100	970	2160

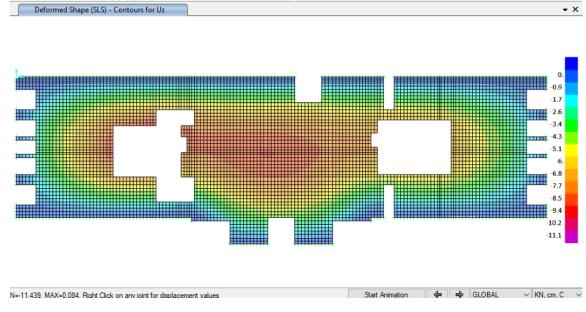
Dal confronto dei momenti flettenti massimi M_{max} per SLE con i momenti limite M_{lim} di ciascuna sezione tipologica utilizzata, si verifica che $M_{max} < M_{lim}$

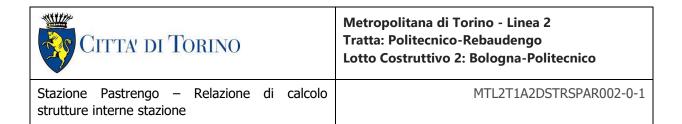
CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

ii) Verifica deformazione

Per garantire l'aspetto e l'utilità generale della struttura, e prevenire le flessioni che potrebbero danneggiare le parti adiacenti della struttura è fissato il limite di deformabilità a carichi quasi permanenti = luce/250. L'abbassamento viene valutato rispetto ai supporti. Per compensare parte della deflessione viene stabilita una contro freccia centrale δ_{cf} = 4cm (~1/500).

La Figura mostra i risultati degli spostamenti verticali assoluti ottenuti considerando una riduzione del modulo di elasticità del calcestruzzo pari a 2,75.




Figura 45. Deformazione verticale Uz – SLE

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

 $\Delta {=} \delta_{\text{camp}} - \delta_{\text{cf}} \dots$ Abbassamento compensato dalla contro freccia

L ... Luce libera della campata

Tabella 17 Verifica deformazione

Assi	L (m)	Δ = δ_{camp} - δ_{cf} (cm)	Δ/L < 1/250
2	20,80	5,04	1/410
3	24,70	4,20	1/590
mid span	24,70	4,40	1/560
4	24,70	3,10	1/790
5	20,80	2,45	1/850

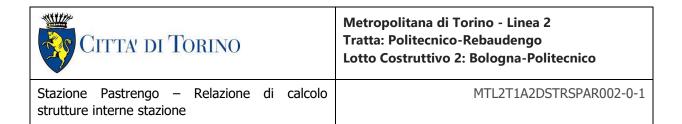
6.1.4.4 Soletta intermedia livello secondo mezzanino

L'ALLEGATO D presenta graficamente i risultati rilevanti della soletta Secondo mezzanino

- Verifiche SLU Soletta intermedia (livello Secondo mezzanino)
- iii) Verifica a flessione:

spessore di soletta = 120cm

separazione di barra = 200 / 100 cm


armatura minima: NTC2018 §4.1.6.1.1.

$$A_{\text{s,min}} = 0.26 \frac{f_{\text{cm}}}{f_{\text{yk}}} b_{,\cdot} \cdot d$$

$$A_{\text{s, min}} = 0.26 \; (2.90/450) \; 100 \times 115 = 19.27 \; \text{cm}^2/\text{m} \; \text{----} \; \phi 24/200$$

Di seguito vengono presentati graficamente i risultati dei requisiti delle armature di rinforzo su ciascuna faccia e in ciascuna direzione delle solette Ast (cm²/cm).

Assi locali: 1-Longitudinale 2-Trasversale 3-Verticale

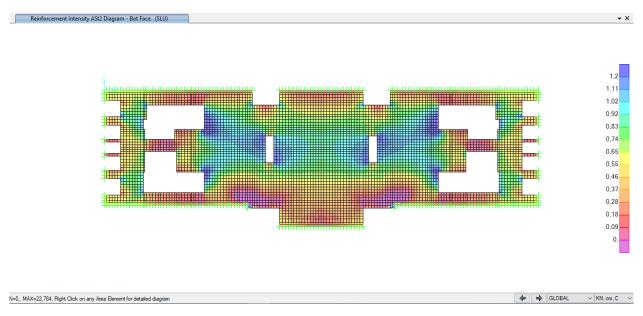


Figura 46. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale

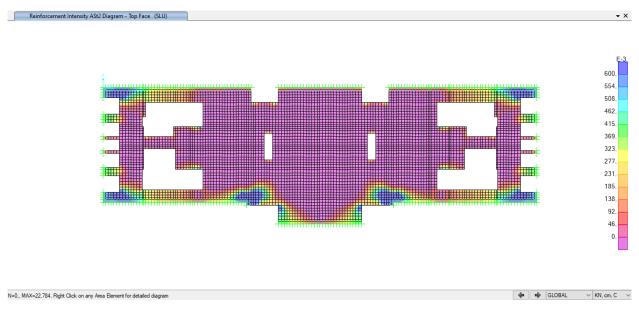


Figura 47. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione trasversale

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

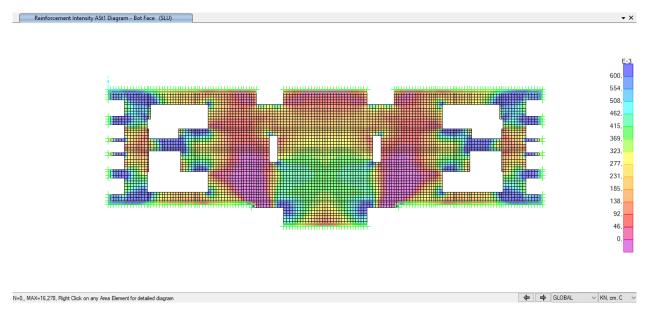


Figura 48. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione longitudinale

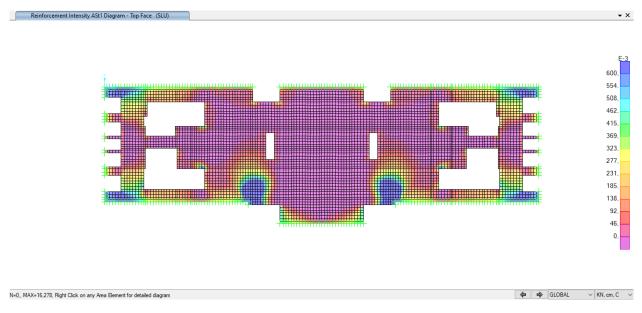


Figura 49. Acciaio di rinforzo As (cm²/cm) faccia superiore - direzione longitudinale

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Nella tabella seguente sono riepilogate le armature della soletta di Secondo mezzanino:

Tabella 18 Armature della soletta intermedia (Secondo mezzanino)

rabena 20 / matare aena boletta mitermeala (becona mezzanno)					
Tra assi	Posizione	Supporto sinistro	Campata	Supporto destro	
	Trasv. Superiore	φ26/100	φ26/100	φ26/100	
	Trasv. Inferiore	φ32/100	2φ32/100	φ32/100	
1-6	Long. Superiore	φ26/100	φ26/100	φ26/100	
	Long. Inferiore	φ26/100	φ26/100	φ26/100	

iv) Verifica al taglio:

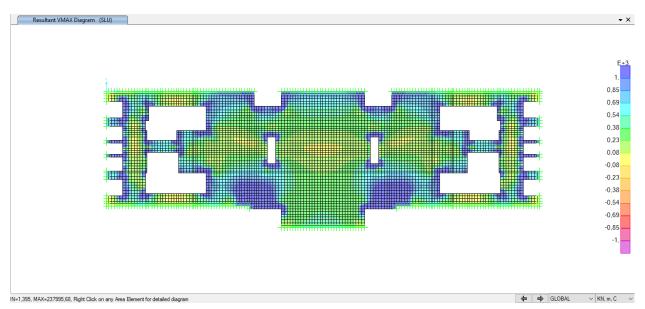


Figura 50. Taglio massimo

$$V_{max} = \sqrt{V_{13}^2 + V_{23}^2}$$

Zona 1: Entro d della faccia diaframmi e angoli $A_{st} = 4\phi 20/20$ $V_{Rd} = 3553$ kN/m > Vmax

Zona 2: Resto soletta $A_{st} = 2\phi 20/40 \quad V_{Rd} = 888 \text{ kN/m}$

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

- Verifiche SLE – Soletta intermedia (livello Secondo mezzanino)



Figura 51. Momento flettente M22 (direzione trasversale) – SLE

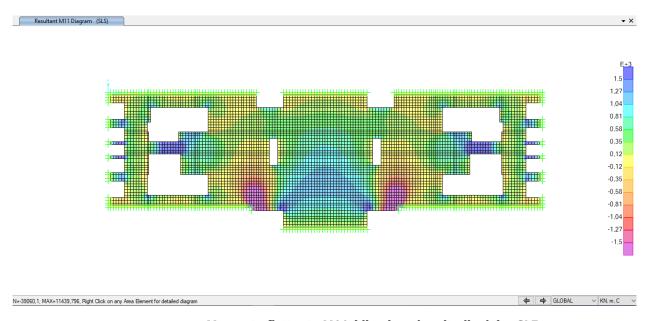


Figura 52. Momento flettente M11 (direzione longitudinale) – SLE

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

iii) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

$$M_{lim} = min [M_{-0.30}; M_{-\sigma_c}; M_{-\sigma_s}]$$

Dove,

 $M_{-0.30} = Mmax per una fessura limite <math>w_2 = 0.30mm$ NTC2018 §4.1.2.2.4.

 $M_{\sigma_c} = Mmax per \sigma_{c, max} = 0.45 f_{ck}$ NTC2018 §4.1.2.2.5.1.

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{yk}$ NTC2018 §4.1.2.2.5.2.

Tabella 19 Capacità delle sezioni tipologiche

Sezione	H (cm)	d (cm)	As (cm²/m)	As' (cm²/m)	M _{lim} (kN.m/m)	M _r (kN.m/m)
T1	120	112.5	2φ32/100	φ26/100	3500	6175
T2	120	112.5	φ32/100	φ26/100	1800	3345
L1	120	110	φ26/100	φ26/100	970	2160

Dal confronto dei momenti flettenti massimi M_{max} per SLE con i momenti limite M_{lim} di ciascuna sezione tipologica utilizzata, si verifica che $M_{max} < M_{lim}$

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

iv) Verifica deformazione

Per garantire l'aspetto e l'utilità generale della struttura, e prevenire le flessioni che potrebbero danneggiare le parti adiacenti della struttura è fissato il limite di deformabilità a carichi quasi permanenti = luce/250. L'abbassamento viene valutato rispetto ai supporti. Per compensare parte della deflessione viene stabilita una contro freccia centrale δ_{cf} = 4cm (~1/500).

La Figura mostra i risultati degli spostamenti verticali assoluti ottenuti considerando una riduzione del modulo di elasticità del calcestruzzo pari a 2,75.

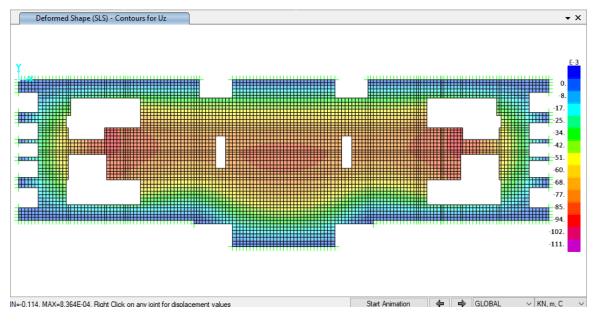


Figura 53. Deformazione verticale Uz – SLE

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

 $\Delta {=} \delta_{\text{camp}} - \delta_{\text{cf}} \dots$ Abbassamento compensato dalla contro freccia

L ... Luce libera della campata

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

Tabella 20 Verifica deformazione

		Δ = δ_{camp} - δ_{cf}	
Assi	L (m)	(cm)	Δ/L < 1/250
2	20,80	4,40	1/470
3	24,70	4,45	1/550
mid span	24,70	4,80	1/515
4	24,70	4,35	1/565
5	20,80	4,30	1/480

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

6.2 Soletta di fondazione

6.2.1 Generalità

Per la verifica strutturale del solettone di fondo è stato sviluppato un modello bidimensionale agli elementi finiti con carichi normali al piano che considera la piastra di fondazione e la sua interazione con il terreno. La Figura mostra una vista tridimensionale del modello utilizzato per la verifica strutturale della stazione Pastrengo (SMO), evidenziando la disposizione degli elementi tipo *shell* utilizzati per modellare la soletta di fondo e l'interazione con il terreno e le fondazioni.

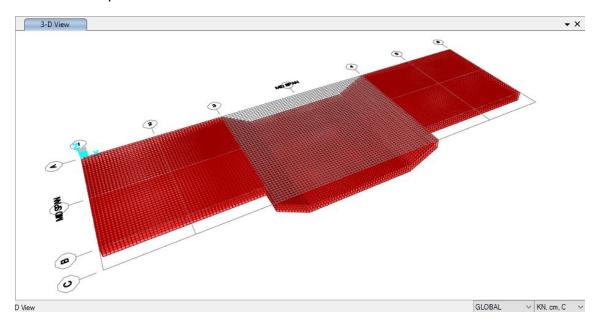


Figura 54. Modello solettone di fondo

La soletta di fondo è costituita da una soletta piena piegata di spessore 1,80m appoggiata su un terreno migliorato con *Jet Grouting* e collegata ai diagrammi perimetrali dove è previsto una scanalatura profonda 0,20m e alto 2,10m, con una tolleranza di ± 15 cm. La soletta di fondazione sarà infine annegata nelle fodere perimetrali di spessore 0,80 m collocate in adiacenza dei diaframmi preesistenti.

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Per simulare adeguatamente il terreno sottostante e le fondazioni (prolungamento dei diaframmi al di sotto del solettone di fondo), il modello di analisi utilizza molle di tipo *Winkler* che consentono di simulare gli effetti dell'interazione terreno-struttura.

Vengono utilizzati diversi due tipi di molle:

- i) Per considerare la rigidezza verticale dei diaframmi di fondazione perimetrali di lunghezza 10,0m al di sotto della soletta di fondo e spessore 1,20m, è stato incorporato lungo il perimetro della soletta un elemento di *frame* virtuale con un *Line Springs* di rigidezza Kd (kN/m/m) e con rigidezza infinita (I33→∞) per simulare la rigidezza dei diaframmi nel piano verticale. In questo caso, la rigidezza della molla associata a ciascun nodo perimetrale sarà il prodotto di Kd per la lunghezza dell'elemento.
- ii) Per considerare la rigidezza verticale del terreno migliorato a contatto con la faccia inferiore del solettone di fondo, in ogni elemento *shell* è incorporata una *Springs to Area* con un modulo di reazione Ks (kN/m/m²) reagente solo a compressione. In questo caso, la rigidità della molla associata a ciascun nodo interno sarà il prodotto di Ks per l'area tributaria di ciascun elemento. Poiché le molle nel terreno reagiscono solo a compressione, è necessario effettuare un'analisi statica non lineare che riconosca tale non linearità.

In questo modo, tutti i nodi nel modello di analisi sono liberi di spostarsi verticalmente e dispongono di una molla verticale per supportare i carichi gravitazionali provenienti dalla sovrastruttura, trasferiti come carichi distribuiti applicati al perimetro sui diaframmi.

Perimetralmente il solettone di fondo è rigidamente collegato alle fodere interne spesse 0,80m, che sono adiacenti ai diaframmi, motivo per cui nel modello di calcolo si assume l'esistenza di un vincolo che limita la rotazione ortogonale al piano del diaframma.

Per stimare la rigidezza verticale dei diaframmi di fondazione viene utilizzato il metodo di *Randolph & Wroth* (1978), che consente di stimare la rigidezza verticale di un palo di fondazione come la somma della rigidezza superficiale e della rigidezza della base.

$$K_{h} = K_{sun} + K_{hase}$$
 $K_{sun} = 2\pi L G_{m}/\mu$ $K_{hase} = 4 r_{o} G_{h}/(1 - v)$

 $\mu = ln(r_m/r_o)$... ampiezza campo di deformazione G_L ... Modulo di taglio in profondità L

 $r_m = \{0.25 + [2.5\rho(1-v) - 0.25] \varepsilon\} L$ G_m ... Modulo di taglio medio tra 0-L

 $\varepsilon = \frac{G_L}{G_b}$ $\rho = \frac{G_m}{G_L}$... Fattori di eterogeneità G_b ... Modulo di taglio dello strato sottostante (base)

Terreno omogeneo: $\varepsilon = 1$ $\rho = 1$

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Sezione rettangolare: $r_o = (b + h)/\pi$

Nel caso di diaframmi perimetrali di fondazione si adotta $K_d = K_{sup}/2 + K_{base}$

Per la stazione Pastrengo (SMO), si ha:

Unità prevalente U5

Es = 65 MPa
$$v = 0.30$$

Diaframmi e=1,20m / L=10m
$$\rightarrow$$
 Kd = 332320 kN/m/m

Per stimare il modulo di reazione verticale del terreno migliorato si utilizza il Metodo proposto da *Bowles* (1982), adottato anche dal Comitato ACI 336.2R-88 (riapprovato 2002).

$$K_s = \frac{E_s}{B(1 - v^2)I_w}$$

 I_w .. Fattore di forma base

B.. Larghezza base

Es ... Modulo di Young del suolo

Unità prevalente U2 migliorata – Colonne Jet Grouting

Es = 450 MPa
$$v = 0.30$$

B = 23.2m L/B
$$\sim$$
 3.50 Iw = 1,50 \rightarrow Ks =14210 kN/m/m²

6.2.2 Carichi e combinazioni

Il solettone di fondo è fondamentalmente soggetto a carichi normali al suo piano, rappresentati dai carichi gravitazionali provenienti dalla sovrastruttura e trasferiti come carichi distribuiti applicati al perimetro del modello, nonché carichi verticali associati alla sottopressione idrostatica dovuta al livello della falda.

Tra gli assi 1-6, il carico totale della sovrastruttura è distribuito equamente tra i due diaframmi laterali.

$$q = (W_{T1})/L_p + w_d$$

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

 W_{T1} ... peso della struttura (*Base Reaction*) = 404900 kN

 L_p ... lunghezza del perimetro della soletta sostenuta dai diaframmi = 157,2m

 w_d ... peso proprio dei diaframmi sopra la soletta de fondo =720 kN/m

$$q = \frac{(404900)}{157.2} + 720 = 3300 \, kN/m$$

La Figura 555 mostra i carichi gravitazionali agenti sulla soletta di fondo provenienti dalla sovrastruttura e dovuti a carichi permanenti (peso proprio degli elementi strutturali e non strutturali, peso del rinterro in superficie), e carichi variabili (sovraccarichi esterni e di servizio).

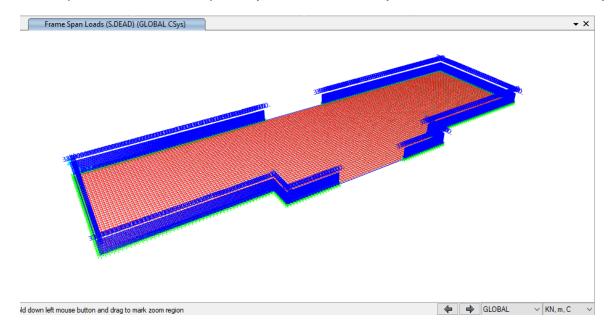
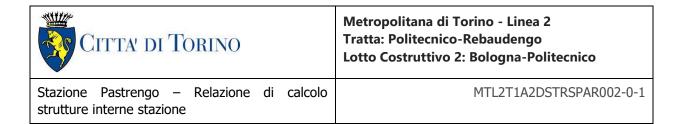



Figura 55. Carichi gravitazionali dalla sovrastruttura

Carichi idrostatici

Per la verifica strutturale a lungo termine a SLU, il livello della falda è considerato 4,50 metri al di sopra del livello piezometrico di riferimento indicato nel profilo geotecnico, equivalente al livello a breve termine più 3,00 metri. Questo porta ad una sottopressione verticale che deve essere direttamente sopportata del solettone di fondo e che si somma alla reazione verticale del terreno trasmesse dai carichi gravitazionali della sovrastruttura.

Nel caso della stazione Pastrengo (SMO), la quota piezometrica di riferimento è a -8,50m, per cui la quota a lungo termine sarà di -4,00m, che rappresenta un dislivello $\Delta H = 26,61m$ rispetto alla quota dell'intradosso del solettone di fondo posto a quota -30,61m.

Sottopressione = $\Delta H \times \gamma_w = 26,61 \text{m} \times 10 \text{ kN/m}^3 = 266,1 \text{ kN/m}^2$

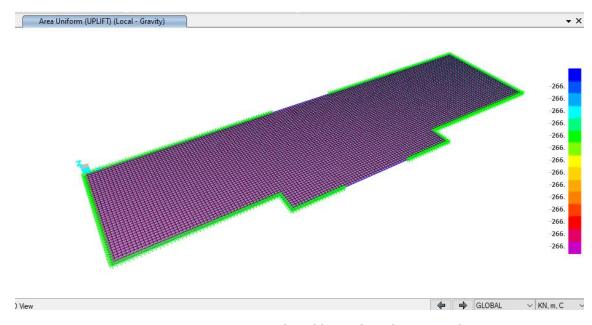
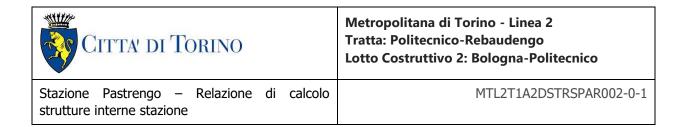


Figura 56. Sottopressione idrostatica a lungo termine

Per la verifica strutturale degli stati limite di resistenza (SLU) e di esercizio (SLE), vengono utilizzati i fattori e le combinazioni indicate nelle NTC2018.

SLU:
$$1,30 G_1 + 1,50 G_2 + 1,50 G_3 + 1,50 Q_1$$


SLE:
$$G_1 + G_2 + G_3 + \Psi_{2,1} Q_1$$
 dove $\Psi_{2,1} = 1,00$ conservativamente per combinazione quasi-permanente a lungo termine

I coefficienti parziali di sicurezza dei materiali sono:

Calcestruzzo: $\gamma_c = 1,50$

Acciaio di rinforzo: $\gamma_s = 1,15$

6.2.3 Risultati e verifiche strutturali

L'ALLEGATO E presenta graficamente i risultati rilevanti della soletta di fondo

Nei paragrafi seguenti sono riportati i risultati della combinazione SLE e gli inviluppi delle combinazioni SLU. I risultati della combinazione SLE sono stati utilizzati per la verifica delle tensioni in esercizio, controllo della fessurazione e deformazione. Gli inviluppi della combinazione SLU sono stati utilizzati per la verifica flessione e taglio della sezione in c.a.

La Figura 577 mostra una vista della deformazione della soletta di fondo

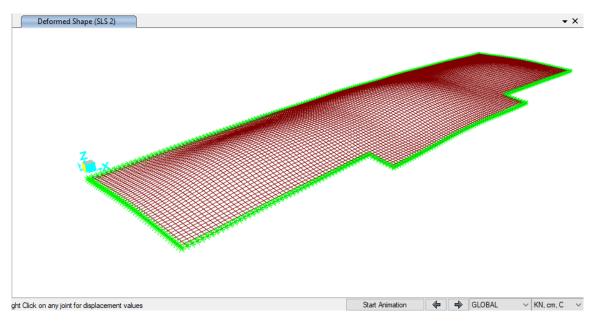
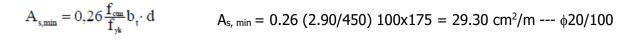



Figura 57. Deformazione della soletta di fondo

i) Verifica a flessione:

spessore di soletta = 180cm separazione di barra = 200 / 100 cm armatura minima: NTC2018 §4.1.6.1.1.

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Di seguito vengono presentati graficamente i risultati dei requisiti delle armature di rinforzo su ciascuna faccia e in ciascuna direzione delle solette Ast (cm²/cm).

Assi locali: 1-Longitudinale 2-Trasversale 3-Verticale

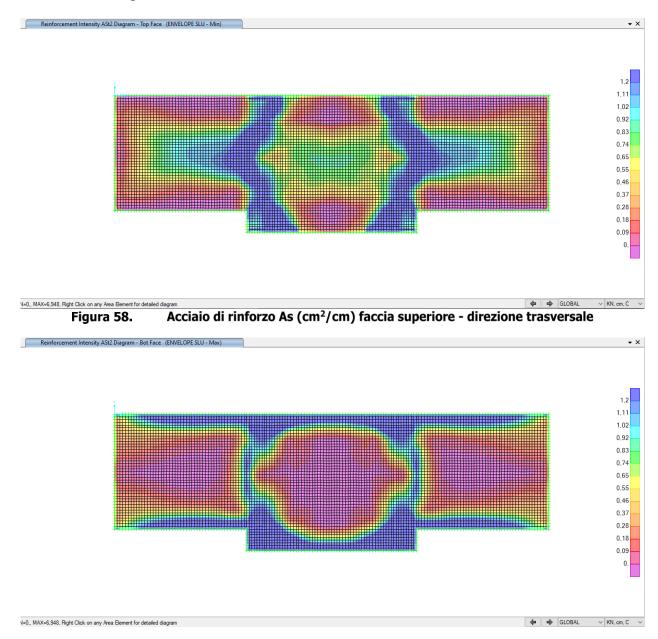
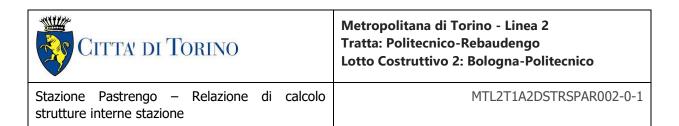



Figura 59. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione trasversale

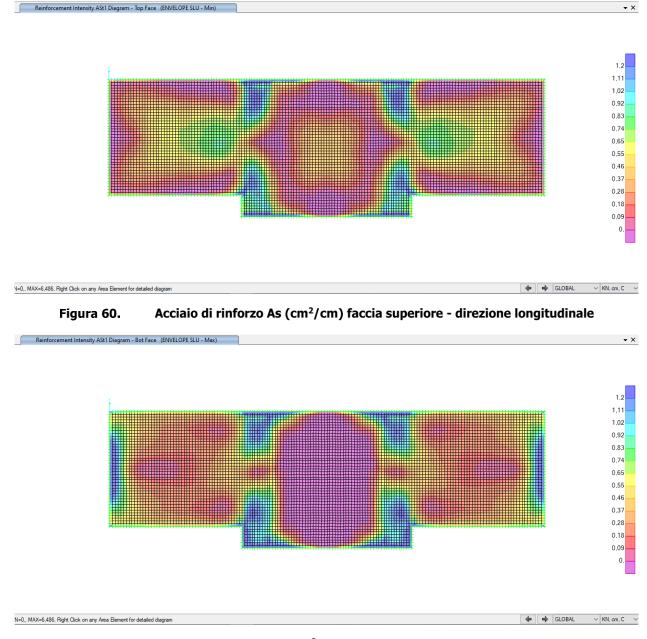


Figura 61. Acciaio di rinforzo As (cm²/cm) faccia inferiore - direzione longitudinale

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

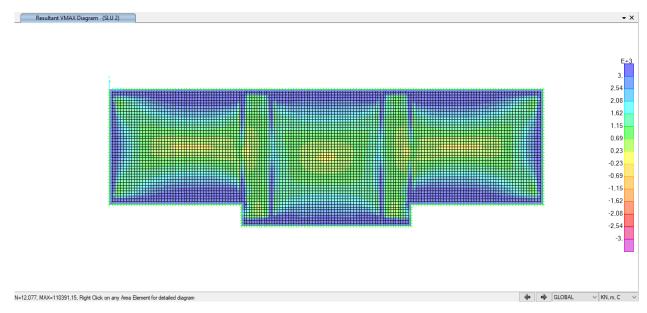
MTL2T1A2DSTRSPAR002-0-1

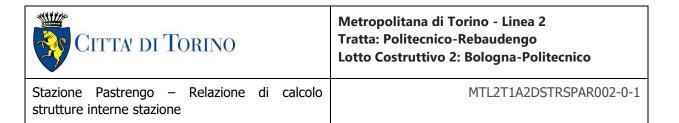
Nella tabella seguente sono riepilogate le armature della soletta di copertura:

Tabella 21 Armature soletta di fondo

Tra assi	Posizione	Supporto sinistro	Campata	Supporto destro
	Trasv. Superiore	φ32/100	2φ32/100	φ32/100
	Trasv. Inferiore	2φ32/100	φ32/100	2φ32/100
1-6	Long. Superiore	φ26/100	φ26/100	φ26/100
	Long. Inferiore	φ26/100	φ26/100	φ26/100

ii) Verifica al taglio:




Figura 62. Taglio massimo

$$V_{max} = \sqrt{V_{13}^2 + V_{23}^2}$$

Zona 1: Entro 2d della faccia diaframmi $A_{st} = 4\phi 20/20$ $V_{Rd} = 5550$ kN/m > Vmax

Zona 2: Resto soletta $A_{st} = 2\phi 20/40 \quad V_{Rd} = 1362 \text{ kN/m}$

- Verifiche SLE - Solettone di fondo

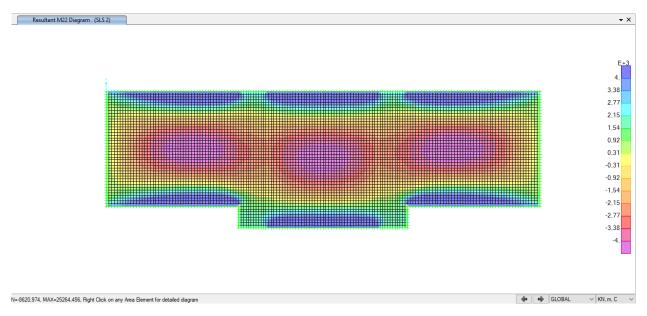
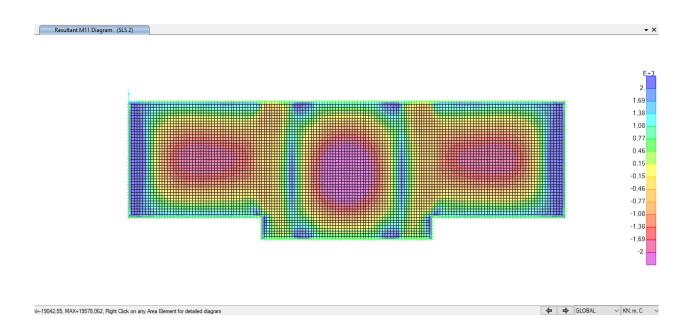



Figura 63. Momento flettente M22 (direzione trasversale) – SLE

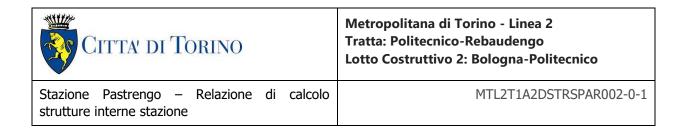


Figura 64. Momento flettente M11 (direzione longitudinale) – SLE

i) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

$$M_{lim} = min [M_{0.30}; M_{\sigma_c}; M_{\sigma_{sl}}]$$

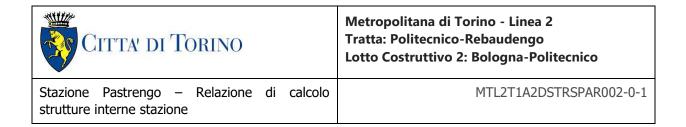
Dove,

 $\begin{aligned} &M_{_0.30} = \text{Mmax per una fessura limite } w_2 = 0,30 \text{mm} & \text{NTC2018 §4.1.2.2.4.} \\ &M_{_\sigma_c} = \text{Mmax per } \sigma_{c, \text{ max}} = 0,45 \text{ f}_{ck} & \text{NTC2018} & \text{§4.1.2.2.5.1.} \end{aligned}$

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{yk}$ NTC2018 §4.1.2.2.5.2.

Tabella 22 Capacità delle sezioni tipologiche

Sezione	H (cm)	d (cm)	As (cm²/m)	As' (cm²/m)	M _{lim} (kN.m/m)	M _r (kN.m/m)
T1	180	172.5	2φ32/100	φ32/100	5500	10111
T2	180	172.5	φ32/100	φ32/100	2800	5237
L1	180	170	φ26/100	φ26/100	1500	3405


Dal confronto dei momenti flettenti massimi M_{max} per SLE con i momenti limite M_{lim} di ciascuna sezione tipologica utilizzata, si verifica che $M_{max} < M_{lim}$

ii) Verifica deformazione

NTC2018 §4.1.2.2.2. / Eurocode 2 § 7.4

Per garantire l'aspetto e l'utilità generale della struttura, e prevenire le flessioni che potrebbero danneggiare le parti adiacenti della struttura è fissato il limite di deformabilità a carichi quasi permanenti = luce/250. L'abbassamento viene valutato rispetto ai supporti. In ogni caso, è possibile utilizzare la pre-inclinazione per compensare parte o tutta la flessione.

La Figura mostra i risultati degli spostamenti verticali assoluti ottenuti considerando una riduzione del modulo di elasticità del calcestruzzo pari a 2,75.

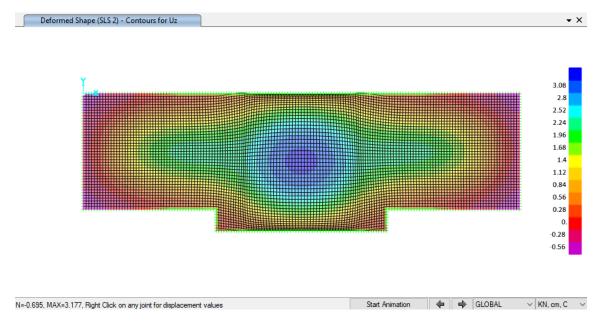


Figura 65. Deformazione verticale Uz – SLE

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

 $\Delta = \delta_{camp} - \delta_{sup} \dots$ Abbassamento rispetto ai supporti

L ... Luce libera della campata

Tabella 23 Verifica deformazione

		Δ = δ_{camp} - δ_{supp}	
Assi	L (m)	(cm)	Δ/L < 1/250
2	20,80	2,04	1/1020
3	24,70	2,45	1/1000
mid span	24,70	3,60	1/690
4	24,70	2,48	1/995
5	20,00	2,06	1/970

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

6.3 Altre strutture interne

6.3.1 Generalità

Tra le strutture interne vi sono le fodere poste in adiacenza ai diaframmi e le strutture secondarie come scale fisse, banchine, muri di sottobanchina, che consentono di determinare le sollecitazioni da considerare nei modelli precedenti.

6.3.2 Fodere interne

L'analisi strutturale è stata condotta mediante schemi strutturali semplici con l'utilizzo del software Sap2000

La fodera tra il solaio di copertura e il solaio dell'atrio tra quota -3,30m e -7,95m è stata schematizzata come una trave appoggiata-appoggiata di spessore 60cm e larghezza unitaria. La fodera tra il solaio dell'atrio e il solaio del primo mezzanino tra quota -9,15m e -13,80m è stata schematizzata come una trave appoggiata-appoggiata di spessore 60cm e larghezza unitaria. La fodera tra il solaio dell'primo mezzanino e il solaio del secondo mezzanino tra quota -15,00m e -19,65m è stata schematizzata come una trave appoggiata-appoggiata di spessore 80cm e larghezza unitaria. Finalmente, la fodera tra il solaio del secondo mezzanino e la soletta di fondazione tra quota -20,85m e -25,45m è stata schematizzata come una trave appoggiata (lato superiore) -incastrata (lato fondazione) di spessore 80cm e larghezza unitaria.

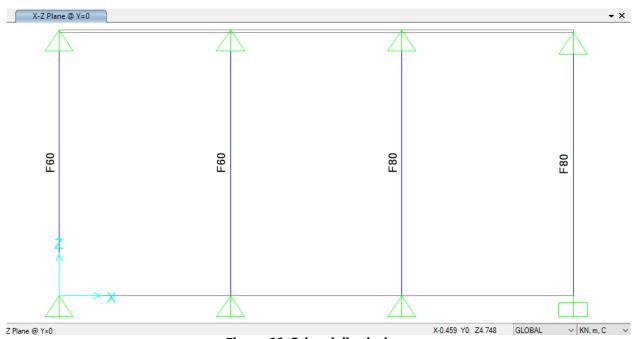


Figura 66. Schemi di calcolo

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

Tabella 24 Spessore delle fodere

Elemento strutturale	Quota[m]	Spessore [cm]
Fodere "tipo A"	da -3,30 a -7,95m	60
Fodere "tipo B"	da -9,15m a -13,80m	60
Fodere "tipo C"	da -15,00m a -19,65m	80
Fodere "tipo D"	da -20,85m a -25,45m	80/100

6.3.2.1 Analisi dei carichi

1) Spinta laterale del terreno

L'incremento a lungo termine del carico laterale applicato alle fodere è stato calcolato considerando la ripartizione di tale carico in base al rapporto delle inerzie tra fodera (spessore 60(80) cm) e diaframma spessore 120cm.

2) Spinta idraulica

Il carico è stato calcolato considerando il livello di falda di lungo termine ed è stato applicato al 100% alle fodere.

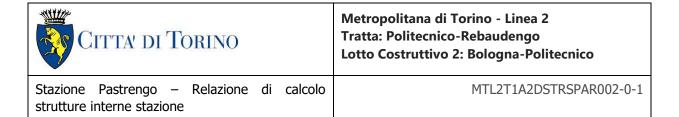
3) Spinta sismica

Il carico sismico applicato alle fodere è stato calcolato considerando la ripartizione di tale carico in base al rapporto delle inerzie tra fodera (spessore 60(80) cm) e diaframma spessore 120cm.

A favore di sicurezza il peso proprio è stato trascurato

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1


Tabella 25 Calcolo carichi da quota -3,30m a -7,95m

(Cario	hi c	la -3,	3m a -	7,95m								
							Press	sione del terreno					
Soil unit	Level	Н	gamma	Sigma_v	Friction angle	Ka	K0	Sigma_h0	Sigma_ha	delta_h	I_diaf.	I_fodera	Press. Parz. sulle fodere
	[m]	[m]	[kN/m3]	[kN/m2]	[°]	[-]		[-]	[kN/m2]	[kN/m2]	[m4]	[m4]	[kN/m2]
	0							0.00	0.00	0.00	14400000	1800000	0.0
ritomb.	-1.8	1.8	20	36.0	30	0.33	0.50	18.00	12.00	6.00	14400000	1800000	0.7
ritomb.	-3.3	1.5	20	66.0	30	0.33	0.50	33.00	22.00	11.00	14400000	1800000	1.2
U2	-7.95	4.65	19.5	156.7	35	0.27	0.43	66.81	42.46	24.35	14400000	1800000	2.7
Livello de	Livello della falda -4.0												
							Pres	sione dell' acqua					
	Level	Н	gamma :	Sigma_hw									
	[m]	[m]	[kN/m3]	[kN/m]									
	0												
	-1.8	1.8	0	0.0									
	-3.3	1.5	0	0.0									
	-4	0.7	0	0.0									
	-7.95	3.95	10	39.5									
C-IIIA	A more of			A DD	to a dia for toward	1 -1:-6		sione deL sisma					
Soil unit	Level	H	_	_	Inc. din. Sp. terreno	I_diaf.	I_fodera	Press. Sis. Parz. sulle fodere					
	[m] 0	[m]	[kN/m3]	[KIN/M2]	[°]	[m4] 14400000.0	[m4] 1800000.0	[kN/m2] 0.0					
ritomb.	-1.8	1.8	20	1.2	5.91	14400000.0	1800000.0	0.0 1.9					
ritomb.	-3.3	1.5	20	1.2	5.91	14400000.0	1800000.0	1.9 1.9					
													■GEODATA
U2	-7.95	4.65	19.5	1.2	5.91	14400000.0	1800000.0	1.9					ENGINEERING

Tabella 26 Calcolo carichi da quota -9,15m a -13,80m

С	arich	i da	a -9,1	5m a -	-13,80m								
							Press	sione del terreno					
Soil unit	Level	Н	gamma	Sigma_v	Friction angle	Ka	K0	Sigma_h0	Sigma_ha	delta_h	I_diaf.	I_fodera	Press. Parz. sulle fodere
	[m]	[m]	[kN/m3]	[kN/m2]	[°]	[-]		[-]	[kN/m2]	[kN/m2]	[m4]	[m4]	[kN/m2]
	0							0.00	0.00	0.00	14400000	1800000	0.0
ritomb.	-1.8	1.8	20	36.0	30	0.33	0.50	18.00	12.00	6.00	14400000	1800000	0.7
ritomb.	-3.3	1.5	20	66.0	30	0.33	0.50	33.00	22.00	11.00	14400000	1800000	1.2
U2	-7.95	4.65	19.5	156.7	35	0.27	0.43	66.81	42.46	24.35	14400000	1800000	2.7
U2	-9.15	1.2	19.5	180.1	35	0.27	0.43	76.79	48.80	27.99	14400000	1800000	3.1
U2	-13.8	4.65	19.5	270.8	35	0.27	0.43	115.45	73.37	42.08	14400000	1800000	4.7
Livello de	lla fald	9	-4.0										
							Pres	sione dell' acqua					
	Level	н	gamma	Sigma_hw			1100	orone den dequa					
	[m]		[kN/m3]										
	0		,	,									
	-1.8	1.8	0	0.0									
	-3.3	1.5	0	0.0									
	-4	0.7	0	0.0									
	-7.95	3.95	10	39.5									
		5.15	10	51.5									
	-13.8	9.8	10	98.0									
							Pres	ssione deL sisma					
Soil unit	Level	Н	gamma	Acc_PP	Inc. din. Sp. terreno	I_diaf.	I_fodera	Press. Sis. Parz. sulle fodere					•
	[m]	[m]	[kN/m3]	[kN/m2]	[°]	[m4]	[m4]	[kN/m2]					
	0					14400000.0	1800000.0	0.0					
ritomb.	-1.8	1.8	20	1.2	5.91	14400000.0	1800000.0	1.9					
ritomb.	-3.3	1.5	20	1.2	5.91	14400000.0	1800000.0	1.9					
U2	-7.95	4.65	19.5	1.2	5.91	14400000.0	1800000.0	1.9					
U2	-9.15	1.2	19.5	1.2	10.26	14400000.0	1800000.0	2.3					ECCODATA
U2	-13.8	4.65	19.5	1.2	10.26	14400000.0	1800000.0	2.3					■ GEODATA ENGINEERING

Tabella 20 Calcolo carichi da quota -15,00m a -19,65m

(Cario	hi d	da -15	m a -:	19,65m								
							Press	ione del terreno					
Soil unit	Level [m] 0	H [m]	gamma [kN/m3]	Sigma_v [kN/m2]	Friction angle [°]	Ka [-]	ко	Sigma_h0 [-] 0.00	Sigma_ha [kN/m2] 0.00		I_diaf. [m4] 14400000	I_fodera [m4] 1800000	Press. Parz. sulle fodere [kN/m2] 0.0
ritomb.	-1.8	1.8	20	36.0	30	0.33	0.50	18.00	12.00	6.00	14400000	1800000	0.7
ritomb.	-3.3	1.5	20	66.0	30	0.33	0.50	33.00	22.00	11.00	14400000	1800000	1.2
U2	-7.95	4.65	19.5	156.7	35	0.27	0.43	66.81	42.46	24.35	14400000	1800000	2.7
U2	-9.15	1.2	19.5	180.1	35	0.27	0.43	76.79	48.80	27.99	14400000	1800000	3.1
U2	-13.8	4.65	19.5	270.8	35	0.27	0.43	115.45	73.37	42.08	14400000	1800000	4.7
U2	-15	1.2	19.5	294.2	35	0.27	0.43	125.43	79.71	45.72	14400000	4266666.7	10.5
U2	-19.65		19.5	384.8	35	0.27	0.43	164.10	104.28	59.81	14400000	4266666.7	13.7
Livello de	ella fald	а	-4.0										
							Pres	sione dell' acqua					
	Level	Н		Sigma_hw									
	[m]	[m]	[kN/m3]	[kN/m]									
	0												
	-1.8	1.8	0	0.0									
	-3.3 -4	1.5 0.7	0	0.0									
	-7.95	3.95	10	39.5									
	-9.15	5.15	10	51.5									
	-13.8	9.8	10	98.0									
	-15	11	10	110.0									
	-19.65			156.5									
							Pres	sione deL sisma					
Soil unit	Level	н	gamma	Acc_PP	Inc. din. Sp. terreno	I_diaf.	I_fodera	Press. Sis. Parz. sulle fodere					
	[m]	[m]	[kN/m3]	[kN/m2]	[°]	[m4]	[m4]	[kN/m2]					
	0					14400000.0	1800000.0	0.0					
ritomb.	-1.8	1.8	20	1.2	5.91	14400000.0	1800000.0	1.9					
ritomb.	-3.3	1.5	20	1.2	5.91	14400000.0	1800000.0	1.9					
U2	-7.95	4.65	19.5	1.2	5.91	14400000.0	1800000.0	1.9					
	-9.15	1.2	19.5	1.2	10.26	14400000.0	1800000.0	2.3					
U2	-13.8	4.65	19.5	1.2	10.26	14400000.0	1800000.0	2.3					
	-15	1.2	19.5	1.6	14.60	14400000.0	4266666.7	4.9					■GEODATA
U2	-19.65	4.65	19.5	1.6	14.60	14400000.0	4266666.7	4.9					ENGINEERING

Tabella 20 Calcolo carichi da quota -20,85m a -25,45m

					-25,45m		Droce	ione del terreno					
il unit	Level	н	gamma	Sigma v	Friction angle	Ka	K0	Sigma h0	Sigma ha	dolta b	I diaf.	I fodera	Press, Parz, sulle foder
on unit	[m]			[kN/m2]	[°]	[-]	NO.	Sigma_no [-]	[kN/m2]		[m4]	[m4]	[kN/m2]
	0	Lini	[KIN/III3]	[KIN/III2]	1.1	[-]		0.00	0.00	0.00	14400000	1800000	0.0
itomb.	-1.8	1.8	20	36.0	30	0.33	0.50	18.00	12.00	6.00	14400000	1800000	0.7
itomb.	-1.8	1.5	20	66.0	30	0.33	0.50	33.00	22.00	11.00	14400000	1800000	1.2
U2	-7.95	4.65	19.5	156.7	35	0.33	0.30	66.81	42.46	24.35	14400000	1800000	2.7
U2	-9.15	1.2	19.5	180.1	35	0.27	0.43	76.79	48.80	27.99	14400000	1800000	
U2		4.65	19.5	270.8	35		0.43	115.45	73.37	42.08	14400000	1800000	3.1 4.7
	-13.8	1.2	19.5			0.27							
U2				294.2	35	0.27	0.43	125.43	79.71	45.72		4266666.7	10.5
U2	-19.65		19.5	384.8	35	0.27	0.43	164.10	104.28	59.81		4266666.7	13.7
U2	-20.85		19.5	408.2	35	0.27	0.43	174.08	110.62	63.45		4266666.7	14.5
U2	-25.45		19.5	497.9	35	0.27	0.43	212.33	134.93	77.39	14400000	4266666.7	17.7
vello d	ella fald	3	-4.0										
							Press	sione dell' acqua					
	Level	н		Sigma_hw									
	[m]	[m]	[kN/m3]	[kN/m]									
	0												
	-1.8	1.8	0	0.0									
	-3.3	1.5	0	0.0									
	-4	0.7	0	0.0									
	-7.95	3.95	10	39.5									
	-9.15	5.15	10	51.5									
	-13.8	9.8	10	98.0									
	-15	11	10	110.0									
	-19.65	15.65	10	156.5									
	-20.85	16.85	10	168.5									
	-25.45	21.45	10	214.5									
							Pres	sione deL sisma					
oil unit		н	gamma		Inc. din. Sp. terreno	I_diaf.	I_fodera	Press. Sis. Parz. sulle fodere					
	[m]	[m]	[kN/m3]	[kN/m2]	[°]	[m4]	[m4]	[kN/m2]					
	0					14400000.0	1800000.0	0.0					
itomb.	-1.8	1.8	20	1.2	5.91	14400000.0	1800000.0	1.9					
itomb.	-3.3	1.5	20	1.2	5.91	14400000.0	1800000.0	1.9					
U2	-7.95	4.65	19.5	1.2	5.91	14400000.0	1800000.0	1.9					
	-9.15	1.2	19.5	1.2	10.26	14400000.0	1800000.0	2.3					
U2	-13.8	4.65	19.5	1.2	10.26	14400000.0	1800000.0	2.3					
U2	-15	1.2	19.5	1.6	14.60	14400000.0	4266666.7	4.9					
U2	-19.65	4.65	19.5	1.6	14.60	14400000.0	4266666.7	4.9					
U2	-20.85	1.2	19.5	1.6	18.71	14400000.0	4266666.7	5.9					■GEODAT
U2	-25.45		19.5	1.6	18.71	14400000.0	4266666.7	5.9					■GEODAI

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

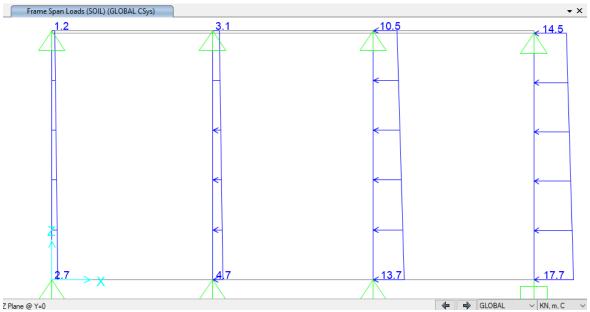


Figura 67. Pressione del terreno

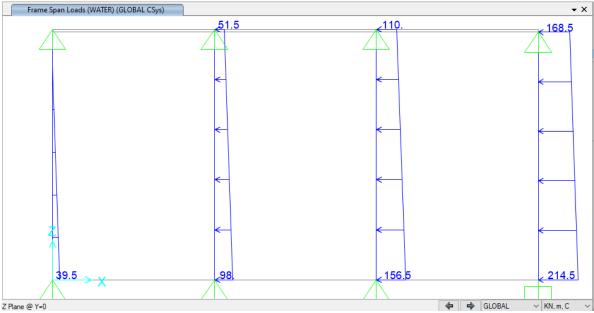


Figura 68. Pressione dell'acqua

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

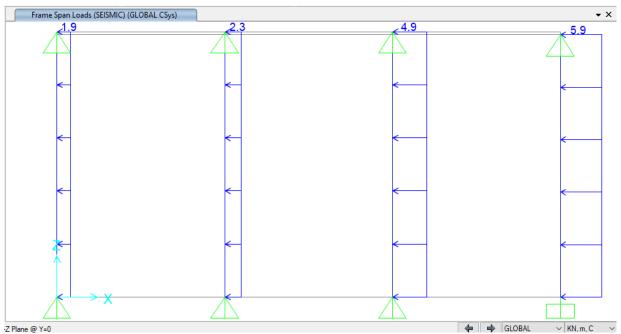


Figura 69. Pressione sismica

6.3.2.2 Combinazione dei carichi

I carichi suddetti sono stati applicati adottando gli opportuni coefficienti moltiplicativi:

G1 = Spinta del terreno

G2 = Spinta idraulica

E = Spinta sismica

Tabella 27 Combinazione dei carichi

Carico	SLE	SLU 1	SLU 2_ECC
G1	1,00	1,30	1,00
G2	1,00	1,30	1,00
E	0	0	1,00

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

6.3.2.3 Risultati dell'analisi

Nei paragrafi seguenti sono riportati i diagrammi della combinazione SLE e gli inviluppi delle combinazioni SLU.

I risultati della combinazione SLE sono stati utilizzati per la verifica delle tensioni in esercizio, controllo della fessurazione e deformazione.

Gli inviluppi della combinazione SLU sono stati utilizzati per la verifica flessione e taglio della sezione in c.a.

L'ALLEGATO F sono riportati i risultati di interesse.

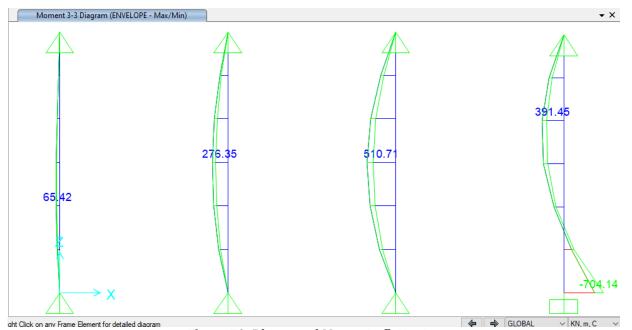
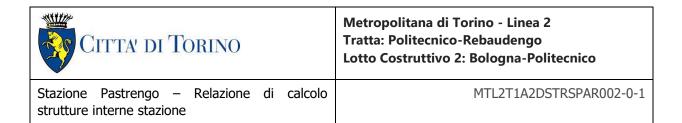



Figura 70. Diagrammi Momento flettente

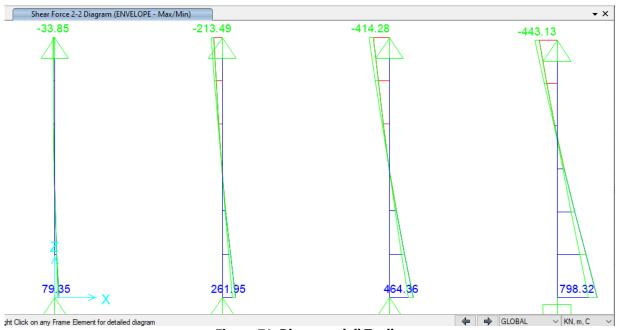


Figura 71. Diagrammi di Taglio

6.3.2.4 Verifiche strutturali

Verifiche SLU

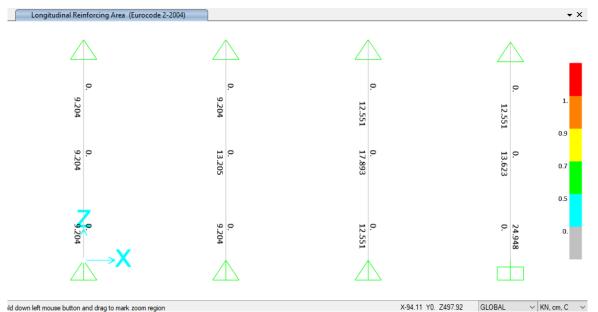


Figura 72. Rinforzo longitudinale (cm²/m)

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

Nella tabella seguente sono riepilogate le armature delle fodere:

Tabella 28 Armature fodere

Quota	Spessore [cm]	Lato interno	Lato esterno	Rep.	Armatura a taglio	V _{Rd} [KN/m]
Da -3,30m a -7,95m	60	Ф 16/20	Ф 12/20	Ф 12/20	Ф8/40Х40	87
Da -9,15m a -13,80m	60	Ф 18/10	Ф 12/20	Ф 12/20	Ф10/20Х40	271
Da -15,00m a -19,65m	80	Ф 20/10	Ф 16/20	Ф 16/20	Ф12/20Х40	533
		Ф 20/10	Ф 16/20	Ф 16/20	Ф12/20Х20	1066
Da -20,85m a -25,45m	80	Ф 20/10	Ф 20/10 + Ф 16/20	Ф 16/20	Ф12/20Х20	1066

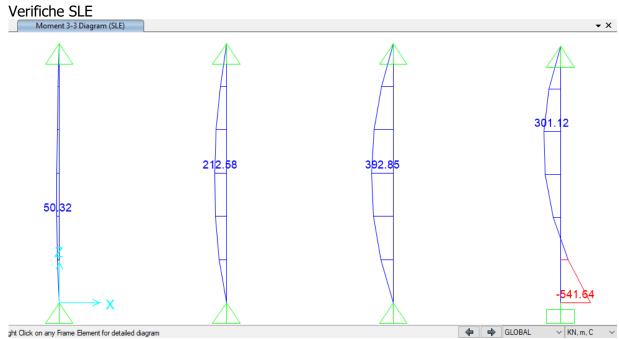


Figura 73. Diagramma di Momenti flettenti

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

i) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

$$M_{lim} = min [M_{-0.30}; M_{-\sigma_c}; M_{-\sigma_s}]$$

Dove,

 $M_{-0.30} = Mmax per una fessura limite <math>w_2 = 0.30mm$ NTC2018 §4.1.2.2.4.

 $M_{\sigma_c} = Mmax per \sigma_{c, max} = 0.45 f_{ck}$ NTC2018 §4.1.2.2.5.1.

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{yk}$ NTC2018 §4.1.2.2.5.2.

Sezione	H (cm)	d (cm)	As (cm²/m)	As' (cm²/m)	M _{lim} (kN.m/m)	M _r (kN.m/m)
Da -3,30m a - 7,95m	60	55	φ16/200	φ12/200	70	215
Da -9,15m a - 13,80m	60	55	φ18/100	φ12/200	275	515
Da -15,00m a - 19,65m	80	75	φ20/100	φ16/200	460	885
Da -20,85m a - 25,45m interno	80	75	φ20/100	φ16/200	460	885
Da -20,85m a - 25,45m base	80	75	φ20/100 + φ16/200	ф20/100	620	1135

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

ii) Verifica deformazione

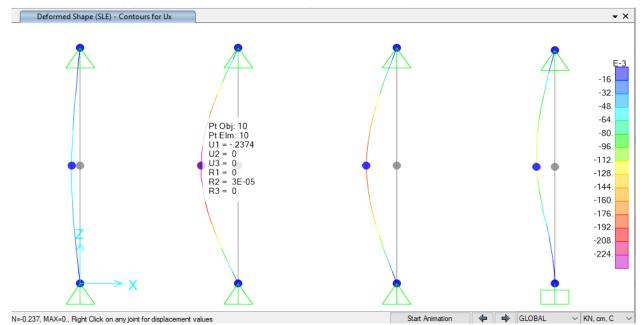


Figura 74. Deformazione laterale

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

 $\Delta {=} \delta_{\text{camp}}$ - $\delta_{\text{sup}} \dots$ Abbassamento rispetto ai supporti

L ... Luce libera della campata

Tabella 29 Verifica deformazione

Fodera	L (m)	$\Delta = \delta_{camp} - \delta_{supp}$ (cm)	Δ/L< 1/250
Da -3,30m a -7,95m	4,65	0,055	
Da -9,15m a -13,80m	4,65	0,24	<<1/250
Da -15,00m a -19,65m	4,65	0,19	<<1/250
Da -20,85m a -25,45m	4,60	0,12	<<1/250

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

6.3.3 Banchine e muri sotto banchine

La soletta di banchina di spessore 0,50m è incastrata alle fodere della stazione ed appoggiata al muro esterno di sotto banchina di spessore 0,30m.

Il calcolo delle sollecitazioni viene condotto mediante il software Sap2000. La Figura mostra lo schema dei modelli strutturali adottati per la soletta di banchina e muri sotto banchina di larghezza unitaria.

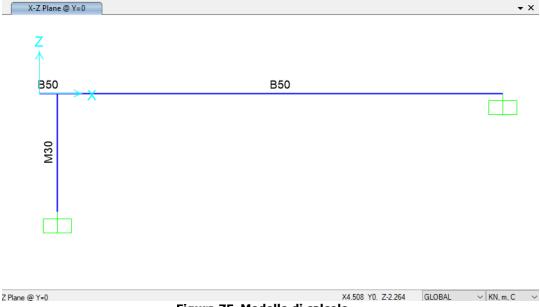



Figura 75. Modello di calcolo

6.3.4.1. Carichi e combinazioni

Carichi permanenti:

Peso proprio (calcolato automaticamente) $0.30 \text{m x } 25 \text{ kN/m}^3 = 7.5 \text{ kN/m}^2 (G_1)$ Sottofondo = $0.10 \text{m x } 24 \text{ kN/m}^3 = 2.40 \text{ kN/m}^2 (G_2)$

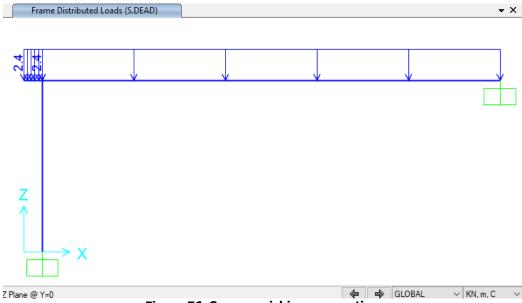
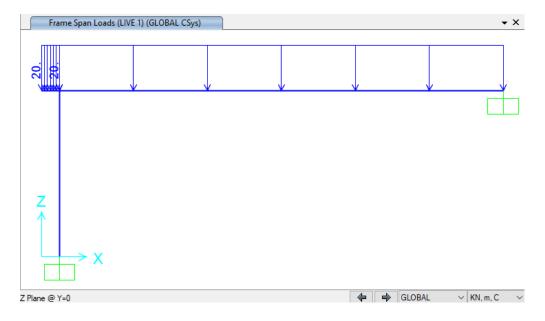
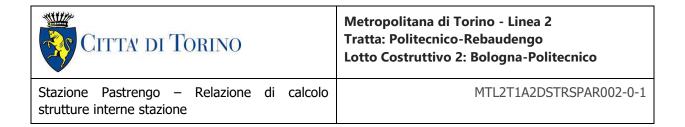



Figura 76. Sovraccarichi permanenti


Carichi variabili

A favore di sicurezza è stata analizzata la sezione in corrispondenza dei tecnici, per massimizzare le sollecitazioni sono state considerate tre schemi de carico.

Sovraccarichi = $20 \text{ kN/m}^2 (Q_1)$

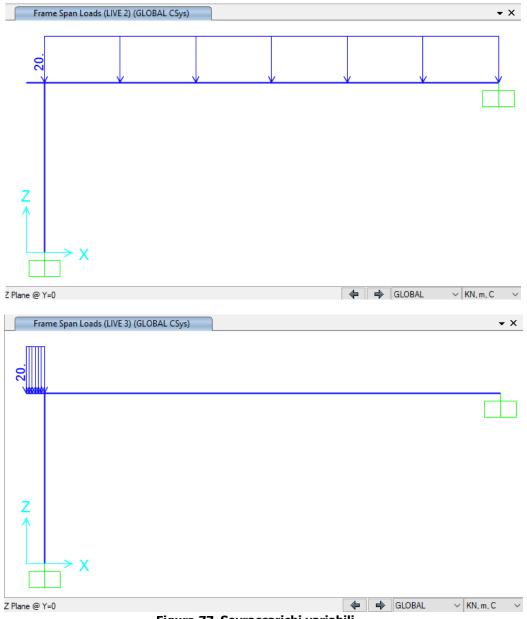


Figura 77. Sovraccarichi variabili

Per la verifica strutturale degli stati limite di resistenza (SLU) e di esercizio (SLE), vengono utilizzati i fattori e le combinazioni indicate nelle NTC2018.

SLU: $1,30 G_1 + 1,50 G_2 + 1,50 Q_1$

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

SLE:
$$G_1 + G_2 + \Psi_{2,1} Q_1$$
 dove $\Psi_{2,1} = 1,00$ conservativamente, per combinazione quasi-permanente e frequente a lungo termine

I coefficienti parziali di sicurezza dei materiali sono:

Calcestruzzo: $\gamma_c = 1,50$

Acciaio di rinforzo: $\gamma_s = 1,15$

Risultati dell'analisi 6.3.3.1

Nei paragrafi seguenti sono riportati i diagrammi della combinazione SLE e gli inviluppi delle combinazioni SLU.

I risultati della combinazione SLE sono stati utilizzati per la verifica delle tensioni in esercizio, controllo della fessurazione e deformazione.

Gli inviluppi della combinazione SLU sono stati utilizzati per la verifica flessione e taglio della sezione in c.a.

L'ALLEGATO G sono riportati i risultati di interesse.

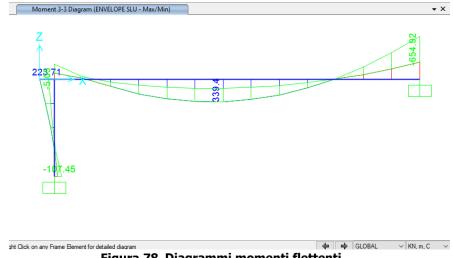
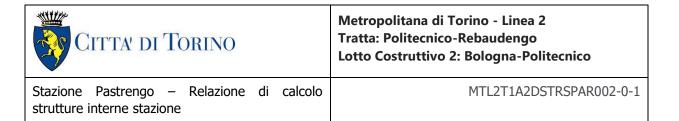



Figura 78. Diagrammi momenti flettenti

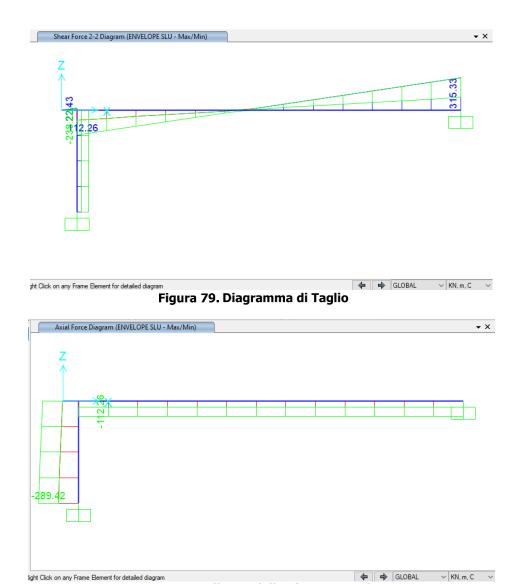
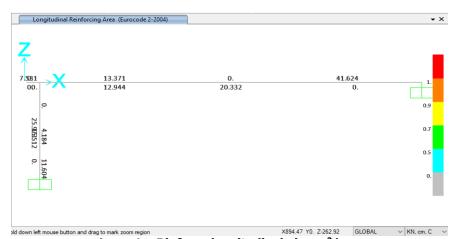


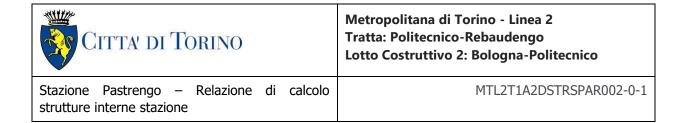
Figura 80. Inviluppo dello sforzo normale

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

6.3.3.2 Verifiche strutturali

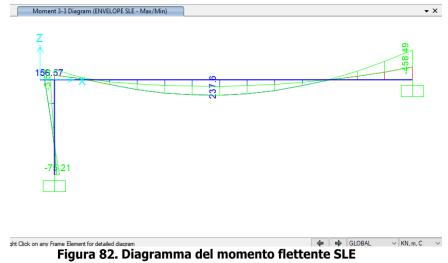
Verifica SLU




Figura 81. Rinforzo longitudinale in cm²/m

Verifica a flessione

Nella tabella seguente sono riepilogate le armature delle banchine:


Banchina tipo 1					
Span No	Spessore [cm]	Posizione	supporto sinistro/base	vano	supporto destro/alto
		Superiore	Φ 16/200 + Φ 16/200	Ф 16/200	Φ 16/200 + Φ 22/100
Span 1 30	Inferiore	Ф 20/100	Ф 20/100	Ф 20/100	
	Rep. Superiore	Ф 16/200	Ф 16/200	Ф 16/200	
	Rep. Inferiore	Ф 16/200	Ф 16/200	Ф 16/200	
		Esterna	Ф 20/100	Ф 20/100	Ф 20/100
Muro 1 30	Interna	Ф 16/200	Ф 16/200	Ф 16/200	
	Rep. Esterna	Ф 12/200	Ф 12/200	Ф 12/200	
		Rep. Interna	Ф 12/200	Ф 12/200	Ф 12/200

Element	Armatura a taglio al metro	V _{Rd} [KN/m]
Banchina	Ф 10/20/20	444
Muro	Ф 8/40/40	47

Verifiche SLE

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

i) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

$$M_{lim} = min [M_{-0.30}; M_{-\sigma_c}; M_{-\sigma_s}]$$

Dove,

 $M_{-0.30} = Mmax per una fessura limite <math>w_2 = 0.30mm$ NTC2018 §4.1.2.2.4.

 $M_{\sigma_c} = Mmax per \sigma_{c, max} = 0,45 f_{ck}$ NTC2018§4.1.2.2.5.1.

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{yk}$ NTC2018 §4.1.2.2.5.2.

Sezione	Н	d	As	As'	M _{lim}	M _r
	(cm)	(cm)	(cm ² /m)	(cm ² /m)	(kN.m/m)	(kN.m/m)
T1	50	45	φ20/100	φ16/200	280	515
T2	50	45	φ16/100	φ20/100	180	355
Т3	50	45	φ16/200 + φ22/100	ф20/100	480	755
T4	30	25	φ20/100	φ16/200	170	265

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

ii) Verifica deformazione

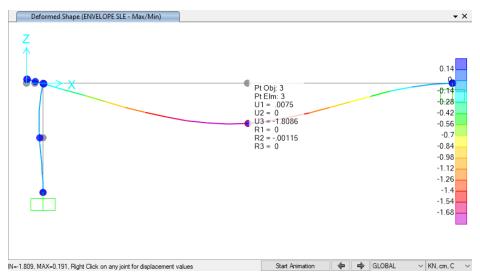


Figura 83. Deformazione SLE

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

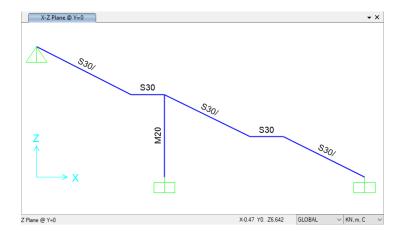
 $\Delta = \delta_{camp} - \delta_{sup} \dots$ Abbassamento rispetto ai supporti

L ... Luce libera della campata

Tabella 30 Verifica deformazione

Span No	L (m)	$\Delta = \delta_{camp} - \delta_{supp}$ (cm)	Δ/L< 1/250
1-1	11,10	1,81	1/610

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1


6.3.4 Scale fisse

Di seguito vengono mostrati i dettagli di calcolo delle due tipologie di scale fisse (Tipo 1 e 2) utilizzate nella presente stazione.

Tra la banchina inferiore e la soletta della banchina superiore, le scale fisse sono costituite da una soletta inclinata di spessore 0,30m, con gradini di 0,32x0,16 m e con un muro di sostegno intermedio di spessore 0,20m (Scala tipo 1).

Tra la soletta della banchina superiore e il livello atrio, dove non è possibile utilizzare un muro di sostegno intermedio, la soluzione strutturale delle scale fisse sono costituite da una soletta inclinata di spessore 0,20m, con gradini di 0,32x0,16 m supportato da due travi laterali segmentate 60x80 (Scala tipo 2).

La Figura mostra lo schema dei modelli strutturale adottato per ogni tipo de scala.

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

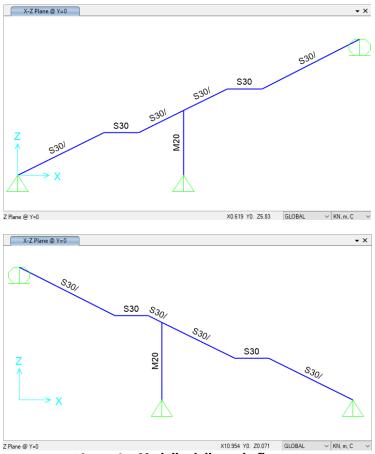


Figura 84. Modello delle scale fisse

6.3.4.1 Carichi e combinazioni

- Scala tipo 1: (s = 1,00m)

Carichi permanenti:

Peso proprio = $0.30 \text{m x } 25 \text{ kN/m}^3 = 7.5 \text{ kN/m}^2 \text{ (calcolato automaticamente) } (G_1\text{-Dead})$

Gradini = $0.10 \text{m x } 25 \text{ kN/m}^3 = 2.50 \text{ kN/m}^2$ (calcolato automaticamente) ($G_2 - S_Dead$)

Rivestimenti = $0,125 \text{m} \times 24 \text{ kN/m}^3 = 3,00 \text{ kN/m}^2 (G_3 - S_Dead)$

Carichi variabili

The second	CITTA'	DI	Torino

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Sovraccarichi = $5.0 \text{ kN/m}^2 (Q_1 - \text{Live})$

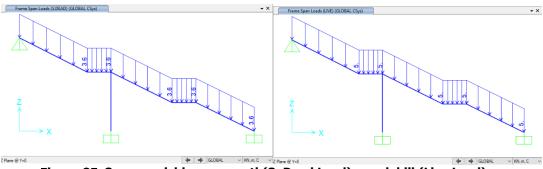


Figura 85. Sovraccarichi permanenti (S_Dead Load) e variabili (Live Load)

- Scala tipo 2: (s = 1,20 m)

Carichi permanenti:

Peso proprio = $0.30 \text{m x } 25 \text{ kN/m}^3 = 7.5 \text{ kN/m}^2 \text{ (calcolato automaticamente) } (G_1\text{-Dead})$

Gradini = $0.10 \text{m x } 25 \text{ kN/m}^3 = 2.50 \text{ kN/m}^2 \text{ (calcolato automaticamente) } (G_2 - S_Dead)$

Rivestimenti = $0.15 \text{m x } 24 \text{ kN/m}^3 = 3.60 \text{ kN/m}^2 (G_3 - \text{S} \text{ Dead})$

Carichi variabili

Sovraccarichi = $5.0 \text{ kN/m}^2 (Q_1 - \text{Live})$

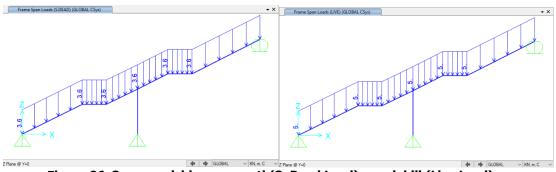


Figura 86. Sovraccarichi permanenti (S_Dead Load) e variabili (Live Load)

Scala tipo 3: (s = 1,20 m)

Carichi permanenti:

Peso proprio = $0.30 \text{m x } 25 \text{ kN/m}^3 = 7.5 \text{ kN/m}^2 \text{ (calcolato automaticamente) } (G_1\text{-Dead})$

CITTA' DI TORINO	

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Gradini = $0.10 \text{m x } 25 \text{ kN/m}^3 = 2.50 \text{ kN/m}^2 \text{ (calcolato automaticamente) } (G_2 - S_Dead)$

Rivestimenti = $0.15 \text{m x } 24 \text{ kN/m}^3 = 3.60 \text{ kN/m}^2 (G_3 - S_Dead)$

Carichi variabili

Sovraccarichi = $5.0 \text{ kN/m}^2 (Q_1 - \text{Live})$

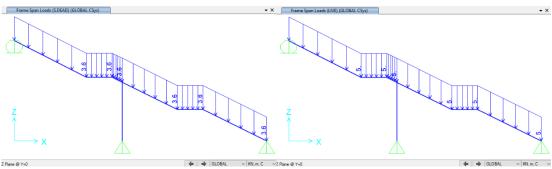


Figura 87. Sovraccarichi permanenti (S_Dead Load) e variabili (Live Load)

Per la verifica strutturale degli stati limite di resistenza (SLU) e di esercizio (SLE), vengono utilizzati i fattori e le combinazioni indicate nelle NTC2018.

SLU: $1,30 G_1 + 1,50 G_2 + 1,50 G_3 + 1,50 Q_1$

SLE: $G_1 + G_2 + G_3 + \Psi_{2,1} Q_1$ dove $\Psi_{2,1} = 1,00$ conservativamente per combinazione quasi-permanente a lungo termine

I coefficienti parziali di sicurezza dei materiali sono:

Calcestruzzo: $\gamma_c = 1,50$

Acciaio di rinforzo: $\gamma_s = 1,15$

6.3.4.2 Risultati dell'analisi

Nei paragrafi seguenti sono riportati i diagrammi della combinazione SLE e gli inviluppi delle combinazioni SLU.

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

I risultati della combinazione SLE sono stati utilizzati per la verifica delle tensioni in esercizio, controllo della fessurazione e deformazione.

Gli inviluppi della combinazione SLU sono stati utilizzati per la verifica flessione e taglio della sezione in c.a.

L'ALLEGATO H sono riportati i risultati di interesse.

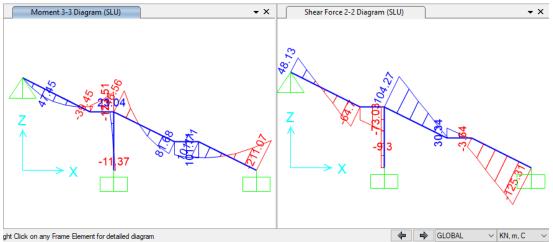
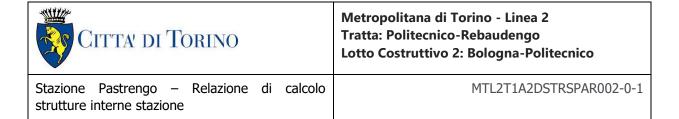



Figura 88. Momenti flettenti e tagli

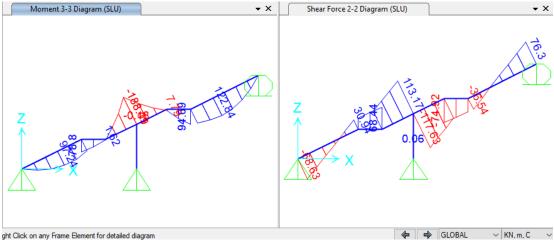


Figura 89. Momenti flettenti e tagli

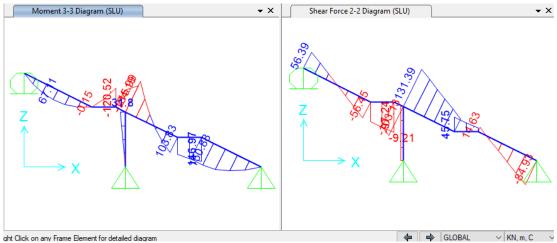
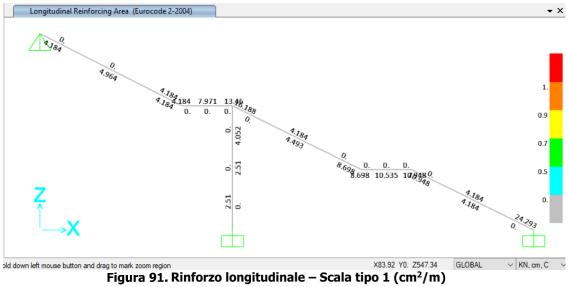
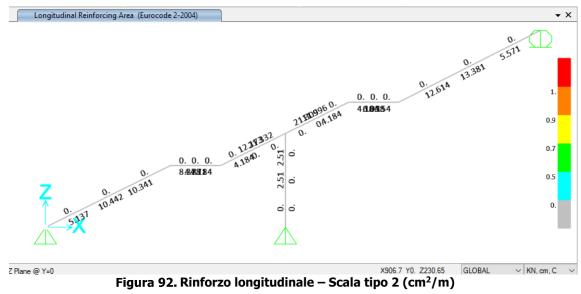



Figura 90. Momenti flettenti e tagli

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

6.3.4.3 Verifiche strutturali

Verifica a flessione


	Scala tipo 1					
Span No	Spessore [cm]	Posizione	supporto sinistro/base	vano	supporto destro/alto	
		Superiore	Ф 16/200	Ф 16/200	Φ 16/200 + Φ 16/200	
Span 1	30	Inferiore	Ф 16/200	Ф 16/200	Ф 16/200	
'		Rep. Superiore	Ф 12/200	Ф 12/200	Ф 12/200	
		Rep. Inferiore	Ф 12/200	Ф 12/200	Ф 12/200	
		Superiore	Φ 16/200 + Φ 16/200	Ф 20/200	Φ 16/200 + Φ 22/200	
Span 2	30	Inferiore	Ф 16/200	Ф 20/200	Ф 20/200	
		Rep. Superiore	Ф 12/200	Ф 12/200	Ф 12/200	
		Rep. Inferiore	Ф 12/200	Ф 12/200	Ф 12/200	
		Esterna	Ф 12/200	Ф 12/200	Ф 12/200	
Muro 1	Muro 1 20	Interna	Ф 12/200	Ф 12/200	Ф 12/200	
Mulo 1	20	Rep. Esterna	Ф 12/200	Ф 12/200	Ф 12/200	
		Rep. Interna	Ф 12/200	Ф 12/200	Ф 12/200	

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

Verifica a taglio

Element	Armatura a taglio al metro	V _{Rd} [KN/m]
Span 1		143
Span 2		143
Muro 1	Ф 8/40/40	24

Verifica a flessione

Nella tabella seguente sono riepilogate le armature delle scale:

Scala tipo 2					
Span No	Spessore [cm]	Posizione	supporto sinistro/base	vano	supporto destro/alto
Span 1	30	Superiore	Ф 16/200	Ф 16/200	Ф 20/100

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

		Inferiore	Ф 20/200	Ф 20/200	Ф 16/200
		Rep. Superiore	Ф 12/200	Ф 12/200	Ф 12/200
		Rep. Inferiore	Ф 12/200	Ф 12/200	Ф 12/200
Span 2	30	Superiore	Ф 20/100	Ф 16/200	Ф 16/200
		Inferiore	Ф 16/200	Ф 16/100	Ф 16/100
		Rep. Superiore	Ф 12/200	Ф 12/200	Ф 12/200
		Rep. Inferiore	Ф 12/200	Ф 12/200	Ф 12/200
Muro 1		Esterna	Ф 12/200	Ф 12/200	Ф 12/200
	20	Interna	Ф 12/200	Ф 12/200	Ф 12/200
	20	Rep. Esterna	Ф 12/200	Ф 12/200	Ф 12/200
		Rep. Interna	Ф 12/200	Ф 12/200	Ф 12/200

- Verifica a taglio

Element	Armatura a taglio al metro	V _{Rd} [KN/m]
Span 1		143
Span 2		143
Muro 1	Ф 8/40/40	24

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	

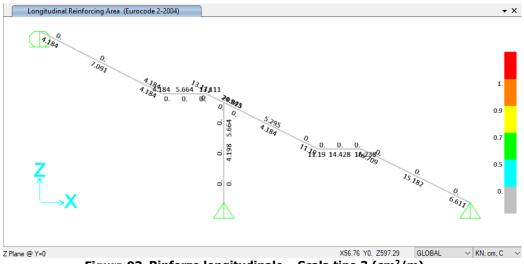
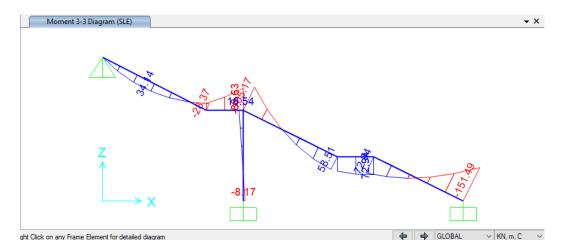


Figura 93. Rinforzo longitudinale – Scala tipo 3 (cm²/m)

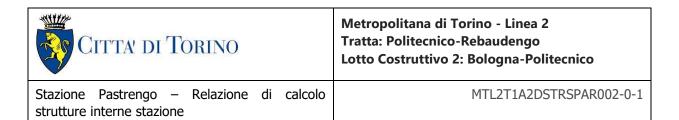
Verifica a flessione

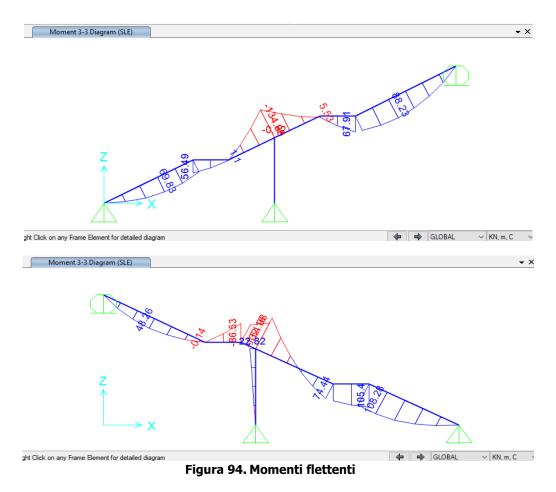
Nella tabella seguente sono riepilogate le armature delle scale:

Scala tipo 3					
Span No	Spessore [cm]	Posizione	supporto sinistro/base	vano	supporto destro/alto
		Superiore	Ф 16/200	Ф 16/200	Φ 16/200 + Φ 22/200
Span 1	30	Inferiore	Ф 20/200	Ф 20/200	Ф 16/200
		Rep. Superiore	Ф 12/200	Ф 12/200	Ф 12/200
		Rep. Inferiore	Ф 12/200	Ф 12/200	Ф 12/200
	30	Superiore	Φ 16/200 + Φ 22/200	Ф 16/200	Ф 16/200
Span 2		Inferiore	Ф 16/200	Ф 16/100	Ф 16/100
•		Rep. Superiore	Ф 12/200	Ф 12/200	Ф 12/200
		Rep. Inferiore	Ф 12/200	Ф 12/200	Ф 12/200
Muro	20	Esterna	Ф 12/200	Ф 12/200	Ф 12/200
		Interna	Ф 12/200	Ф 12/200	Ф 12/200
		Rep. Esterna	Ф 12/200	Ф 12/200	Ф 12/200
		Rep. Interna	Ф 12/200	Ф 12/200	Ф 12/200



CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico	
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1	


Verifica a taglio


Element	Armatura a taglio al metro	V _{Rd} [KN/m]
Span 1		143
Span 2		143
Muro 1	Ф 8/40/40	24

- Verifiche SLE

i) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

$$M_{lim} = min [M_{-0.30}; M_{-\sigma_c}; M_{-\sigma_s}]$$

Dove,

 $M_{-0.30} = Mmax$ per una fessura limite $w_2 = 0.30$ mm

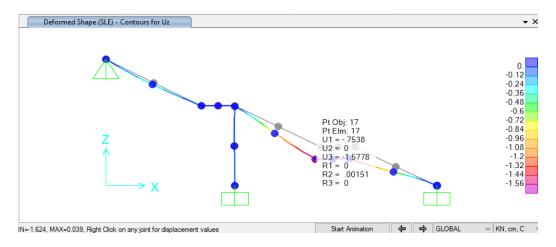
NTC2018 §4.1.2.2.4.

 $M_{\sigma_c} = Mmax per \sigma_{c, max} = 0.45 f_{ck}$

NTC2018 §4.1.2.2.5.1.

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{yk}$

NTC2018 §4.1.2.2.5.2.

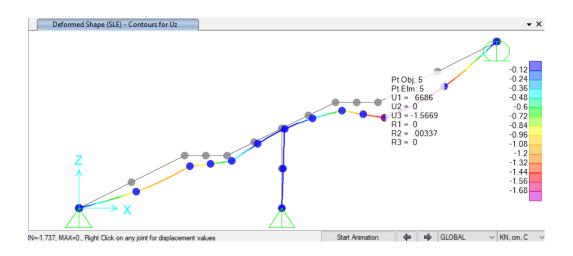


Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Sezione	H (cm)	d (cm)	As (cm²/m)	As' (cm²/m)	M _{lim} (kN.m/m)	M _r (kN.m/m)
S1	30	25	φ16/200	φ16/200	47	95
S2	30	25	φ20/200	φ16/200	75	145
S3	30	25	φ16/100	φ16/200	110	175
S4	30	25	φ16/200+ φ22/200	ф20/200	165	245
S5	30	25	φ20/100	φ16/200	175	265

ii) Verifica deformazione



Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

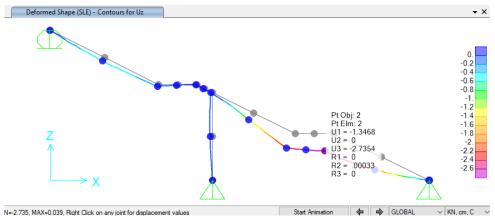


Figura 95. Reazioni e deformazione

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

 $\Delta {=} \delta_{\text{camp}}$ - $\delta_{\text{sup}} \dots$ Abbassamento rispetto ai supporti

L ... Luce libera della campata

Tabella 31 Verifica deformazione

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

Scala tipo	L (m)	$\Delta = \delta_{camp} - \delta_{supp}$ (cm)	Δ/L< 1/250
1	9,00	1,58	1/570
2	7,65	1,57	1/485
3	8,50	2,74	1/310

6.3.5. Vasca Aggottamento

La piastra della vasca di aggottamento di porta nuova è ubicata al livello -32.25m dal piano campagna, le dimensioni di tale elemento strutturale è 4,50mx5,00m con uno spessore di 0,60m.

La piastra è incastrata su tutti e quattro lati, l'analisi è stata eseguita dal software Sap2000. La figura sottostante dimostra lo schema strutturale dell'elemento bidimensionale.

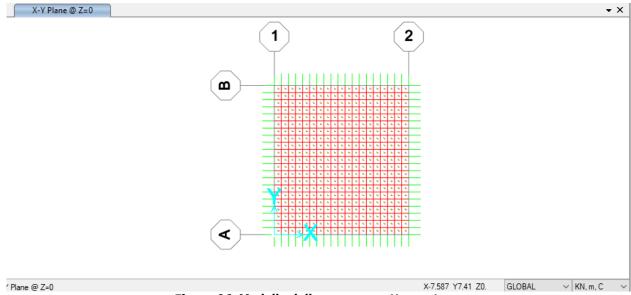


Figura 96. Modello della vasca aggottamento

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

6.3.5.1. Carichi e combinazioni

Carichi permanenti:

Peso proprio = $0.60 \text{m x } 25 \text{ kN/m}^3 = 15 \text{ kN/m}^2 \text{ (calcolato automaticamente) } (G_1\text{-Dead})$

Soil pressure = 140 kN/m^2 (taken directly from the Foundation slab model) (G₂-Soil pressure)

Sottopressione = $\Delta H \times \gamma_w = 28,25 \text{m} \times 10 \text{ kN/m}^3 = 282,5 \text{ kN/m}^2$

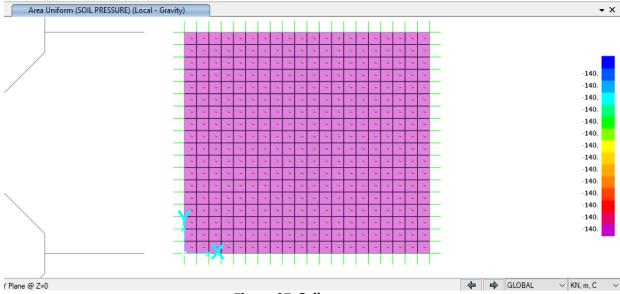


Figura 97. Soil pressure

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

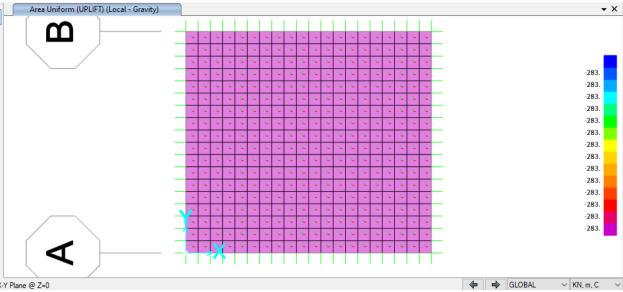


Figura 98. Sottopressione

Per la verifica strutturale degli stati limite di resistenza (SLU) e di esercizio (SLE), vengono utilizzati i fattori e le combinazioni indicate nelle NTC2018.

SLU:
$$1,30 G_1 + 1,50 G_2 + 1,50 Q_1$$

SLE: $G_1 + G_2 + \Psi_{2,1} Q_1$ dove $\Psi_{2,1} = 1,00$ conservativamente, per combinazione quasi-permanente e frequente a lungo termine

I coefficienti parziali di sicurezza dei materiali sono:

Calcestruzzo: $\gamma_c = 1,50$

Acciaio di rinforzo: $\gamma_s = 1,15$

6.3.4.4 Risultati dell'analisi

L'ALLEGATO H presenta graficamente i risultati rilevanti della soletta di vasca

Nei paragrafi seguenti sono riportati i risultati della combinazione SLE e gli inviluppi delle combinazioni SLU. I risultati della combinazione SLE sono stati utilizzati per la verifica delle tensioni in esercizio, controllo della fessurazione e deformazione. Gli inviluppi della combinazione SLU sono stati utilizzati per la verifica flessione e taglio della sezione in c.a.

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

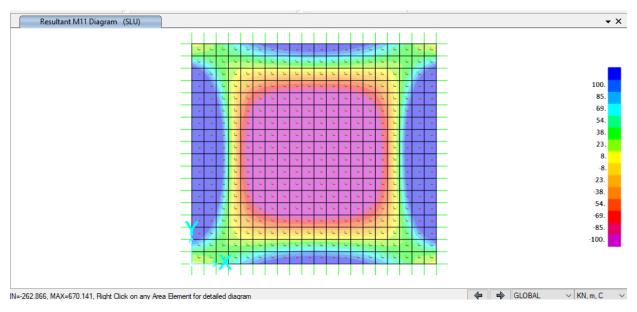


Figura 99. Moment in M11 Direction

Figura 100. Moment in M22 Direction

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

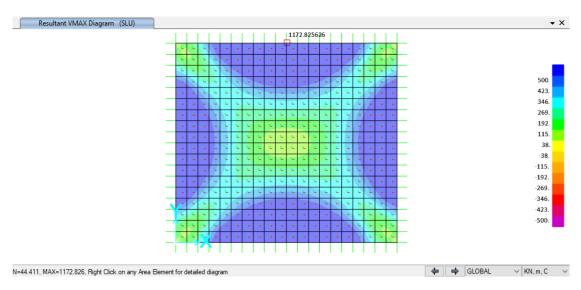


Figura 101. Taglio massimo

$$V_{max} = \sqrt{V_{13}^2 + V_{23}^2}$$

6.3.4.5 Verifiche strutturali

- Verifica SLU

spessore di soletta = 60cm

separazione di barra = 200 / 100 cm

armatura minima: NTC2018 §4.1.6.1.1.

$$A_{s,min} = 0.26 \frac{f_{cm}}{f_{yk}} b_t \cdot d$$
 $A_{s,min} = 0.26 (2.90/450) 100x55 = 9,22 cm^2/m --- $\phi 16/200$$

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

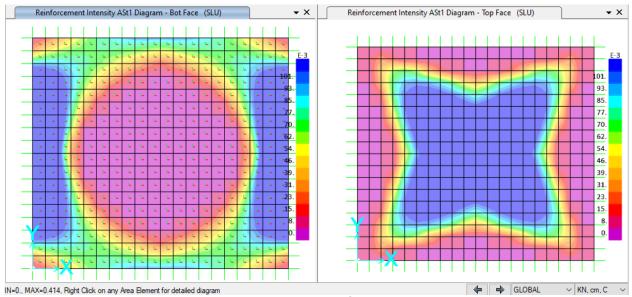


Figura 102. Acciaio di rinforzo As (cm²/cm) - direzione longitudinale

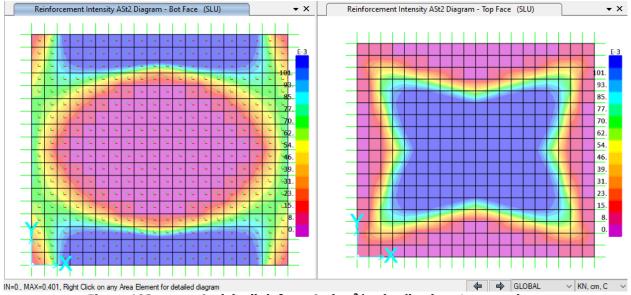
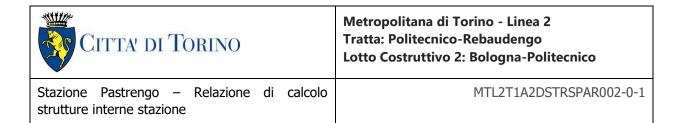
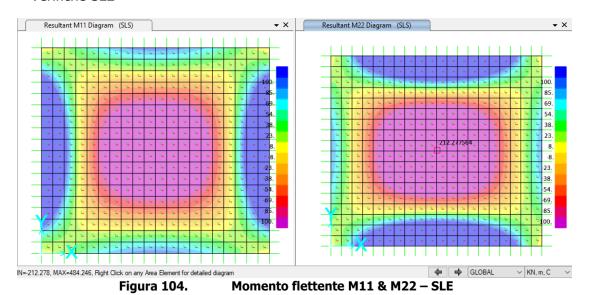



Figura 103. Acciaio di rinforzo As (cm²/cm) - direzione trasversale

Verifica a flessione

Nella tabella seguente sono riepilogate le armature delle Vasca Aggottamento:



Direction	Posizione	supporto sinistro/base	vano	supporto destro/alto
longitudinalo	Superiore	Ф 18/200	Ф 24/100	Ф 18/200
longitudinale	Inferiore	Ф 24/100	Ф 16/200	Ф 24/100
Traversale	Superiore	Ф 18/200	Ф 24/100	Ф 18/200
Traversale	Inferiore	Ф 24/100	Ф 16/200	Ф 24/100

Verifica a taglio

Element	Armatura a taglio al metro	V _{Rd} [KN/m]
Vasca aggo.	Ф 14/20/20	1290

- Verifiche SLE

i) Verifica fessurazione e tensioni

Per ciascuna sezione tipologica, il M_{lim} è determinato nella condizione dello stato limite di esercizio (SLE) che soddisfa le seguenti condizioni:

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

$$M_{lim} = min [M_{-0.30}; M_{-\sigma_c}; M_{-\sigma_s}]$$

Dove,

 $M_{-0.30} = Mmax per una fessura limite <math>w_2 = 0.30mm$ NTC2018 §4.1.2.2.4.

 $M_{\sigma_c} = Mmax per \sigma_{c, max} = 0.45 f_{ck}$ NTC2018 §4.1.2.2.5.1.

 $M_{\sigma_s} = Mmax per \sigma_{s, max} = 0.80 f_{vk}$ NTC2018 §4.1.2.2.5.2.

Sezione	H (cm)	d (cm)	As (cm²/m)	As' (cm²/m)	M _{lim} (kN.m/m)	M _r (kN.m/m)
Span	60	25	φ24/100	φ18/200	225	895
Support	60	25	φ24/100	φ18/200	500	895

Nota: l'apertura delle fessure è limitato a $w_2 = 0,10$ mm

ii) Verifica deformazione

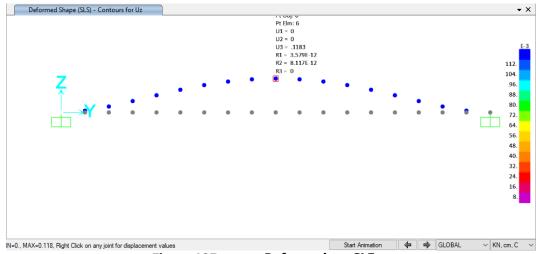


Figura 105. Deformazione SLE

Nella tabella seguente sono riepilogate il rapporto tra l'abbassamento rispetto ai supporti e la luce libera della campata per ogni asse, che deve essere inferiore al limite $\Delta/L < 1/250$, dove:

 $\Delta {=} \delta_{\text{camp}}$ - $\delta_{\text{sup}} \dots$ Abbassamento rispetto ai supporti

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

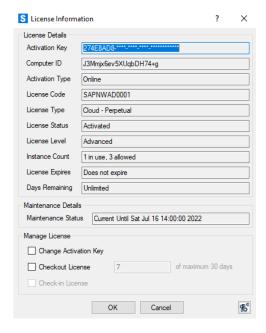

L ... Luce libera della campata

Tabella 32 Verifica deformazione

Assi	L (m)	$\Delta = \delta_{camp} - \delta_{supp}$ (cm)	Δ/L< 1/250
1-2	5,00	0,12	<<1/250

6.4 VALIDAZIONE DEI MODELLI DI CALCOLO

La modellazione è stata eseguita con il software SAP2000 di Computers &Structures, Inc., Advanced, V. 23.3.0. i cui estremi di licenza sono i seguenti.

Nella presenta nota tecnica si presentano le verifiche sintetiche atte a consentire il giudizio di accettabilità dei risultati così come previsto dal §10.2.1 del D.M. 17/01/2018, ricostruendo le sollecitazioni di momento flettente massimo in condizioni statiche confrontando i risultati dal software Plaxis e dal software SAP2000.

Sottostante sono riportati i risultati per le 3 tipologie di solette (quello di Copertura, Atrio e Mezzanino).

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

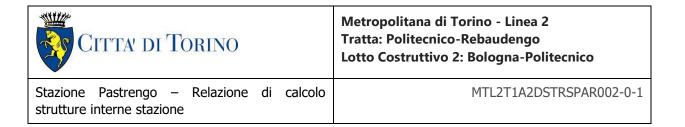
Tabella 1. Tabella 33 Risultati estratti da Plaxis e SAP2000 con la variazione percentuale

	Momento massimo mezzeria [kNm]				
	SAP2000 PLAXIS				
PIANO	(combinazione SLE)	_			
COPERTURA	2200	3200			
ATRIO	2400	1800			
2° MEZZANINO	2400	1800			

La variazione dei risultati tra i due modelli di calcolo in termini di momento flettente è dell'ordine di 25-35%.

Sono state altresi' applicate le note soluzioni in forma chiusa della Scienza delle Costruzioni per la soletta di base sottoposta al carico idrostatico. Il confronto mostra una variazione media del 25%.

In conclusione, le comparazioni tra modellazione geotecnica e strutturale, unitamente a verifiche speditive ed valutazioni di correttezza del comportamento atteso delle modellazioni, mostrano l'attendibilita', la robustezza e la validita' delle elaborazioni eseguite.



ALLEGATO A

Resultati delle analisi per le fasi costruttivi

Di seguito vengono presentati graficamente i risultati dei momenti flettenti M22 e M11 (kN.m/m) e delle forze di taglio V13 e V23 (kN/m) per SLU.

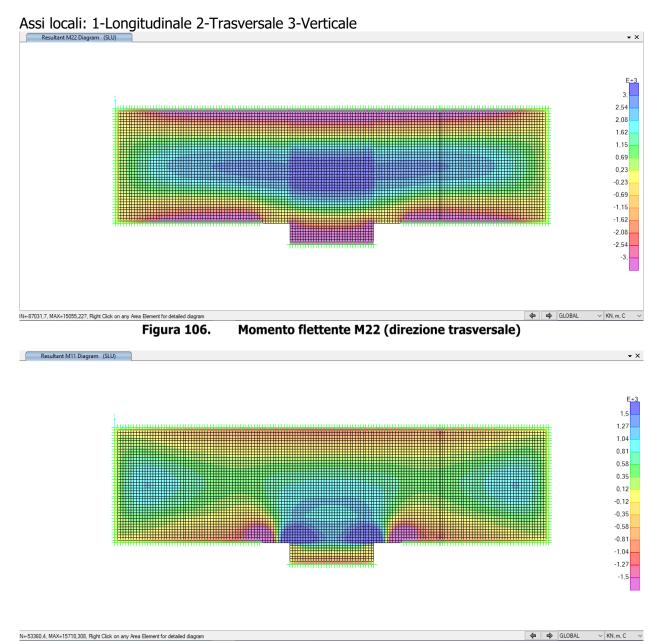
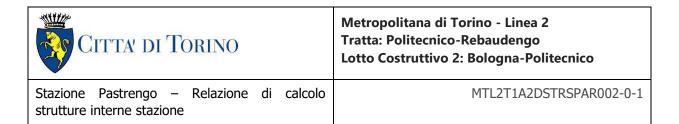



Figura 107. Momento flettente M11 (direzione longitudinale)

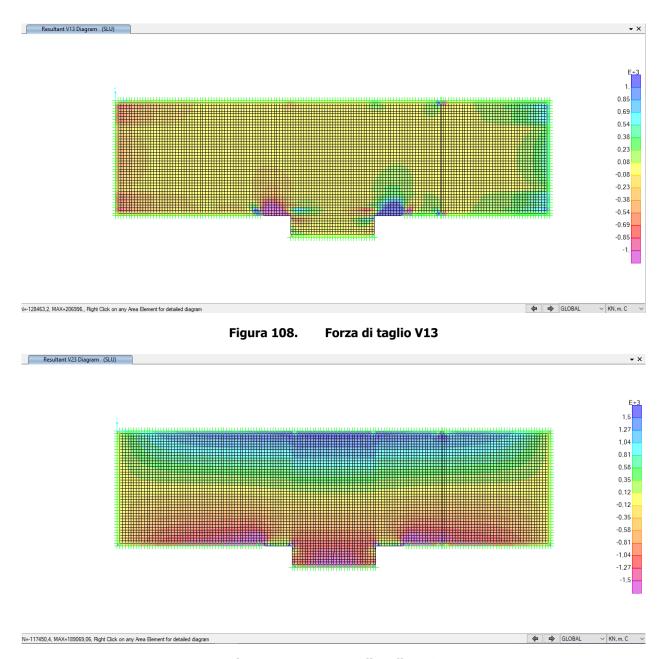
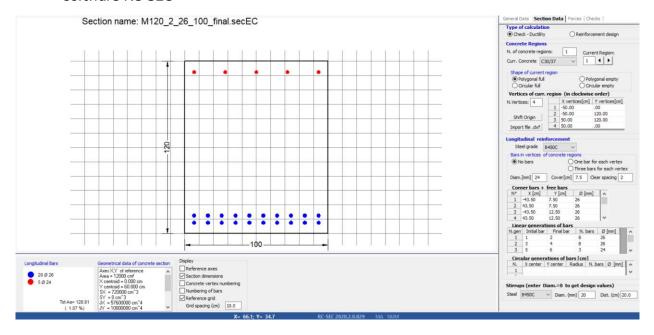


Figura 109. Forza di taglio V23

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

Caratteristiche della sezione									
GEOMETRIA	Н	=	120	cm	altezza sezione				
	b _w	=	100	cm	larghezza sezione				
	h'	=	7.5	cm	copriferro				
	d	=	112.5	cm	altezza utile				
					P				
ARMATURA TESA	Ф	=	į	mm	diametro armatura				
	n°	=	20	2	numero barre				
	As	=	106.1	cm	area dell'armatura t				
	ρι	=	0.0088		rapporto geometrio	o d'armatura	longitudin	ale (≤0,02)	
AZIONI DI COMPRESSIONE	N _{Ed}	-	Λ	kN	valore di calcolo de	lla compress	ione accial	e (se nresen	te)
	σср			Мра	valore di calcolo della compressione assiale (se presente) tensione media di compressione				,
	Оф		0.00	Wipu	tensione media di e	ompressione	1		
Resistenza senza armatura a taglio)								
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	577	kN					***************************************
			Con riferime	nto all'el	emento fessurato da moment	o flettente, la resi	stenza di proge	etto a taglio si va	luta con
			con fot espresso in k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 2$					
Caratteristiche della sezione arma	ta a ta	glio)						
ARMATURA A TAGLIO	ф	=	20	mm	diametro staffe				
	n°	=	4	_	numero bracci				
	Asw	=	12.6	cm ²	area dell'armatura t	rasversale			
	S	=		cm	passo delle staffe				
	α	=	90	۰	angolo di inclinazio		ura trasver	sale	
			25	0	rispetto all'asse della trave				
	υ	=	35	-	angolo di inclinazione del puntone compresso				
		=	1.00		rispetto all'asse della trave (22° ÷ 45°) coefficiente maggiorativo pari a:				
	ας	_	1.00		1		ratura non	compresse	
					1				
					1 + σ_{cp}/f_{cd}		cp ≤ 0,25		
					1.25	per 0,25 f	cd ≤ σ _{cp} ≤	≤ 0,5 f _{cd}	
					$2,5(1 - \sigma_{cp}/f_{cd})$	per 0,5 f _c	d ≤ σ _{cp} ≤	f _{cd}	
	νf_{od}	=	8.70	Мра	resistenza a compr	essione rido	ta (vf _{cd} =	0,5 f _{cd})	
Resistenza con armature trasversa									
RES, DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}	=	3553						
			Con riferime		matura trasversale, la resiste		"taglio trazion	e" si calcola con:	
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctgc)$	u + ctgθ)-sin α	[4.1	27]	
RES, DI CALCOLO A "TAGLIO COMPRESSIONI	Vo	=	4139	kN					
ILLI, D. C. LEGEO A PAGEO CONTRESSIONE	* Kcd	-			materiana d'anima la contra	and in manager	taalia aam	osione" oi sall-	
			Con riferimer		cestruzzo d'anima, la resister = $0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd}$ (ctg α +		taglio compre		con
	V_{Rd}	=	3553	kN	resistenza di calcolo mi	n/Mondal/cod)			


Stazione Pastrengo – Relazione di calcolo strutture interne stazione

Caratteristiche della sezione									
GEOMETRIA	Н	=	120	cm	altezza sezione				
	bw	=	100	cm	larghezza sezione				
	h'	=	7.5	cm	copriferro				
	d	=	112.5		altezza utile				
ARMATURA TESA	ф	=	26	mm	diametro armatura				
	n°	=	20		numero barre				
	As	=	106.1	cm ²	area dell'armatura te	sa			
	ρı	=	0.0088		rapporto geometrico	d'armatura	lonaitudin	ale (<0.02)	
							J		
AZIONI DI COMPRESSIONE	N _{Ed}	=	0	kN	valore di calcolo della	a comproce	iono accial	o (so procor	to)
12/ON DI COMPRESSIONE		=			tensione media di co			e (se preser	ite)
	σср	_	0.00	Mpa	tensione media di co	rripressione			
D									
Resistenza senza armatura a taglio									
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	577						
			Con riferime	nto all'el	emento fessurato da momento	flettente, la resis	stenza di proge	etto a taglio si va	luta con
			con fck espresso ii k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 2$	2				
Caratteristiche della sezione armat	a a ta	glic)						
ARMATURA A TAGLIO	ф	=	·	mm	diametro staffe				
	n°	=	2		numero bracci				
	A _{sw}	=	63	cm ²	area dell'armatura tra	esversale			
	S	=		cm	passo delle staffe				
	α	=	90		angolo di inclinazion	e dell'armat	ura trasver	sale	
					rispetto all'asse della		ura trasver	Juic	
	υ	=	35	0	angolo di inclinazion		ne compre	ssn	
	-		33		rispetto all'asse della			330	
		_	1.00		coefficiente maggiora		45)		
	αc	_	1.00		1			compresse	
					1 + σ_{cp}/f_{cd}	per 0 ≤ 0	cp ≤ 0,25	r _{cd}	
					1.25	per 0,25 f	cd ≤ σ _{cn} ≤	≤ 0,5 f _{cd}	
					2 5/1 (7 /5)				
					$2,5(1 - \sigma_{cp}/f_{cd})$	per 0,5 f _{cc}			
	νf_{od}	=	8.70	Mpa	resistenza a compre	ssione ridot	ta (vf _{cd} =	0,5 f _{cd})	
Resistenza con armature trasversal			······································						
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}	=	888				(01'	-W-11-1	
			Con riferime	nto all'ar	rmatura trasversale, la resistenz	za di progetto a	taglio trazion	e" si calcola con:	
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{a} \cdot f_{yd} \cdot (ctg\alpha +$	+ctgθ)-sin α	[4.1.	27]	
					s , a . 0			·	
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V _{Rcd}	=	4139	kN					
			Con riferime	nto al cal	cestruzzo d'anima, la resistenz	a di progetto a "	taglio compre	ssione" si calcola	con .
					$a = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ct)$		[4.1.		
				* 8600			[2121	,	

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

- Esempio di calcolo dei momenti flettenti M_{lim} e M_{Rd} per la sezione T1, ottenuto tramite il software RC-SEC

 $M_{lim} = min [M_{.0.30}; M_{.\sigma_c}; M_{.\sigma_s}] = min [2220; 3187; 3553] = 2220 kNm$

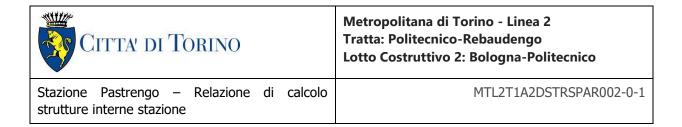
 $M_{-0.30} = 2220 \text{ kNm} = \text{Momento per una fessura limite } w_2 = 0,30 \text{mm}$ NTC2018 §4.1.2.2.4.

Bending and axial	force (SLS)	(SLS)	
Forces	Stress-Strain		Crack width	
N = 0.00 kN	Sc max =9.40 Mpa		Crack width = 0.300 mm	
Mx = 2220.00 kNm	Sc lim =13.5 Mpa		Limit width = 0.300 mm	
My = 0.00 kNm	Ss min =-224.9 Mpa		Crack spacing =315 mm	
	Ss lim =-360.0 Mpa		Ac effective =2500 cm ²	

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

 M_{σ_c} = 3187 kNm = Momento per $\sigma_{c, max}$ = 0,45 f_{ck} = 13.5 MPa NTC2018 §4.1.2.2.5.1.

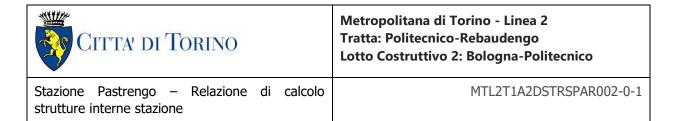
Bending and axial	force (SLS)
Forces	Stress-Strain
N = 0.00 kN	Sc max =13.50 Mpa
Mx = 3187.00 kNm	Sc lim =13.5 Mpa
My = 0.00 kNm	Ss min =-322.9 Mpa
	Ss lim =-360.0 Mpa


 $M_{\sigma_s} = 3553 \text{ kNm} = \text{Momento per } \sigma_{s, \text{ max}} = 0.80 \text{ f}_{yk} = 360 \text{ MPa}$ NTC2018 §4.1.2.2.5.2.

Bending and axial	force (SLS)	
Forces	Stress-Strain	
N = 0.00 kN	Sc max =15.05 Mpa	
Mx = 3553.00 kNm	Sc lim =13.5 Mpa	
My = 0.00 kNm	Ss min =-360.0 Mpa	
	Ss lim =-360.0 Mpa	

Per SLU - M_{Rd} = 4230 kN.m

ULS Bending-Axial Forces: Safety factor =1.880									
Design Forces	Design Resistances (pr. inertial axe								
N = 0.00 kN	N ult = 0.00 kN								
Mx = 2250.00 kNm	Mx ult = 4229.62 kNm								
My = 0.00 kNm	My ult = 0.00 kNm								



ALLEGATO B

Resultati Soletta di Copertura (Piano Strada)

Di seguito vengono presentati graficamente i risultati dei momenti flettenti M22 e M11 (kN.m/m) e delle forze di taglio V13 e V23 (kN/m) per SLU.

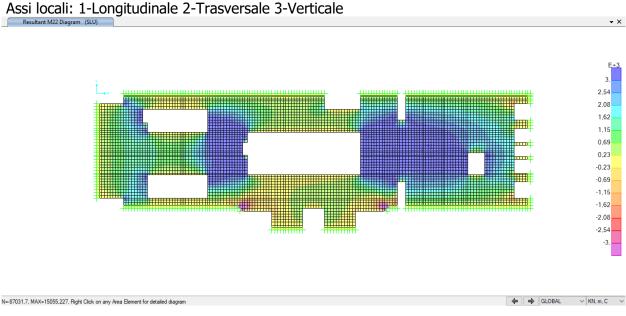


Figura 110. Momento flettente M22 (direzione trasversale)

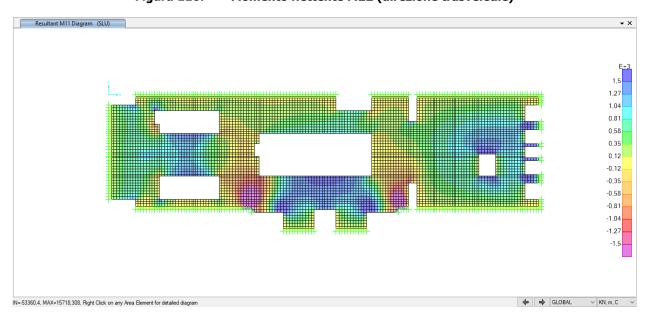
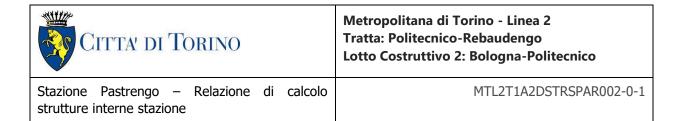



Figura 111. Momento flettente M11 (direzione longitudinale)

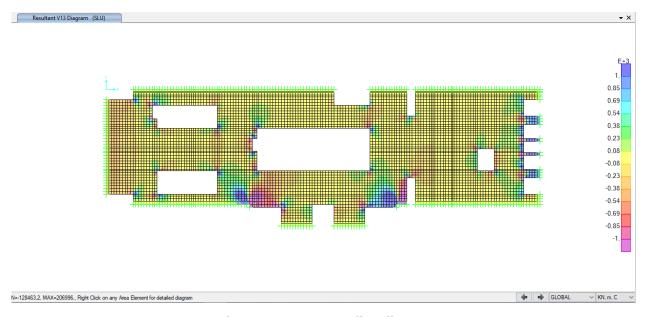


Figura 112. Forza di taglio V13

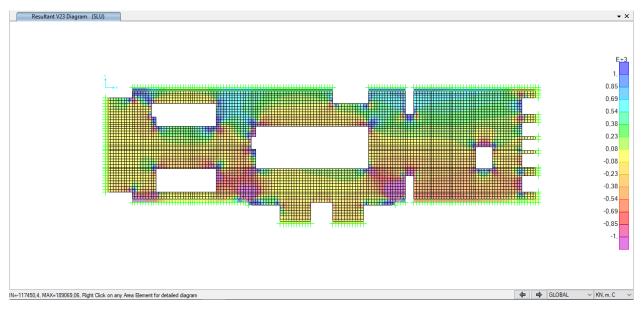
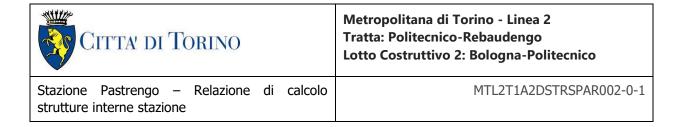


Figura 113. Forza di taglio V23

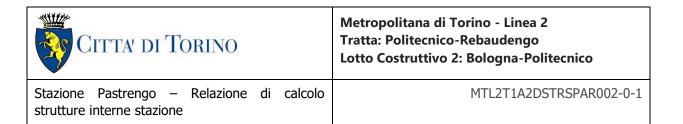
Stazione Pastrengo – Relazione di calcolo strutture interne stazione

Caratteristiche della sezione									
GEOMETRIA	Н	=	120	cm	altezza sezione				
	b _w	=	100	cm	larghezza sezione				
		=		cm	copriferro				
	d	=	112.5		altezza utile				
ARMATURA TESA	ф	=	30	mm	diametro armatura				
	n°	=	20		numero barre				
	As	=	141.3	cm ²	area dell'armatura te	sa			
	ρı	=	0.0118		rapporto geometrico	d'armatura	lonaitudin	ale (≤0.02)	
AZIONI DI COMPRESSIONE	N _{Ed}	_	Λ	kN	valore di calcolo dell	a comproce	iono accial	o (co procor	nto)
AZIONI DI COMPILESSIONE		=		Мра	tensione media di co			e (se preser	itej
	σф	_	0.00	ivipa	tensione media di co	Jilipi essione	3		
Resistenza senza armatura a taglio									
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	635	kN					
			Con riferime	nto all'el	emento fessurato da momento	flettente, la resi	stenza di prog	etto a taglio si va	luta con
			$V_{Rd} = \max \{ [0]$,18 · k · ($100 \cdot \rho_1 \cdot f_{ck}$ $^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp}$	$b_w \cdot d$; (v_{min})	$+0.15 \cdot \sigma_{co} \cdot b$	$\{a_n d\}$ [4.1.23]	
			, (L		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7] "	· · · · ·	")	
			con						
			fa espresso in	n MPa					
			k = 1 + (20		2				
			v _{min} = 0,035k	1/2 f _{ck} 1/2					
Caratteristiche della sezione armat	a a ta	alic							l
ARMATURA A TAGLIO	ф	=	y	mm	diametro staffe				
THE PROPERTY OF THE PARTY OF TH		=	4		numero bracci				
		=		cm ²	area dell'armatura tr	acvereale			
	A _{sw}	-	,			asversale			
	S	=	90	cm •	passo delle staffe angolo di inclinazion	o doll'armat	ura tracuca	raala	
	α	_	30		_		ura trasver	sale	
	-0		25	0	rispetto all'asse dell				
	υ	=	35		angolo di inclinazion			SS0	
					rispetto all'asse dell				
	α_{c}	=	1.00		coefficiente maggior				
					1	per memb	orature non	compresse	
					$1 + \sigma_{cp}/f_{cd}$	per 0 ≤ 0	τ _{cp} ≤ 0,25	f _{cd}	
					1.25		cd ≤ σ _{cp} :		
					$2,5(1 - \sigma_{cp}/f_{cd})$	per 0,5 f _c	d ≤ σ _{cp} ≤	f _{cd}	
	νf_{cd}	=	8.70	Мра	resistenza a compre				
	- 100		50				(- ·ou	-,	
Resistenza con armature trasversal	i resis	ten	ti al taglio)					
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}	•••••	3553						
	- read				rmatura trasversale, la resisten	za di procetto a	"taglio trazion	e" si calcola con	
			Dell' Incinic						
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha)$	+ctgθ)-sin α	[4.1	.27]	
					3				
RES, DI CALCOLO A "TAGLIO COMPRESSIONE	V_{Rcd}	=	4139	kN					
			Con riferimen	nto al cal	cestruzzo d'anima, la resistenz	za di progetto a	"taglio compre	ssione" si calcola	con
					$a = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd}$ (ctg $\alpha + c$				
						-		_	
	V_{Rd}		3553						



Stazione Pastrengo – Relazione di calcolo strutture interne stazione

Caratteristiche della sezione										
GEOMETRIA	Н	=	120	cm	altezza sezione					
	b _w	=	100	cm	larghezza sezione					
	h'	=	7.5	cm	copriferro					
	d	=	112.5		altezza utile					
ARMATURA TESA	Ф	=	30	mm	diametro armatura					
	n°	=	20		numero barre					
	As	=	141.3	cm ²	area dell'armatura te	sa				
	ρι	=	0.0118		rapporto geometrico	d'armatura	longitudin	ale (≤0,02)		
					1					
AZIONI DI COMPRESSIONE	Ned	=	n	kN	valore di calcolo dell	a compress	ione assial	e (se presen	te)	
	σ _{cp}			Mpa	tensione media di co			c (oc presen	,	
	Оср		0.00	IVIPA	tensione media di co	inpressione	'			
Posistonas sonas ormeturo o toglio										
Resistenza senza armatura a taglio			625	LANI						
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	-	635							
					emento fessurato da momento				uta con	
			$V_{Rd} = \max \{ 0 \}$),18 · k · ($100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp}$	$b_w \cdot d$; (v_{min})	$+0,15 \cdot \sigma_{cp}) \cdot b$	$_{w}d$ [4.1.23]		
			con							
			f_{ck} espresso in k = 1 + (20		,					
			$v_{min} = 0.035k$		•					
			v _{min} – 0,000 k	*ck						
Carattariationa della saziona	0 0 4-	ali-								
Caratteristiche della sezione armat		:giic		mm	diametro staffe					
ARMATURA A TAGLIO	Φ		20	mm						
	n°		2	am-2	numero bracci	<u> </u>				
	A _{sw}	=	,	cm ²	area dell'armatura trasversale					
	S	=		cm	passo delle staffe	1.00				
	α	=	90	_	angolo di inclinazion		ura trasver	sale		
					rispetto all'asse della					
	v	=	35	۰	angolo di inclinazion			SS0		
					rispetto all'asse della					
	α_{c}	=	1.00		coefficiente maggior					
					1	per memb	rature non	compresse		
					$1 + \sigma_{cp}/f_{cd}$	per 0 ≤ 0	r _{cp} ≤ 0,25	f _{cd}		
					1.25		cd ≤ σ_{cp}			
							•			
					$2,5(1 - \sigma_{cp}/f_{cd})$	per 0,5 f _c	d ≤ σ _{cp} ≤	f _{cd}		
	νf_{cd}	=	8.70	Мра	resistenza a compre					
							- (- 100			
Resistenza con armature trasversal	i resis	sten	ti al taglio)						
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V_{Rsd}		888							
			Con riferime	nto all'ar	rmatura trasversale, la resisten	za di progetto a	"taglio trazion	e" si calcola con:		
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha)$	+ ctgθ) · sin α	[4.1	.27]		
252 27 24 224 2 4 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1100							
RES, DI CALCOLO A "TAGLIO COMPRESSIONE	V _{Rcd}	=	4139	kΝ						
			Con riferime	nto al cal	cestruzzo d'anima, la resistenz	ra di progetto a	"taglio compre	ssione" si calcola	con	
				V_{Red}	$_{1}$ = 0,9 · d · b_{w} · α_{c} v· f_{cd} (ctg α + c	$tg\theta$)/(1 + $ctg^2 \theta$)	[4.1.	28]		
	v	_	000	LAI		A6-4-15-B				
	V_{Rd}	=	888	KIN	resistenza di calcolo min	(vrsa:vrca)				



ALLEGATO C

Risultati Soletta Intermedia (piano Atrio)

Di seguito vengono presentati graficamente i risultati dei momenti flettenti M22 e M11 (kN.m/m) e delle forze di taglio V13 e V23 (kN/m) per SLU.

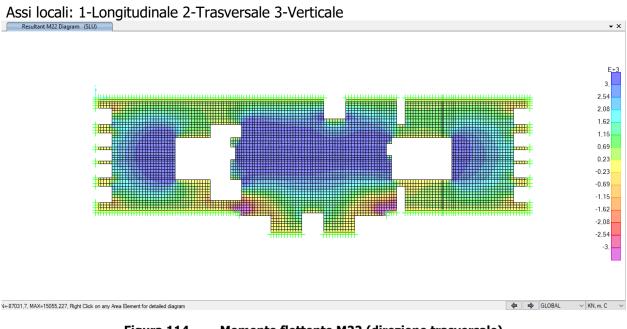


Figura 114. Momento flettente M22 (direzione trasversale)

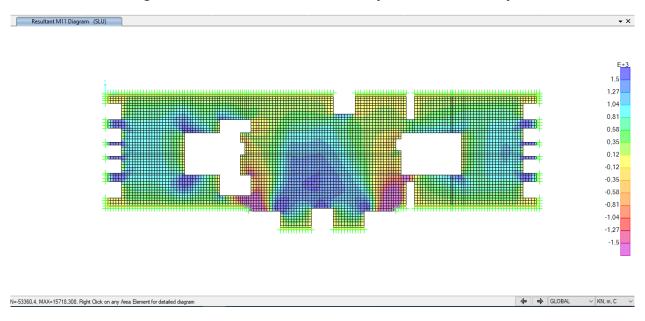
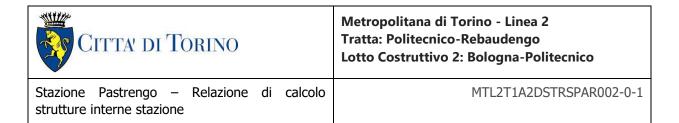



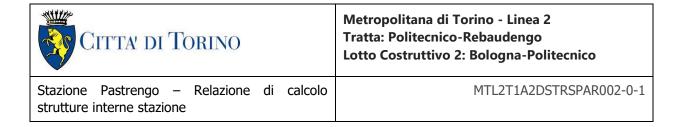
Figura 115. Momento flettente M11 (direzione longitudinale)

N-17450.4 MAX-18309306. Right Click on any Area Bernert for detailed diagram

Figura 117. Forza di taglio V23

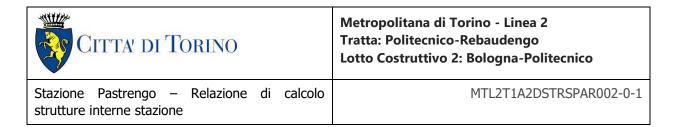
Stazione Pastrengo – Relazione di calcolo strutture interne stazione

Caratteristiche della sezione									
GEOMETRIA	Н	=	120	cm	altezza sezione				
	b _w	=	100	cm	larghezza sezione				
		=	7.5	cm	copriferro				
	d	=	112.5	cm	altezza utile				
					200				
ARMATURA TESA		=		mm	diametro armatura				
	- 11	=	20	,	numero barre				
	As	=	141.3		area dell'armatura t				
	ρι	=	0.0118		rapporto geometric	o d'armatura	longitudin	ale (≤0,02)	
47/04// 01/004/00500/04/5		220		1.51	and and and and and	1			
AZIONI DI COMPRESSIONE	NEd			kN	valore di calcolo de	-		e (se presen	ite)
	σср	=	0.00	Мра	tensione media di c	ompressione			
Resistenza senza armatura a taglio									
RESISTENZA SENZA ARMATURA A TAGLIO	V _{Rd}	=	635	kN					
	- Kd				emento fessurato da moment	o flettente la reci	stenza di proge	etto a taelio si va	luta con
			f a espresso ii k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 2$	2				
Caratteristiche della sezione armat	a a ta	glio	D						
ARMATURA A TAGLIO		=	WITH THE PARTY OF	mm	diametro staffe				
	n°	=	4		numero bracci				
	Asw	=	12.6	cm ²	area dell'armatura t	rasversale			
	S	=	20	cm	passo delle staffe				
	α	=	90	0	angolo di inclinazio	ne dell'armat	tura trasver	sale	
					rispetto all'asse del	la trave			
	υ	=	35	0	angolo di inclinazio	the state of the s		SSO	
					rispetto all'asse del				
	α_{c}	=	1.00		coefficiente maggio				
					1	per memb	orature non	compresse	
					$1 + \sigma_{cp}/f_{cd}$	per 0 ≤ 0	r _{cp} ≤ 0,25	f _{cd}	
					1.25	per 0,25 f	cd ≤ $\sigma_{\rm cp}$	≤ 0,5 f _{cd}	
					$2,5(1 - \sigma_{op}/f_{od})$		d ≤ (T _{CD} ≤		
	t∕f _{od}	=	8.70	Мра	resistenza a compr				
Resistenza con armature trasversal		***************************************							
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}	=	3553				a. v		
			Con riferime		rmatura trasversale, la resiste $V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctgc)$	7. 1877	"taglio trazion [4.1		
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V-	_	4139	LNI					
ALD. DI CALCOLO A TAGLIO COMPRESSIONE	V Rod	-			H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-21720
			Con riferime		cestruzzo d'anima, la resister $_{1}$ = 0,9 · d · b $_{w}$ · α_{c} v· f_{cd} (ctg α +				con
							1		
	\/	_	2552	LAI	anaistanan di mbodo de col	A (mark) (mark)			
	V_{Rd}	-	3553	KIN	resistenza di calcolo mii	n(vrsu;vrca)			



Stazione Pastrengo – Relazione di calcolo strutture interne stazione

Caratteristiche della sezione										
GEOMETRIA	Н	=	120	cm	altezza sezione					
	b _w	=	100	cm	larghezza sezione					
	h'	=	7.5	cm	copriferro					
	d	=	112.5		altezza utile					
ARMATURA TESA	Ф	=	30	mm	diametro armatura					
	n°	=	20		numero barre					
	As	=	141.3	cm ²	area dell'armatura te	sa				
	ρι	=	0.0118		rapporto geometrico	d'armatura	longitudin	ale (≤0,02)		
					1					
AZIONI DI COMPRESSIONE	Ned	=	n	kN	valore di calcolo dell	a compress	ione assial	e (se presen	te)	
	σ _{cp}			Mpa	tensione media di co			c (oc presen	,	
	Оср		0.00	IVIPA	tensione media di co	inpressione	'			
Posistonas sonas ormeturo o toglio										
Resistenza senza armatura a taglio			625	LANI						
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	-	635							
					emento fessurato da momento				uta con	
			$V_{Rd} = \max \{ 0 \}$),18 · k · ($100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp}$	$b_w \cdot d$; (v_{min})	$+0,15 \cdot \sigma_{cp}) \cdot b$	$_{w}d$ [4.1.23]		
			con							
			f_{ck} espresso in k = 1 + (20		,					
			$v_{min} = 0.035k$		•					
			v _{min} – 0,000 k	*ck						
Carattariationa della saziona	0 0 4-	ali-								
Caratteristiche della sezione armat		:giic		mm	diametro staffe					
ARMATURA A TAGLIO	Φ		20	mm						
	n°		2	am-2	numero bracci					
	A _{sw}	=	,	cm ²	area dell'armatura trasversale					
	S	=		cm	passo delle staffe	1.00				
	α	=	90	_	angolo di inclinazion		ura trasver	sale		
					rispetto all'asse della					
	v	=	35	۰	angolo di inclinazion			SS0		
					rispetto all'asse della					
	α_{c}	=	1.00		coefficiente maggior					
					1	per memb	rature non	compresse		
					$1 + \sigma_{cp}/f_{cd}$	per 0 ≤ 0	r _{cp} ≤ 0,25	f _{cd}		
					1.25		cd ≤ σ_{cp}			
							•			
					$2,5(1 - \sigma_{cp}/f_{cd})$	per 0,5 f _c	d ≤ σ _{cp} ≤	f _{cd}		
	νf_{cd}	=	8.70	Мра	resistenza a compre					
							- (- 100			
Resistenza con armature trasversal	i resis	sten	ti al taglio)						
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V_{Rsd}		888							
			Con riferime	nto all'ar	rmatura trasversale, la resisten	za di progetto a	"taglio trazion	e" si calcola con:		
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha)$	+ ctgθ) · sin α	[4.1	.27]		
252 27 24 224 2 4 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1100							
RES, DI CALCOLO A "TAGLIO COMPRESSIONE	V _{Rcd}	=	4139	kΝ						
			Con riferime	nto al cal	cestruzzo d'anima, la resistenz	ra di progetto a	"taglio compre	ssione" si calcola	con	
				V_{Red}	$_{1}$ = 0,9 · d · b_{w} · α_{c} v· f_{cd} (ctg α + c	$tg\theta$)/(1 + $ctg^2 \theta$)	[4.1.	28]		
	v	_	000	LAI		A6-4-15-B				
	V_{Rd}	=	888	KIN	resistenza di calcolo min	(vrsa:vrca)				



ALLEGATO D

Risultati Soletta Intermedia (Primo Mezzanino)

Di seguito vengono presentati graficamente i risultati dei momenti flettenti M22 e M11 (kN.m/m) e delle forze di taglio V13 e V23 (kN/m) per SLU.

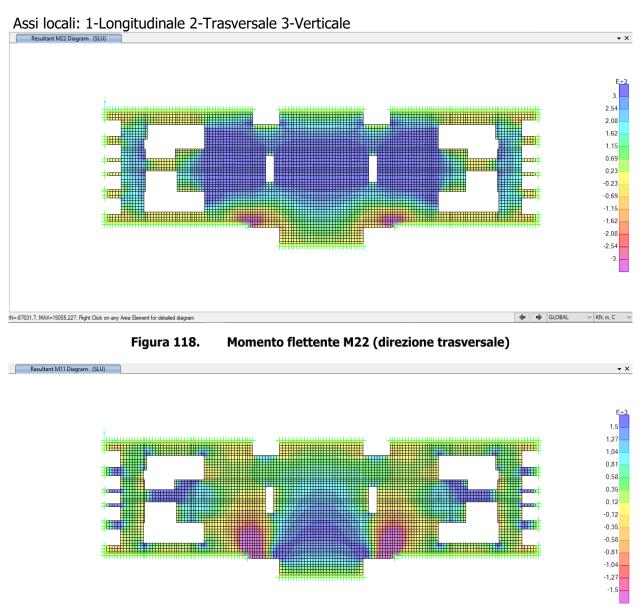


Figura 119. Momento flettente M11 (direzione longitudinale)

N=-53360,4, MAX=15718,308, Right Click on any Area Element for detailed diagram

← GLOBAL

✓ KN, m, C

✓

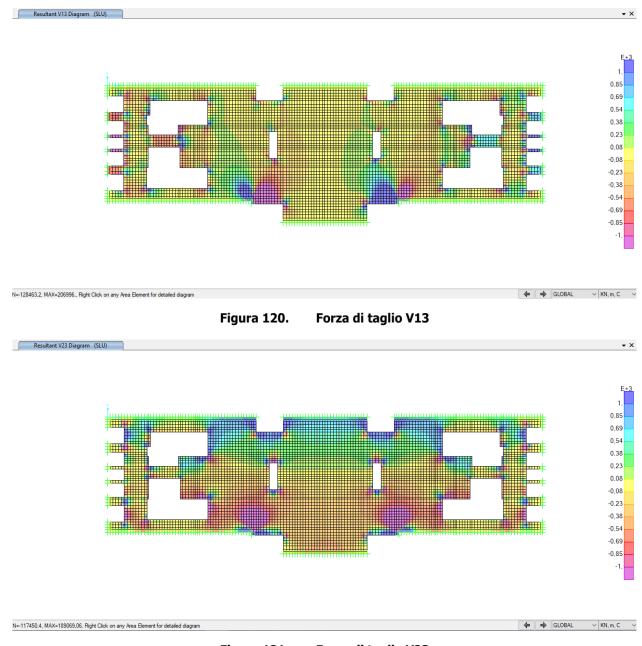
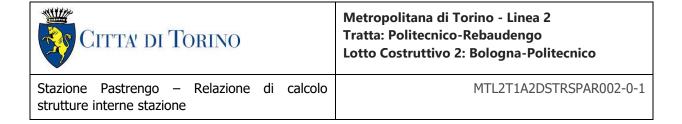


Figura 121. Forza di taglio V23

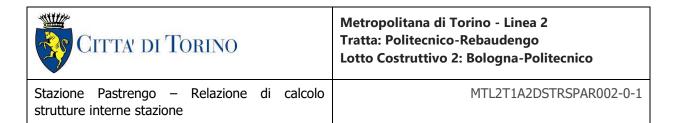
Stazione Pastrengo – Relazione di calcolo strutture interne stazione

Caratteristiche della sezione									
GEOMETRIA	Н	=	120	cm	altezza sezione				
	bw	=	100	cm	larghezza sezione	е			
		=	7.5	cm	copriferro				
	d	=	112.5	cm	altezza utile				
			20		2	20			
ARMATURA TESA	1	=		mm	diametro armatura	3			
	n°	=	20 141.3	cm ²	numero barre				
	As	=			area dell'armatura		lanath diam	l= (<0.00)	
	ρι	=	0.0118		rapporto geometr	ico d'armatura	longitudina	ile (≤0,02)	
AZIONI DI COMPRESSIONE	Ned	_	n	kN	valore di calcolo d	Iolla comproce	iono accialo	(co procor	to)
AZIONI DI COMPRESSIONE	σ _{cp}			Мра	tensione media di			(se preser	ite)
	V ср		0.00	Ivipa	tensione media di	compressione			
Resistenza senza armatura a taglio								L	
RESISTENZA SENZA ARMATURA A TAGLIO	V _{Rd}	=	635	kN					
	• Ka				emento fessurato da mome	ento flettente. la resi	stenza di proget	to a taglio si va	luta con
			con fix espresso ii k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 2$	2				
Caratteristiche della sezione armat		. /45	ķummanamanaman						
ARMATURA A TAGLIO	Φ	=		mm	diametro staffe				
			4	am ²	numero bracci				
	Asw	=		cm²	area dell'armatura				
	S	=	90	cm	passo delle staffe angolo di inclinaz		ura tracuero	ale	
	а	-	30		rispetto all'asse d		uia tiasveis	ale	
	1)	=	35	0	angolo di inclinaz		ne compres	so	
					rispetto all'asse d				
	α	=	1.00		coefficiente magg		17		
					1	per memb	rature non	compresse	
					$1 + \sigma_{co}/f_{cd}$		cp ≤ 0,25 f		
					1.25		cd ≤ (T _{cp} ≤		
					$2,5(1 - \sigma_{op}/f_{od})$		$d \le \sigma_{cp} \le f$		
	₽ fod	=	8.70	Mpa	resistenza a com	pressione rido	tta (1/f _{od} = 0	,5 f _{od})	
D!-			e: -1 e!						
Resistenza con armature trasversal RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}	***************************************	ti al taglio 3553						
TOTAL OF THE PROPERTY OF THE P	v Rsd	-			rmatura trasversale, la resis	stenza di procetto a	"taglio trazione	" si calcola con	
			Contricume		$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (c)$	7. (27)	[4.1.2		
DES DI CALCOLO A "TACITO COMPRESSIONE	W	_	4139	LAI			-		
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V Rod	-	1007-9.7						
			Con riferime		cestruzzo d'anima, la resis $a = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{ed}$ (ctge	and the second s			con
	V_{Rd}	=	3553	LN	resistenza di calcolo i	Aland Manda Mand			



Stazione Pastrengo – Relazione di calcolo strutture interne stazione

Caratteristiche della sezione									
GEOMETRIA	Н	=	120	cm	altezza sezione				
	b _w	=	100	cm	larghezza sezione				
		=		cm	copriferro				
	d	=	112.5		altezza utile				
ARMATURA TESA	ф	=	30	mm	diametro armatura				
	n°	=	20		numero barre				
	As	=	141.3	cm ²	area dell'armatura te	sa			
	ρı	=	0.0118		rapporto geometrico	rapporto geometrico d'armatura longitudinale (≤0,02)			
AZIONI DI COMPRESSIONE	N _{Ed}	_	Λ	kN	valoro di calcolo dolli	a comproce	iono accial	o (so prosor	ato)
		=		Мра	valore di calcolo della compressione assiale (se presente) tensione media di compressione				ite)
	σф	_	0.00	ivipa	consider media di compressione				
Resistenza senza armatura a taglio									
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	635	kN					
			Con riferime	nto all'el	emento fessurato da momento	flettente, la resi	stenza di prog	etto a taglio si va	luta con
			$V_{Rd} = \max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$ [4.1.23]						
			. Ka - max	$r_{Rd} = \max \left\{ \begin{bmatrix} 0.18 \cdot k \cdot (100 \cdot p_1 \cdot j_{ck}) & /\gamma_c + 0.13 \cdot \delta_{cp} \end{bmatrix} \delta_w \cdot u, (v_{min} + 0.13 \cdot \delta_{cp}) \cdot \delta_w u \right\} $ [4.1.25]					
			con						
			for espresso in MPa						
			$k = 1 + (200/d)^{1/2} \le 2$ $v_{min} = 0.035k^{3/2} f_{ck}k^{3/2}$						
			V _{min} = 0,033K	- I _{ck}					
Caratteristiche della sezione armat			,						
ARMATURA A TAGLIO	Ф	=		mm	diametro staffe				
		=	2	_	numero bracci				
	A_{sw}	=	6.3	cm ²	area dell'armatura trasversale				
	s	=		cm	passo delle staffe				
	α	=	90	0	angolo di inclinazione dell'armatura trasversale				
					rispetto all'asse della trave				
	υ	=	35	0	angolo di inclinazione del puntone compresso				
			·····		rispetto all'asse della trave (22°÷ 45°)				
	ας	=	1.00		coefficiente maggiorativo pari a:				
					1			compresse	
					-				
					1 + σ_{cp}/f_{cd}		r _{cp} ≤ 0,25		
					1.25	per 0,25 f	cd ≤ σ _{cp} :	≤ 0,5 f _{cd}	
					$2,5(1 - \sigma_{cp}/f_{cd})$		d ≤ σ _{cp} ≤		
					-				
	νf_{cd}	=	8.70	Mpa	resistenza a compre	resistenza a compressione ridotta (νf _{cd} = 0,5 f _{cd})			
Resistenza con armature trasversal		•••••							
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V_{Rsd}	=	888						
			Con riferime	nto all'ar	rmatura trasversale, la resistenz	ra di progetto a	"taglio trazion	e" si calcola con	
			$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha $ [4.1.27]						
					Rsd = 0,9 · u · · Iyd · (ctga +	ergo)-sin a	[4.1		
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V- ·	_	4120	ΙΜ					
KES, DI CALCOLO A TAGLIO COMPRESSIONE	VRcd	=	4139						
			Con riferimento al calcestruzzo d'anima, la resistenza di progetto a "taglio compressione" si calcola con						
			$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \text{ v- } f_{cd} \left(\text{ctg}\alpha + \text{ctg}\theta \right) / (1 + \text{ctg}^2 \theta) $ $[4.1.28]$						
			000						
	V_{Rd}	_	888		resistenza di calcolo min(Vrsd; Vrcd)				



ALLEGATO E

Resultati Solettone di fondo (piano sottobanchina)

Di seguito sono presentati graficamente i risultati dei momenti flettenti M22 e M11 (kN.m / m) e delle forze di taglio V13 e V23 (kN / m).

Assi locali: 1-Longitudinale 2-Trasversale 3-Verticale

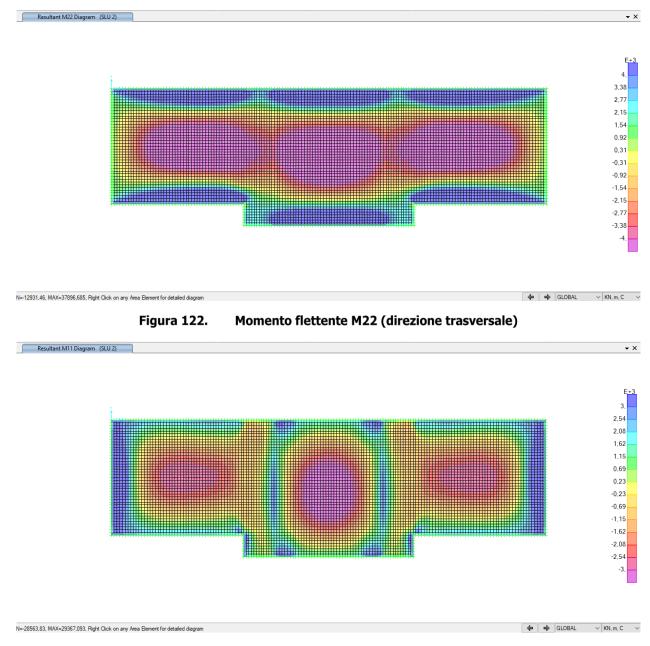
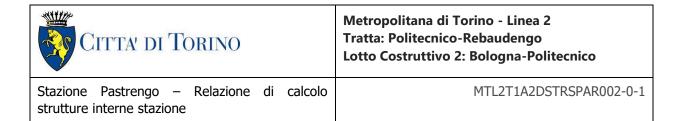



Figura 123. Momento flettente M11 (direzione longitudinale)

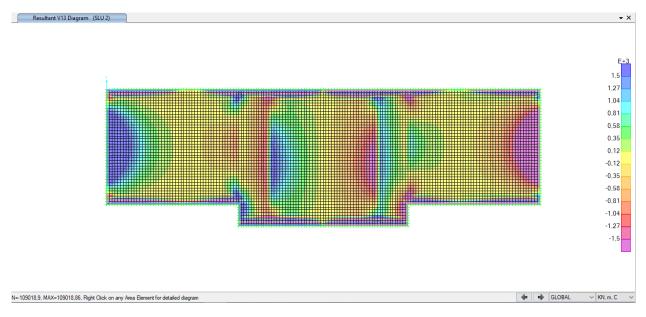


Figura 124. Forza di taglio V13

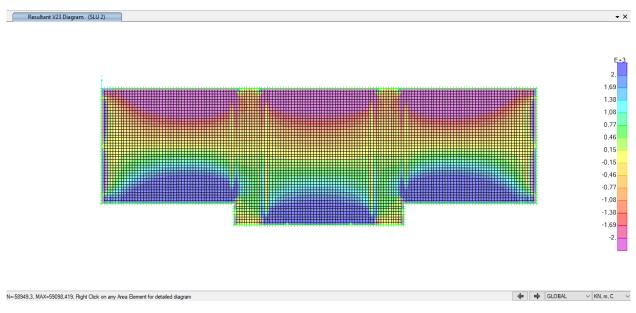
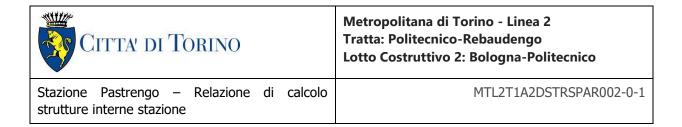


Figura 125. Forza di taglio V23

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

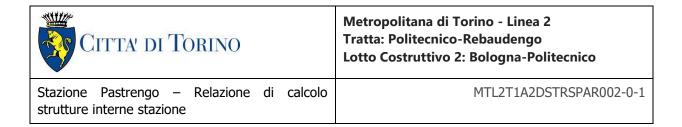
MTL2T1A2DSTRSPAR002-0-1

Caratteristiche della sezione									
GEOMETRIA	Н	=	180	cm	altezza sezione				
	b _w	=	100		larghezza sezione				
	h'	=		cm	copriferro				
	d	=	172.5	cm	altezza utile				
ARMATURA TESA	Ф	=	32	mm	diametro armatura				
	n°	=	20		numero barre				
	As	=	160.8	cm ²	area dell'armatura te	sa			
	ρı	=	0.0089		rapporto geometrico	d'armatura	lonaitudin	ale (≤0.02)	
					3				
AZIONI DI COMPRESSIONE	M.	=	0	kN	valore di calcolo dell	a compress	iono accial	0 (00 proces	to)
22101VI DI COMPRESSIONE	NEd							e (se preser	ite)
	$\sigma_{\sf cp}$	=	0.00	Mpa	tensione media di co	ompressione	•		
Resistenza senza armatura a taglio									
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	837	kN					
			Con riferime	nto all'el	emento fessurato da momento	flettente, la resi	istenza di prog	etto a taglio si va	luta con
			con for espresso in k = 1 + (20	$0/d)^{1/2} \le 2$	1				
			v _{min} = 0,035k	-Ick					
Caratteristiche della sezione armat	a a ta								
ARMATURA A TAGLIO	ф	=	20	mm	diametro staffe				
	n°	=	4	_	numero bracci				
	Asw	=	12.6	cm ²	area dell'armatura tra	asversale			
	s	=	20	cm	passo delle staffe				
	α	=	90	0	angolo di inclinazion	ie dell'armat	tura trasver	sale	
			·····		rispetto all'asse della	a trave			
	υ	=	35	0	angolo di inclinazion	e del punto	ne compre	SS0	
					rispetto all'asse della				
	ας	=	1.00		coefficiente maggior				
					1			compresse	
					1 + σ _{cp} /f _{cd}			-	
					i ▼ ∪ cp/1cd		r _{cp} ≤ 0,25		
					1.25	per 0,25 f	cd ≤ σ _{cp} :	≤ 0,5 f _{cd}	
					2,5(1 – σ _{op} /f _{od})		d ≤ σ _{cp} ≤		
			0.70						
	νf_{od}	=	8.70	Mpa	resistenza a compre	essione rido	tta (U,5 t _{od})	
Resistenza con armature trasversal									
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}	=	5449						
			Con riferime		matura trasversale, la resisten $V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha)$	+ ctgθ)-sin α	[4.1		
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V _{Rcd}	=	6347	kN					
			Con riferime	nto al cal	cestruzzo d'anima, la resistenz	za di progetto a	"taglio compre	ssione" si calcola	con
				V_{Red}	$= 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + c$	$(tg\theta)/(1+ctg^2\theta)$	[4.1.	28]	
	V_{Rd}	=	5449	LAN	resistenza di calcolo min				



Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1


Caratteristiche della sezione									
GEOMETRIA	Н	=	180	cm	altezza sezione				
	b _w	=	100		larghezza sezione				
	h'	=		cm	copriferro				
	d	=	172.5		altezza utile				
	_								
ARMATURA TESA	ф	=	32	mm	diametro armatura				
	n°	=	20		numero barre				
	As	=	160.8	cm ²	area dell'armatura t	esa			
	PI	=	0.0089		rapporto geometrio		longitudin	(<0.02) ماد	
	PI		0.0003		rapporto geometro	o a armatare	, longituum	uic (20,02)	
AZIONI DI COMPRESSIONE	Ned	_	0	kN	valore di calcolo de	lla compress	iono accial	0 (00 proces	+0)
42/ONI DI COMPRESSIONE				Mpa				e (se preser	ite)
	$\sigma_{\sf cp}$	=	0.00	ivipa	tensione media di c	ompressione	:		
2									
Resistenza senza armatura a taglio			027	LAI					
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	837						
					emento fessurato da moment $100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_c$			-	-
			. wa([,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	71 70K7 176 1 1,111 0	do I an an an an	. т,т оф)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			con						
			for espresso in	n MPa					
			k = 1 + (20		2				
			v _{min} = 0,035k	3/2 f _{ck} 1/2					
Caratteristiche della sezione arma	ta a ta	alio							
ARMATURA A TAGLIO	ф	=	,	mm	diametro staffe				
WWW.ATOKAA TAGEEG	n°	=	2		numero bracci				
				cm ²	area dell'armatura t	racyaranla			
	A _{sw}	=	,			rasversale			
	S	=	90	cm	passo delle staffe	n a dall'assassi			
	α	-	90		angolo di inclinazio		tura trasver	sale	
			25	0	rispetto all'asse del				
	υ	=	35		angolo di inclinazio			SS0	
					rispetto all'asse del				
	αc	=	1.00		coefficiente maggio				
					1	per memb	orature non	compresse	
					$1 + \sigma_{cp}/f_{cd}$	per 0 ≤ 0	r _{cp} ≤ 0,25	f _{cd}	
					1.25	per 0,25 f	cd ≤ σ _{cp} ≤	≤ 0,5 f _{cd}	
					2,5(1 – σ _{cp} /f _{cd})		d ≤ σ _{cp} ≤		
	νf_{od}	=	8.70	Mpa	resistenza a compr	ressione rido	tta (vf _{od} =	0,5 f _{cd})	
Desistanza con armoturo tros	li ros!	otor	tial taali						
Resistenza con armature trasversa RES. DI CALCOLO A "TAGLIO TRAZIONE"		······	ti al taglio 1362						
ALS, DI CALCOLO A TAGLIO TRAZIONE	V _{Rsd}	-			materials by the second		#hankin hansi	e# el esteste	
			Con riferime		rmatura trasversale, la resiste		tagiio trazion	e si caicola con:	
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{c} \cdot f_{yd} \cdot (ctge)$	α + ctgθ)-sin α	[4.1	.27]	
					s				
RES. DI CALCOLO A "TAGLIO COMPRESSION	V _{Rcd}	=	6347	kN					
			Con riferime	nto al cal	cestruzzo d'anima, la resister	nza di progetto a	"taglio compre	ssione" si calcola	con .
					$_{i}$ = 0,9 · d · b _w · α_{c} v· f_{cd} (ctg α +		-		
				- 800	w www ere - real (er@er -		Į.i.i.		

ALLEGATO F Resultati Fodere Interne

- Fodere interne

Tabella 34 Calcolo incremento dinamico

Carichi da -3,3m a -7,95m								
Stato limite	TR	ag	F0	TC				
State illilite	[anni]	[g]	[-]	[s]				
SLO								
SLD								
SLV	1424	0.067	2.89	0.292				
SLC								

Categoria topografica	Ubicazione dell' opera	ST
T1	-	1
Categoria sottosuolo	SS	CC
С	1.200	1.576

			Pes	o proprio			
		L	b	h	gamma_s	Gkj	
		[m]	[m]	[m]	[kN/m³]	[kN]	
F	odera	1.00	0.60	4.65	25	69.75	
Fh,fodera	1.21	[kN]					
Fv,fodera	0.60	[kN]					
		Increm	ento dinam	ico di spinta del terre	10		
altezza del fodera "H"	4.65	[m]		·			
peso specifico del terreno "gamma_s"	19.5	[kN/m ³]					
altezza della fodera da piano campagna "H' "	7.95	[m]					
Incremento dinamico di spinta del terreno	5.91	[kN/m]	ΔP_4	$= a Jg \times S \times \gamma \times H \times H$			

Carichi da -9,15m a -13,80m							
Stato limite	TR	ag	F0	TC			
Stato IIIIIte	[anni]	[g]	[-]	[s]			
SLO							
SLD							
SLV	1424	0.067	2.89	0.292			
SLC							

Categoria topografica	Ubicazione dell' opera	ST
T1	-	1
Categoria sottosuolo	SS	CC
С	1.200	1.576

accelerazione massima "amax" 0.08 coefficiente sismico orizzontale "kh" 0.08 coefficiente sismico verticale "kv" 0.04 Forza sismica orizzontale $F_h = \kappa_h * W$ Forza sismica verticale $F_v = \kappa_v * W$

	Peso proprio										
		L	b	h	gamma_s	Gkj					
		[m]	[m]	[m]	[kN/m³]	[kN]					
F	odera	1.00	0.60	4.65	25	69.75					
Fh,fodera	1.21	[kN]									
Fv,fodera	0.60	[kN]									
		Increm	ento din	amico di spinta del terre	no						
altezza del fodera "H"	4.65	[m]									
peso specifico del terreno "gamma_s"	19.5	[kN/m ³]									
altezza della fodera da piano campagna "H' "	13.80	[m]									
Incremento dinamico di spinta del terreno	10.26	[kN/m]	Δ	$\Delta P_d = a_g/g \times S \times \gamma \times H \times H$	ľ						

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Carichi da -15m a -19,65m							
Stato limite	TR	ag	F0	TC			
State illilite	[anni]	[g]	[-]	[s]			
SLO							
SLD							
SLV	1424	0.067	2.89	0.292			
SLC							

Categoria topografica	Ubicazione dell' opera	ST
T1	-	1
Categoria sottosuolo	SS	CC
С	1.200	1.576

accelerazione massima "amax" 0.08 coefficiente sismico orizzontale "kh" 0.08 coefficiente sismico verticale "kv" 0.04 Forza sismica orizzontale $F_h = k_h *W$ Forza sismica verticale $F_v = k_v *W$

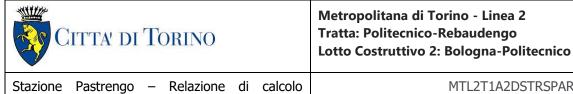
			Pes	o proprio			
		L [m]	b [m]	h [m]	gamma_s [kN/m³]	Gkj [kN]	
F	odera	1.00	0.80	4.65	25	93	
Fh,fodera	1.61	[kN]					
Fv,fodera	0.80	[kN]					
		Increm	ento dinam	ico di spinta del terre	eno		
altezza del fodera "H"	4.65	[m]					
peso specifico del terreno "gamma_s"	19.5	[kN/m ³]					
altezza della fodera da piano campagna "H' "	19.65	[m]					
Incremento dinamico di spinta del terreno	14.60	[kN/m]	ΔP_d	$= a_g/g \times S \times \gamma \times H \times 1$	H [']		

	Carichi da -20,85m a -25,45m								
	Stato limite	TR	ag	F0	TC				
	Stato IIIIIlle	[anni]	[g]	[-]	[s]				
	SLO								
	SLD								
	SLV	1424	0.067	2.89	0.292				
	SLC								

Categoria topografica	Ubicazione dell' opera	ST
T1	-	1
Categoria sottosuolo	SS	CC
C	1 200	1.576

accelerazione massima "amax" 0.08 coefficiente sismico orizzontale "kh" 0.08 coefficiente sismico verticale "kv" 0.04 Forza sismica orizzontale $F_h = \kappa_h * W$ Forza sismica verticale $F_v = \kappa_v * W$

			P	eso proprio			
		L	b	h	gamma_s	Gkj	
		[m]	[m]	[m]	[kN/m³]	[kN]	
F	odera	1.00	0.80	4.60	25	92	
Fh,fodera	1.61	[kN]					
Fv,fodera	0.80	[kN]					
		Increm	ento dina	amico di spinta del terre	no		
altezza del fodera "H"	4.60	[m]					
peso specifico del terreno "gamma_s"	19.5	[kN/m ³]					
altezza della fodera da piano campagna "H' "	25.45	[m]					
Incremento dinamico di spinta del terreno	18.71	[kN/m]	ΔΙ	$P_{d} = a_{s}/g \times S \times \gamma \times H \times H$	Í .		


CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

- Verifica al taglio

Da -3,30m a -7,95m

Caratteristiche della sezione						
GEOMETRIA	Н	=	60	cm	altezza sezione	
	b _w	=	100	cm	larghezza sezione	•
	h'	=	5	cm	copriferro	
	d	=	55	cm	altezza utile	
ARMATURA TESA	Ф	=	16	mm	diametro armatura	1
	n°	=	5	,	numero barre	
	As	=	10.0	cm ²	area dell'armatura	tesa
	PI	=	0.0017		rapporto geometri	ico d'armatura longitudinale (≤0,02)
AZIONI DI COMPRESSIONE	Ned	_		kN	valoro di calcolo d	ella compressione assiale (se presente)
AZIONI DI COMPRESSIONE				Мра		
	σср	=	0.00	ivipa	tensione media di	compressione
Resistenza senza armatura a taglio)					
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	217	kN		
	Ru		Con riferime	nto all'el	emento fessurato da mome	nto flettente, la resistenza di progetto a taglio si valuta con
			con f _{ck} espresso is k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 2$	2	
Caratteristiche della sezione arma	ta a ta	qlic)			
ARMATURA A TAGLIO	ф	=		mm	diametro staffe	
	n°	=	3		numero bracci	
	Asw	=	1.3	cm ²	area dell'armatura	trasversale
	s	=	40	cm	passo delle staffe	
	α	=	90	0	angolo di inclinazi	one dell'armatura trasversale
					rispetto all'asse d	ella trave
	υ	=	35	۰	angolo di inclinazi	one del puntone compresso
						ella trave (22°÷ 45°)
	αc	=	1.00		coefficiente maggi	
					1	per membrature non compresse
					1 + $\sigma_{\rm op}/f_{\rm od}$	per $0 \le \sigma_{cp} \le 0.25 f_{cd}$
					1.25	per 0,25 $f_{cd} \le \sigma_{cp} \le 0,5 f_{cd}$
					2,5(1 – σ _{cp} /f _{cd})	per 0,5 $f_{cd} \le \sigma_{cn} \le f_{cd}$
	νf₀d	=	8.70	Mpa		pressione ridotta ($\nu f_{od} = 0.5 f_{od}$)
						, , 500,
Resistenza con armature trasversa	li resis	sten	ti al taglio	D		
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}	=	87	kN		
			Con riferime	nto all'ar	rmatura trasversale, la resis	tenza di progetto a "taglio trazione" si calcola con:
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ct)$	$g\alpha + ctg\theta$) $\cdot \sin \alpha$ [4.1.27]
					Rsd = 0,5 · G · S	5w : 500/ 5m v
RES. DI CALCOLO A "TAGLIO COMPRESSION	V _{Rcd}	=	2024	kN		
			Con riferime	nto al cal	cestruzzo d'anima, la resist	enza di progetto a "taglio compressione" si calcola con
				V_{Red}	$_{I} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \text{ v} \cdot f_{cd} \text{ (ctg}\alpha$	$+ ctg\theta)/(1 + ctg^2 \theta)$ [4.1.28]
	V _{Rd}	_	07	kN	resistenza di calcolo n	nin (Vrad - Vrad)
	♥ Rd	_	0/	KIN	, coloteriza di Calcolo II	mn(risa,rica)

MTL2T1A2DSTRSPAR002-0-1

strutture interne stazione

Da -9,15m a -13,80m

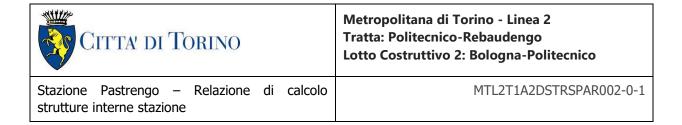
Caratteristiche della sezione GEOMETRIA	U	=			altagga angiere			
GEOMETRIA	H			cm	altezza sezione			
	b _w	=		cm	larghezza sezion	2		
	h'	=		cm cm	copriferro altezza utile			
	u	-	55	CIII	anezza unie			
ARMATURA TESA	Ф	=	18	mm	diametro armatura	9		
	n°	=	10		numero barre	-		
	A _s	=	25.4	cm ²	area dell'armatura	toca		
			0.0042				longitudin-l	(<0.02)
	ρΙ	-	0.0042		rapporto geometr	ico d'armatura	iongituaihale	(≥0,02)
AZIONI DI COMPRESSIONE	N _{Ed}	=	0	kN	valore di calcolo d	lella compress	ione acciale	co precente)
- I I I I I I I I I I I I I I I I I I I	σ _{cp}			Mpa	tensione media d			oc presente)
	υф	_	0.00	wipa	consione media u	compressione		
Resistenza senza armatura a taglio								
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	249	kN				
	- Ka				emento fessurato da mome	ento flettente, la roci	stenza di procetto	a taglio și valuta cor
			con f _{ck} espresso in k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 2$	2			
Coordinate delle								
Caratteristiche della sezione armat	a a ta	glic =		mm	diametro staffe			
ARMATURA A TAGLIO		=	5					
				cm ²	numero bracci	transportant-		
	A _{sw}	=	,		area dell'armatura			
	S	=	40 90	cm •	passo delle staffe		uro troous	lo
	α	-	90		angolo di inclinaz		ura trasversa	ie
	1)	-	35	0	rispetto all'asse d angolo di inclinaz		ne compress	0
	U	_	35		rispetto all'asse d			0
	ας	_	1.00		coefficiente magg			
	αc	_	1.00		1		orature non co	mprocee
					-			
					1 + σ _{cp} /f _{cd}	per 0 ≤ 0	r _{cp} ≤ 0,25 f _{cc}	i
					1.25	per 0,25 f	cd ≤ σ _{cp} ≤ 0	,5 f _{cd}
					$2,5(1 - \sigma_{cp}/f_{cd})$	per 0,5 f	d ≤ σ _{cp} ≤ f _c	d
	νf_{od}	=	8 70	Mpa	resistenza a com			
	⊬ 'od	Ē	0.70	Mpa	. SSIGRONZA A COIII	p. socione nau	(- 100 - 0,3	00/
Resistenza con armature trasversal	i resis	ten	ti al taglio	0				
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V_{Rsd}		271					
			Con riferime	nto all'a	rmatura trasversale, la resi	stenza di progetto a	"taglio trazione"	si calcola con:
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (c)$	tgα + ctgθ)-sin α	[4.1.27]	_
DEC. DI CALCOLO A PEACLEO COMPOSTORIO		_	2024	LAN				
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V _{Rcd}	=	2024					
			Con riferime		cestruzzo d'anima, la resis		-	one" si calcola con
				V _{Res}	$_{1}$ = 0,9 · d · b _w · α_{c} v· f _{cd} (ctga	t + ctgθ)/(1 + ctg² θ)	[4.1.28]	
	V_{Rd}		271					

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Da -15,00m a -19,65m

Caratteristiche della sezione									
GEOMETRIA	Н	=	80	cm	altezza sezione				
	b _w	=	100	cm	larghezza sezione				
		=		cm	copriferro				
	d	=	75	cm	altezza utile				
4.D.4.T.1.D.4.T.5.	_				4:				
ARMATURA TESA	ф	=		mm	diametro armatura				
	n°		10	2	numero barre				
	As		31.4		area dell'armatura tes			1 (
	ρι	=	0.0039		rapporto geometrico	d'armatura	Iongitudin	ale (≤0,02)	
AZIONI DI COMPRESSIONE	N _{Ed}	=	0	kN	valore di calcolo della	compress	ione assial	e (se presen	te)
	σ _{ср}			Мра	tensione media di co			(00 p. 000.	,
	- φ		5.50			p. 230.0710			
Resistenza senza armatura a taglio				I					
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	313	kN					
			Con riferime	nto all'el	emento fessurato da momento	flettente, la resi	stenza di proge	etto a taglio si va	uta con
			con fox espresso in k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 2$	1				
				_					
Caratteristiche della sezione armat	a a ta	alic)	l					
ARMATURA A TAGLIO	ф	=	y	mm	diametro staffe				
	n°	=	5		numero bracci				
	Asw			cm ²	area dell'armatura tra	sversale			
	S	=	,	cm	passo delle staffe				
	α	=	90	4	angolo di inclinazione	e dell'armat	ura trasver	sale	
					rispetto all'asse della	trave			
	υ	=	35	0	angolo di inclinazione	e del punto	ne compre	SS0	
					rispetto all'asse della	trave (22°-	- 45°)		
	α_{c}	=	1.00		coefficiente maggiora				
					1	per memb	rature non	compresse	
					1 + σ_{cp}/f_{cd}	per 0 ≤ 0	cp ≤ 0,25	f _{cd}	
					1.25	per 0,25 f	cd ≤ σ _{cp} ≤	≤ 0,5 f _{cd}	
					2,5(1 – σ _{cp} /f _{cd})		d ≤ σ _{cp} ≤		
	ء, , د	_	0 70	Mea					
	νf _{cd}	-	0.70	Mpa	resistenza a compre	ssione ndo	ud (Vlod =	U,O Icd)	
Resistenza con armature trasversal	i resis	sten	ti al taglio))					
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V_{Rsd}	,	533						
			Con riferime	nto all'ar	matura trasversale, la resistenz	a di progetto a	"taglio trazion	e" si calcola con:	
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha +$		[4.1		
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V _{Rcd}	=	2760	kN					
			Con riferime		cestruzzo d'anima, la resistenza				con
				V _{Red}	= 0,9 · d · b_w · a_c v· f_{cd} (ctg α + ct	gθ)/(1 + ctg² θ)	[4.1.	28]	
	V _{Rd}		533						

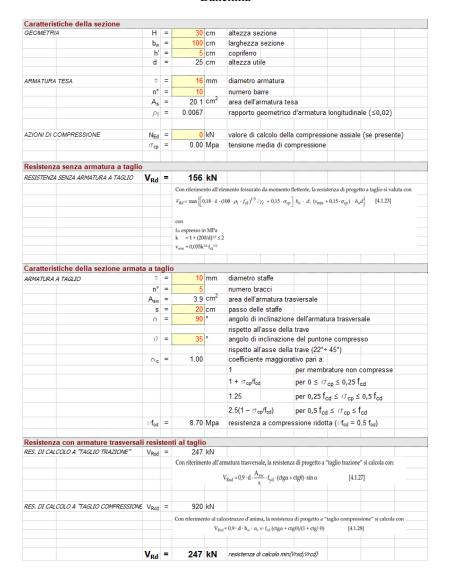

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Da -20,85m a -25,45m / Da -20,85m a -25,45m (Base)

Caratteristiche della sezione								***************************************	
GEOMETRIA	Н	=	80	cm	altezza sezione				
	b _w	=	100	cm	larghezza sezione				
	h'	=	5	cm	copriferro				
	d	=	75	cm	altezza utile				
ARMATURA TESA	ф	=		mm	diametro armatura				
	n°	=	10	_	numero barre				
	As	=	31.4	cm ²	area dell'armatura te	esa			
	$\rho_{\rm I}$	=	0.0039		rapporto geometrico	d'armatura	longitudin	ale (≤0,02)	
AZIONI DI COMPRESSIONE	N _{Ed}	=	0	kΝ	valore di calcolo del	la compress	ione assiale	e (se presen	te)
	σср		0.00	Мра	tensione media di o				•
Resistenza senza armatura a taglio									
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	313	kN					
	- Ku				emento fessurato da momento	flettente la resi	stenza di proge	tto a taolio si va	luta con
					$100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_c$				
			$v_{Rd} = \max\{0\}$,18 · K · ($100 \cdot \rho_1 \cdot J_{ck}) = /\gamma_c + 0.13 \cdot \sigma_c$	$p \mid b_w \cdot a; (v_{\min})$	+0,13· σ_{cp}) · σ_{i}	^a [4.1.23]	
			con fa espresso in	n MPa					
			k = 1 + (20		2				
			v _{min} = 0,035k						
Caratteristiche della sezione armat	a a ta	alio)	l					
ARMATURA A TAGLIO	ф	=		mm	diametro staffe				
	n°	=	5		numero bracci				
	Asw	=		cm ²	area dell'armatura tr	asversale			
	, vsw	=	,	cm	passo delle staffe				
	α	=	90		angolo di inclinazion	ne dell'arma	tura trasver	sale	
					rispetto all'asse dell			-	
	υ	=	35	0	angolo di inclinazion		ne compres	350	
					rispetto all'asse dell			-	
	ας	=	1.00		coefficiente maggio				
					1			compresse	
								•	
					1 + σ _{cp} /f _{cd}		τ _{cp} ≤ 0,251		
					1.25	per 0,25	cd ≤ σ _{cp} ≤	0,5 f _{cd}	
					$2,5(1 - \sigma_{cp}/f_{cd})$	ner 0 5 f	d ≤ σ _{cp} ≤	f	
		_	0.70	NA.					
	νf_{od}	=	8.70	Mpa	resistenza a compr	essione rido	$tta(\nu t_{cd} = 0$	J,5 f _{cd})	
Doeietonza con armaturo transcend	i roei	tor	ti al tacli						
Resistenza con armature trasversal RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}		ti ai tagiid 1066						
ALDI DI CALCOLO A TAGLIO TRAZIONE	V Rsd	_			matura trasversale, la resister	vza di progotto o	"taglio trazione	a" si calcola con:	
			Con merime				tagno trazioni	or carcola con:	
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{c} \cdot f_{yd} \cdot (ctg\alpha)$	+ctgθ)-sin α	[4.1.	27]	
					8				
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V_{Rcd}	=	2760	kN					
			Con riferime	nto al cal	cestruzzo d'anima, la resisten	za di progetto a	"taglio compres	sione" si calcola	con
					= 0,9 · d · b_w · a_c v· f_{cd} (ctg α +				
							-		
	V_{Rd}	=	1066	I/N	resistenza di calcolo min	(I/codel/cod)			

ALLEGATO G


Resultati Banchina e Muri Sotto Banchina

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

- Verifica al taglio

Banchina

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Muri

Caratteristiche della sezione								
GEOMETRIA	Н	=	30	cm	altezza sezione			
		=		cm	larghezza sezione			
		=		cm	copriferro			
	d	=		cm	altezza utile			
ARMATURA TESA	ф	=	16	mm	diametro armatura			
	n°	=	5		numero barre			
	As	=	10.0	cm ²	area dell'armatura	tesa		
	ρι	=	0.0033		rapporto geometri	co d'armatura	longitudinale (≤0,02	2)
AZIONI DI COMPRESSIONE	N _{Ed}	=	0	kN	valore di calcolo di	ella compress	ione assiale (se pres	ente)
	σω			Мра	tensione media di			
	- ф							
Resistenza senza armatura a taglio								
RESISTENZA SENZA ARMATURA A TAGLIO		_	126	ĿΝ				
RESISTENZA SENZA ARMATORA A TAGELO	V _{Rd}	-					stenza di progetto a taglio si	1
			con f _{ck} espresso ii k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 3$	2			
Caratteristiche della sezione armat	a a ta							
ARMATURA A TAGLIO	ф	=		mm	diametro staffe			
	n°	=	3		numero bracci			
	Asw	=	1.5	cm ²	area dell'armatura	trasversale		
	s			cm	passo delle staffe			
	α	=	90	۰	angolo di inclinazi	one dell'armat	tura trasversale	
					rispetto all'asse de			
	υ	=	35	۰	angolo di inclinazi		·	
					rispetto all'asse de			
	αc	=	1.00		coefficiente maggi			
					1	per memb	orature non compress	e
					1 + $\sigma_{\rm op}/f_{\rm od}$	per 0 ≤ 0	τ _{cp} ≤ 0,25 f _{cd}	
					1.25	per 0,25 f	cd ≤ σcp ≤ 0,5 fcd	
					$2,5(1 - \sigma_{co}/f_{cd})$	per 0,5 f.	$d \le \sigma_{cp} \le f_{cd}$	
	νfod	_	8 70	Mpa	resistenza a comp			
	₽Icd	-	0.70	wipa	resistenza a COMP	nessione nao	a (▷lod = 0,0 lod)	
Resistenza con armature trasversal	i resis	sten	ti al taglio)				
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}			kN				
			Con riferime	nto all'a	rmatura trasversale, la resist	tenza di progetto a	"taglio trazione" si calcola co	on:
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg)$		[4.1.27]	
DES OF ON COLOR A PERSON OF COLOR	.,		000	1.81				
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V _{Rcd}	=	920					
			Con riferimen		cestruzzo d'anima, la resiste $_{i}$ = 0,9 · d · b $_{w}$ · α_{c} v· f_{cd} (ctg α		"taglio compressione" si calc [4.1.28]	ola con

Stazione Pastrengo – Relazione di calcolo strutture interne stazione

MTL2T1A2DSTRSPAR002-0-1

Caratteristiche della sezione									
GEOMETRIA	Н	=	20	cm	altezza sezione				
	b _w	=	100	cm	larghezza sezione				
	h'	=	5	cm	copriferro				
	d	=		cm	altezza utile				
			,						
ARMATURA TESA	ф	=		mm	diametro armatura				
	n°	=	5		numero barre				
	As	=	10.0	cm ²	area dell'armatura t	esa			
	ρι	=	0.0050		rapporto geometrio	o d'armatura	longitudina	ale (≤0,02)	
AZIONI DI COMPRESSIONE	NEd	=	0	kN	valore di calcolo de	lla compress	ione assiale	(se preser	ite)
	$\sigma_{\sf cp}$	=	0.00	Mpa	tensione media di d	compressione	9		
Resistenza senza armatura a taglio)								
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	90	kΝ					
			Con riferime	nto all'el	emento fessurato da moment	to flettente, la resi	stenza di proget	tto a taglio si va	luta con
			f _{ck} espresso ii k = 1 + (20 v _{min} = 0,035k	$0/d)^{1/2} \le 2$	2				
Caratteristiche della sezione armat	a a ta	glic							
ARMATURA A TAGLIO	ф	=	_	mm	diametro staffe				
	n°	=	3		numero bracci				
	Asw	=		cm ²	area dell'armatura t	rasversale			
	S	=		cm	passo delle staffe angolo di inclinazione dell'armatura trasversale				
	α	=	90	۰	-		tura trasvers	sale	
	1)	=	35		rispetto all'asse de				
	U	-	35		angolo di inclinazio			SU	
	_	=	1.00		rispetto all'asse de				
	αc	-	1.00		coefficiente maggio		orature non		
					1 + σ _{cp} /f _{cd}		r _{cp} ≤ 0,25 f		
					1.25	per 0,25 f	cd ≤ σ _{cp} ≤	0,5 f _{cd}	
					$2,5(1 - \sigma_{op}/f_{od})$	per 0,5 f	d ≤ σ _{cp} ≤ f	- Crd	
	νfod	=	8.70	Mpa	resistenza a compi				
	₽ 10d		5.70	pu	. colotonza a compi	CCSIONO NUO	(1/100 = 0	,~ '00)	
Resistenza con armature trasversal	i resis	sten	ti al taglio)					
RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}			kN					
			Con riferime	nto all'a	rmatura trasversale, la resiste	nza di progetto a	"taglio trazione	si calcola con:	
					$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctge)$	α+ctgθ)·sin α	[4.1.2	27]	
RES. DI CALCOLO A "TAGLIO COMPRESSIONE	V _{Rcd}	=	552						
			Con riferimen		cestruzzo d'anima, la resister $_{i}$ = 0,9 · d · b_{w} · α_{c} v· f_{cd} (ctg α +				con
	V_{Rd}		28		resistenza di calcolo mi				

ALLEGATO H

Resultati Scale fisse e Altre strutture secondarie

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

Verifica al Taglio

Oggetto: TYPE 1 & 2 & 3					
Caratteristiche della sezione					
GEOMETRIA	Н	=	30	cm	altezza sezione
	b _w	=	100	cm	larghezza sezione
	h'	=	5	cm	copriferro
	d	=	25	cm	altezza utile
ARMATURA TESA	ф	=	20	mm	diametro armatura
	n°	=	5		numero barre
	As	=	15.7	cm ²	area dell'armatura tesa
	ρι	=	0.0052		rapporto geometrico d'armatura longitudinale (≤0,02)
AZIONI DI COMPRESSIONE	N _{Ed}	=	0	kN	valore di calcolo della compressione assiale (se presente)
	$\sigma_{\sf cp}$	=	0.00	Мра	tensione media di compressione
Resistenza senza armatura a tagli	0				
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	143	kN	
			Con riferime	nto all'el	elemento fessurato da momento flettente, la resistenza di progetto a taglio si valuta con
			$V_{Rd} = \max \{ [$),18 · k · ($(100 \cdot \rho_l \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp}] b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d $ [4.1.23]
			con for espresso i k = 1 + (20 v _{min} = 0,035k	$(0/d)^{1/2} \le 2$	2

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo – Relazione di calcolo strutture interne stazione	MTL2T1A2DSTRSPAR002-0-1

- Vasca aggottamento

Verifica al taglio

Caratteristiche della sezione GEOMETRIA	Н	=	60	cm	altezza sezione
OLOME IT MA	b _w	=		cm	larghezza sezione
	h'	=	L	cm	copriferro
	d	=		cm	altezza utile
ARMATURA TESA	ф	=	24	mm	diametro armatura
	n°	=	10		numero barre
	As	=	45.2	cm ²	area dell'armatura tesa
	ρι	=	0.0075		rapporto geometrico d'armatura longitudinale (≤0,02)
AZIONI DI COMPRESSIONE	N _{Ed}	=	0	kN	valore di calcolo della compressione assiale (se presente)
	σср	=		Мра	tensione media di compressione
	υф		0.00	···pu	Caracine mode at compressions
Resistenza senza armatura a taglio)				
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	302	kN	
			Con riferime	nto all'ele	mento fessurato da momento flettente, la resistenza di progetto a taglio si valuta con
			$V_{p,t} = \max\{[$	0.18 · k · (1	$00 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d$ [4.1.23]
			/m ([The state of the s
			con		
			fo espresso i		
			k = 1 + (20		
			v _{min} = 0,035k	*** f _{ck} ***	
S		-1"			
Caratteristiche della sezione arma ARMATURA A TAGLIO	ta a ta	iglio =	·	mm	diametro staffe
HAMINATURA A TAGLIU	n°	=	5		numero bracci
	A _{sw}			cm ²	area dell'armatura trasversale
	S	=		cm	passo delle staffe
	α	=	90		angolo di inclinazione dell'armatura trasversale
					rispetto all'asse della trave
	υ	=	30	0	angolo di inclinazione del puntone compresso
					rispetto all'asse della trave (22° ÷ 45°)
	αc	=	1.00		coefficiente maggiorativo pari a:
					1 per membrature non compresse
					$1 + \sigma_{cp}/f_{cd}$ per $0 \le \sigma_{cp} \le 0.25 f_{cd}$
					1.25 per 0,25 $f_{cd} \le \sigma_{cp} \le 0,5 f_{cd}$
					$2.5(1 - \sigma_{cp}/f_{cd})$ per $0.5 f_{cd} \le \sigma_{cp} \le f_{cd}$
	νf_{od}	=	8.70	Мра	resistenza a compressione ridotta (rfod = 0,5 fod)
Posistonza con armeturo trasversa	li roci	ton	ti al tacli		
Resistenza con armature trasversa RES. DI CALCOLO A "TAGLIO TRAZIONE"	V _{Rsd}		iti ai tagii 1290		
	* KSO				natura trasversale, la resistenza di progetto a "taglio trazione" si calcola con:
				,	$I_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$ [4.1.27]
RES. DI CALCOLO A "TAGLIO COMPRESSION	Vo	=	1865	kN	
	• KCd				estruzzo d'anima, la resistenza di progetto a "taglio compressione" si calcola con
			Con riferime		estruzzo d'anima, la resistenza di progetto a "taglio compressione" si calcola con = $0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ctg\theta)/(1 + ctg^2 \theta)$ [4.1.28]
				* Red	as a strate of collection collection of the collection

