MINISTERO DELLE INFRASTRUTTURE E DELLA MOBILITÀ SOSTENIBILI STRUTTURA TECNICA DI MISSIONE

COMUNE DI TORINO

METROPOLITANA AUTOMATICA DI TORINO LINEA 2 – TRATTA POLITECNICO – REBAUDENGO

PROGETTAZIONE DEFINITIVA

Lotto Costruttivo 2: Bologna - Politecnico

PROGETTO DEFINITIVO														
DIRETTORE PROGETTAZIONE Responsabile integrazione discipline specialistiche	IL PROGETTISTA							er la mol				INFR	RATRASPO	ORTI.TO S.r.l.
Ing. R. Crova Ordine degli Ingegneri della Provincia di Torino n. 6038S	Ing. F. Rizzo Ordine degli Ingegneri della Provincia di Torino n. 9337K		R		AZI	010	II P	ROF	ON	IDE	– ST	AZIC		IVI TRENGO) STAZIONE
					ELAE	BOR	RATO				RI Int.	EV.	SCALA	DATA
BIM MANAGER Geom. L. D'Accardi			L2	T1	A2	D	STR	SPA	R	001	0	1	-	30/09/2022
	1.0	CIOD											-	Fa 1 di 1

AGGIORNAMENTI Fg. 1 di 1

REV.	DESCRIZIONE	DATA	REDATTO	CONTROLLATO	APPROVATO	VISTO
0	EMISSIONE	18/01/22	VFI	ECA	FRI	RCR
1	EMISSIONE FINALE A SEGUITO DI VERIFICA PREVENTIVA	30/09/22	VFI	ECA	FRI	RCR
-	-	-	-	-	-	-
-		-	-	-	-	-

	LOTTO 2	CARTELLA	9.2.4	1	MTL2T1A2D	STRSPAR001
--	---------	----------	-------	---	-----------	------------

STAZIONE APPALTANTE

DIRETTORE DI DIVISIONE INFRASTRUTTURE E MOBILITÀ Ing. R. Bertasio

RESPONSABILE UNICO DEL PROCEDIMENTO Ing. A. Strozziero

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

INDICE

1.	PREMESSA	6
1.1	SCOPO E CAMPO DI APPLICAZIONE	7
1.2	DESCRIZIONE DELLE OPERE	7
2.	NORMATIVE DI RIFERIMENTO	9
3.	CARATTERISTICHE DEI MATERIALI	12
3.1	Calcestruzzi	12
3.1.1 3.1.2	CALCESTRUZZO UTILIZZATO PER I SOLAI DI STAZIONE E STRUTTURE INTERNE CALCESTRUZZO UTILIZZATO PER DIAFRAMMI	12 12
3.2	ACCIAI PER ARMATURE IN C.A.	12
3.3	ACCIAIO PER CARPENTERIA METALLICA	13
4.	CARATTERIZZAZIONE GEOTECNICA	14
5.	PRINCIPALI ASSUNZIONI DELLA PROGETTAZIONE	17
5.1	CARATTERIZZAZIONE SISMICA	17
5.2	COMBINAZIONI DI CARICO	18
5.3	CRITERI DELLA MODELLAZIONE NUMERICA	20
5.3.1	GEOMETRIA DEL MODELLO NUMERICO	20
5.3.2	ELEMENTI STRUTTURALI	22
5.3.3	CARICHI	24
5.3.3.1 5.3.3.2	Carichi superficiali Azione sismica	24 24
6.	ANALISI NUMERICHE	28
6.1	FASI DI CALCOLO MODELLO GEOTECNICO	29
		_
6.2	OUTPUT	43
6.2.1	SEZIONE AA - CERNIERA - SOLLECITAZIONI PARATIA DIAFRAMMI	43
6.2.2 6.2.3	SEZIONE AA - CERNIERA - SPOSTAMENTI PARATIA	46
6.2.4	SEZIONE AA - INCASTRO - SOLLECITAZIONI PARATIA DIAFRAMMI SEZIONE AA – INCASTRO - SPOSTAMENTI PARATIA	47 49
6.2.5	SEZIONE BB — CERNIERA - SOLLECITAZIONI PARATIA	49 50
0.2.3	SECTIONS DO CENTILINA SOLLECTIACIONI FARMITA	50

	CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
	Pastrengo - Relazione di calcolo opere no stazione	MTL2T1A2DSTRSPAR001-0-1
6.2.6 6.2.7 6.2.8	SEZIONE BB — CERNIERA — SPOSTAME SEZIONE BB — INCASTRO - SOLLECITA SEZIONE BB — INCASTRO - SPOSTAME	ZIONI PARATIA 53
7.	VERIFICHE STRUTTURALI	56
7.1 7.1.1 7.1.2	VERIFICHE DELLE SOLLECITAZIONI SEZIONE AA SEZIONE BB	56 58 61
7.2 7.2.1 7.2.2	VERIFICA DELLE SOLLECITAZIONI T SEZIONE AA SEZIONE BB	64 65 67
7.3 7.3.1 7.3.2	VERIFICHE A FESSURAZIONE SLE SEZIONE AA SEZIONE BB	70 71 73
7.4 7.4.1 7.4.2	VERIFICA DI DEFORMABILITÀ A LU SEZIONE AA SEZIONE BB	NGO TERMINE 75 75 76
8.	VERIFICHE GEOTECNICHE	77
8.1	VERIFICA DEL TAMPONE DI FONDO	77
8.2	VERIFICA CAPACITÀ PORTANTE PAI	RATIA 80
8.3	VERIFICA CAPACITÀ PORTANTE DE	LLA SOLETTA DI FONDO 81
8.4	STABILITÀ GLOBALE	82
8.5	VERIFICA GALLEGGIAMENTO STAZI	ONE 88
9.	VALIDAZIONE DEI MODELLI I	SEGUITI 90
9.1	CONFRONTO DEI MODELLI NUMERI	90 gr
ALLEGAT	ΓΟ N.1	93
ALLEGAT	ГО N.2	98

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

INDICE DELLE FIGURE

Figura 1.	Key-plan della linea 2 – tratta funzionale Politecnico-Rebaudengo	6
Figura 2.	Modello 3d – Stazione Pastrengo	7
Figura 3.	Stralcio stratigrafia stazione Pastrengo	14
Figura 4.	Sezione di calcolo	21
Figura 5.	Sezione di calcolo BB - Puntonatura - Stazione Pastrengo	23
Figura 6.	Modello strutturale sistema di puntonatura - Stazione Pastrengo	23
Figura 7.	Schematizzazione metodo di Wood	25
Figura 8.	Stralcio planimetria stazione Pastrengo con indicazione delle sezioni di calco	olo
	AA e BB	28
Figura 9.	Fasi di calcolo modello geotecnico – Sezione AA	35
Figura 10.	Fasi di calcolo modello geotecnico – Sezione BB	42
Figura 11.	Sezione AA Diaframma - Cerniera - SLE Momento flettente - Inviluppo	44
Figura 12.	Sezione AA Diaframma - Cerniera - SLE Diagramma taglio – Inviluppo	45
Figura 13.	Sezione AA Diaframma - Cerniera - SLE Diagramma degli spostamenti orizz	ontali
		46
Figura 14.	Sezione AA Diaframma - Incastro - SLE Momento flettente - Inviluppo	47
Figura 15.	Sezione AA Diaframma – Incastro - SLE Diagramma taglio – Inviluppo	48
Figura 16.	Sezione AA Diaframma - Incastro - SLE Diagramma degli spostamenti orizzi	
		49
•	Sezione BB Diaframma - Cerniera - SLE Diagramma momento – Inviluppo	50
_	Sezione BB Diaframma – Cerniera - SLE Diagramma taglio – Inviluppo	51
Figura 19.	Sezione BB Diaframma - Cerniera - SLE Diagramma degli spostamenti orizz	
		52
-	Sezione BB Diaframma – Incastro - SLE Diagramma momento – Inviluppo	53
_	Sezione BB Diaframma – Incastro - SLE Diagramma Taglio – Inviluppo	54
Figura 22.	Sezione BB Diaframma - Incastro - SLE Diagramma degli spostamenti orizza	
		55
_	Diaframmi - SLU Diagramma delle sollecitazioni flettenti – Sezione AA	58
_	Diaframmi - SLU Diagramma delle sollecitazioni flettenti – Sezione BB	61
Figura 25.	Diaframma - SLU Diagramma delle sollecitazioni taglianti – Sezione AA	65
	66	
Figura 26.	Diaframma - SLU Diagramma delle sollecitazioni taglianti – Sezione BB	67
E: 3=	68	
Figura 2/.	Spostamenti orizzontali a lungo termine	75

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

Figura 28.	Possibili meccanismi di collasso: a) sollevamento del tampone di fondo e dei diaframmi b) sollevamento del tampone di fondo c) rottura del tampone di	
	fondo	77
Figura 29.	Zone di plasticizzazione	81
Figura 30.	Fattore di sicurezza a lungo termine	82
Figura 31.	Rapporto tra tensione tangenziale massima e tensione tangenziale mobilitata	83
Figura 32.	Fattore di sicurezza a lungo termine	84
Figura 33.	Rapporto tra tensione tangenziale massima e tensione tangenziale mobilitata	_
		85
-	Tensioni orizzontali efficaci paratia - Lato monte e valle	86
_	Confronto tensioni limite attive e passive con tensioni orizzontali Plaxis	87
_	Modello numerico ParatiePlus	90
Figura 37.	Modello numerico Plaxis	91
Figura 38.	Inviluppo momenti flettenti ParatiePlus	91
Figura 39.	Inviluppo momenti flettenti Plaxis	92
Figura 40.	Modellazione dell'eccentricità tra soletta e diaframma	100
Figura 41.	Valore di reazione vincolare di riferimento per il calcolo del momento flettente	į
	55	100
_	Diaframmi – SLU Diagramma delle sollecitazioni flettenti – Sezione AA ridotta:	
Figura 43.	Diaframmi – SLU Diagramma delle sollecitazioni taglianti – Sezione AA ridotta	
		105
_	Diaframmi – SLU Diagramma delle sollecitazioni flettenti – Sezione BB ridotta:	
Figura 45.	Diaframmi – SLU Diagramma delle sollecitazioni taglianti – Sezione BB ridotta:	109
INDICE	DELLE TABELLE	
	Parametri geotecnici	15
	Parametri geotecnici	15
	ivelli di falda	16
	Probabilità di superamento PVR con SLV	17
	Parametri sismici del sito	18
	Coefficienti parziali per le azioni o per l'effetto delle azioni (Tab. 6.2.I)	19
	, , ,	
	Coefficienti parziali per i parametri geotecnici del terreno (Tab. 6.2.II)	19
rabella o C	Coefficienti parziali per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno (Tab. 6.5.I)	19
Tabolla 0 E		
	Parametri input elementi strutturali Carichi superficiali	22 24
	Parametri input azione sismica	26
	Parametri input azione sismica	27
	Fasi di calcolo – Sezione AA	27

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

Tabella 14 Fasi di calcolo – Sezione BB	36
Tabella 15 Sollecitazioni paratia Sezione AA - Cerniera	46
Tabella 16 Sollecitazioni paratia Sezione AA - Incastro	49
Tabella 17 Sollecitazioni paratia Sezione BB – Cerniera	52
Tabella 18 Sollecitazioni paratia BB - Incastro	55
Tabella 19 Armature longitudinali paratia sezione AA	56
Tabella 20 Armature longitudinali paratia sezione BB	57
Tabella 21 Diaframmi - Verifica SLU flessione Sezione A-1	59
Tabella 22 Diaframmi - Verifica SLU flessione Sezione A-2	59
Tabella 23 Diaframmi - Verifica SLU flessione Sezione B-1	62
Tabella 24 Diaframmi - Verifica SLU flessione Sezione B-2	63
Tabella 25 Diaframma - Verifica SLU – Taglio – Sezione A -1	66
Tabella 26 Diaframma - Verifica SLU – Taglio – Sezione B -1	68
Tabella 27 Diaframmi - Verifica SLE –Sezione A-1	71
Tabella 28 Diaframmi - Verifica SLE –Sezione A-2	72
Tabella 29 Diaframmi - Verifica SLE –Sezione B-1	73
Tabella 30 Diaframmi - Verifica SLE –Sezione B-2	74
Tabella 31 Verifica tampone di fondo	77
Tabella 32 Verifica capacità portante paratia	80
Tabella 33 Diaframmi – Verifica SLU flessione - Sezione AA ridotta -Piano Banchina	104
Tabella 34 Diaframmi – Verifica SLU Sollecitazioni taglianti – Sezione AA ridotta	106
Tabella 35 Diaframmi – Verifica SLU flessione - Sezione BB ridotta -Piano Mezzanino	108
Tabella 36 Diaframmi – Verifica SLU Sollecitazioni taglianti - Sezione BB ridotta -Piano	
Mezzanino	110

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta funzionale 1: Politecnico – Rebaudengo
Piano di gestione della Progettazione	MTL2T1A2DSTRSNOR001-0-1

1. PREMESSA

La presente relazione si inserisce nell'ambito dell'affidamento dei servizi di ingegneria relativi alla Progettazione Definitiva della Tratta Politecnico-Rebaudengo della Linea 2 della Metropolitana, disciplinato dal Contratto tra la Città di Torino e la società Infratrasporti.TO s.r.l., ed ha per oggetto le fasi realizzative, le analisi strutturali, geotecniche e le verifiche relative alle opere di sostegno della stazione Pastrengo.

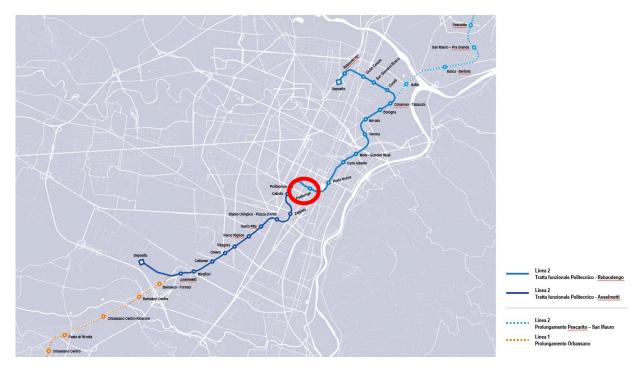
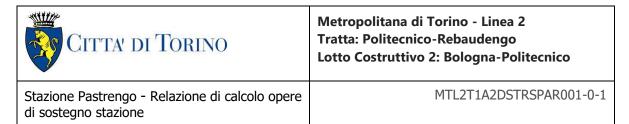



Figura 1. Key-plan della linea 2 – tratta funzionale Politecnico-Rebaudengo

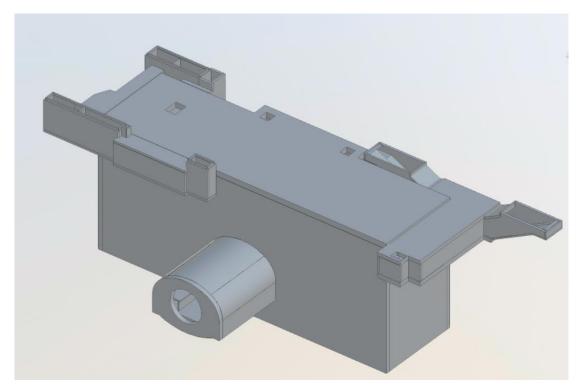


Figura 2. Modello 3d – Stazione Pastrengo

1.1 Scopo e campo di applicazione

In questa relazione vengono dimensionati soltanto i diaframmi, infatti sebbene inserite nei modelli di calcolo, le verifiche relative alle solette di copertura, intermedia vengono riportate nella relazione relativa alle strutture interne (MTL2T1A0DSTRSPAR002) in quanto i carichi dimensionanti per tali strutture sono quelli a lungo termine.

1.2 Descrizione delle opere

La stazione Pastrengo è un manufatto interrato a quattro livelli, con fondo scavo posto alla profondità di circa -27 m rispetto al piano campagna.

La stazione è realizzata con la tecnica del top-down e sarà caratterizzata da uno scavo sostenuto da diaframmi contrastati da solai permanenti. I diaframmi presentano spessore di 1.2 m ed un immorsamento al di sotto del fondo scavo di 10.0 m. al fine di garantire l'impermeabilità del fondo scavo viene realizzato un tampone di fondo in jet-grouting.

Il sistema di costruzione dei diaframmi in calcestruzzo armato consiste nel realizzare prima i primari e poi i secondari con una sovrapposizione compresa tra i 10 e i 30cm. In relazione a tale tecnica esecutiva, anche le gabbie di armatura saranno calibrate per prevedere la sovrapposizione dei diaframmi secondari sui primari. L'esecuzione delle paratie è preceduta dalla costruzione di coree guida che seguono il tracciato.

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

Il collegamento tra il solaio e le paratie è realizzato per mezzo di tasche d'appoggio rettangolari, realizzate grazie all'inserimento di scatole metalliche, già assemblate nelle gabbie d'armatura dei diaframmi.

Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

2. NORMATIVE DI RIFERIMENTO

La progettazione è stata realizzata facendo riferimento alle Normative Nazionali sottoelencate:

- 1. Legge n°1086 del 05/11/1971: "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica"
- DM 17 gennaio 2018: Aggiornamento delle "Norme Tecniche per le costruzioni" (GU n.42 del 20/02/2018);
- 3. Circolare 21 gennaio 2019 n.7 " Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"»
- 4. D.M. 21/10/2015: "Approvazione della regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio delle metropolitane";
- 5. D.M. 16/02/2007 Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione.
- 6. UNI 9502-2001: "Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso".
- 7. UNI 9503-2007: "Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi in acciaio".
- 8. UNI EN 206-1:2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità".
- 9. UNI 11104-2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".
- 10. Legge 2 febbraio 1974, n. 64: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"
- 11. D.G.R. 30 Dicembre 2019, n. 6-887: "Presa d'atto e approvazione dell'aggiornamento della classificazione sismica del territorio della Regione Piemonte"
- 12. D.G.R. 26 Novembre 2021, n. 10-4161: "Approvazione delle nuove procedure di semplificazione attuative di gestione e controllo delle attivita' urbanistico-edilizie ai fini della prevenzione del rischio sismico".

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

Quando necessario, saranno altresì assunti a riferimento i Codici Normativi Europei elencati di seguito:

Eurocode 0 - Basis of structural design

• EN 1990 Basis of structural design.

Eurocode 1 - Actions on structures

- EN 1991-1-1 Part 1-1: General actions Densities, self-weight, imposed loads for buildings
- EN 1991-1-2 Part 1-2: General actions Actions on structures exposed to fire.
- EN 1991-1-3 Part 1-3: General actions Snow loads.
- EN 1991-1-4 Part 1-4: General actions Wind actions.
- EN 1991-1-5 Part 1-5: General actions Thermal actions.
- EN 1991-1-6 Part 1-6: General actions Actions during execution.
- EN 1991-1-7 Part 1-7: General actions Accidental Actions.
- EN 1991-2 Part 2: Traffic loads on bridges.
- EN 1991-3 Part 3: Actions induced by cranes and Machinery.
- EN 1991-4 Part 4: Silos and tanks.

Eurocode 2 - Design of concrete structures

- EN 1992-1-1 Part 1-1: General rules and rules for Buildings.
- EN 1992-1-2 Part 1-2: General rules Structural fire Design.
- EN 1992-3 Part 3: Liquid retaining and containment Structures.

Eurocode 3 - Design of steel structures

- EN 1993-1-1 Part 1-1: General rules and rules for Buildings
- EN 1993-1-2 Part 1-2: General rules Structural fire design
- EN 1993-1-3 Part 1-3: General rules Supplementary rules for cold-formed members and sheeting
- EN 1993-1-4 Part 1-4: General rules Supplementary rules for stainless steels
- EN 1993-1-5 Part 1-5: Plated structural elements
- EN 1993-1-6 Part 1-6: Strength and Stability of Shell Structures
- EN 1993-1-7 Part 1-7: Plated structures subject to out of plane loading
- EN 1993-1-8 Part 1-8: Design of joints
- EN 1993-1-9 Part 1-9: Fatigue
- EN 1993-1-10 Part 1-10: Material Toughness and through-thickness properties
- EN 1993-1-11 Part 1-11: Design of structures with tension components
- EN 1993-1-12 Part 1-12: Additional rules for the extension of EN 1993 up to steel grades S 700
- EN 1993-2 Part 2: Steel Bridges

TO	CITTA'	DI	FORINO

Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

- EN 1993-3-1 Part 3-1: Towers, masts and chimneys -Towers and masts
- EN 1993-3-2 Part 3-2: Towers, masts and chimneys Chimneys
- EN 1993-4-1 Part 4-1: Silos
- EN 1993-4-2 Part 4-2: Tanks
- EN 1993-4-3 Part 4-3: Pipelines
- EN 1993-5 Part 5: Piling
- EN 1993-6 Part 6: Crane supporting structures

Eurocode 4 - Design of composite steel and concrete structures

- EN 1994-1-1 Part 1-1: General rules and rules for Buildings
- EN 1994-1-2 Part 1-2: General rules Structural Fire Design
- EN 1994-2 Part 2: General rules and rules for bridges

Eurocode 7 - Geotechnical design

- EN 1997-1 Part 1: General rules
- EN 1997-2 Part 2: Ground investigation and testing
- EN 1997-3 Part 3: Design assisted by field testing

Eurocode 8 – Design of structures for earthquake resistance

- EN 1998-1 Part 1: General rules, seismic actions and rules for buildings
- EN 1998-2 Part 2: Bridges
- EN 1998-3 Part 3: Assessment of retrofitting of buildings
- EN 1998-4 Part 4: Silos, tanks and pipelines
- EN 1998-5 Part 5: Foundations, retaining structures and geotechnical aspects
- EN 1998-6 Part 6: Towers, masts and chimneys

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

3. CARATTERISTICHE DEI MATERIALI

3.1 Calcestruzzi

3.1.1 Calcestruzzo utilizzato per i solai di stazione e strutture interne

Tipo: C30/37

Modulo di deformazione: E_c=32000 MPa

Resistenza caratteristica cubica: R_{ck}=37 MPa

Resistenza caratteristica cilindrica: f_{ck} =30 MPa

Peso per unità di volume: Y=25 KN/m³

Classe di Esposizione XC3 (Calcestruzzo all'interno di edifici con

umidità dell'aria moderata oppure elevata / Calcestruzzo esposto all'esterno protetto dalla

pioggia)

3.1.2 Calcestruzzo utilizzato per diaframmi

Tipo: C25/30

Modulo di deformazione: E_c=30000 MPa

Resistenza caratteristica cubica: R_{ck}=30 MPa

Resistenza caratteristica cilindrica: f_{ck}=25 MPa

Peso per unità di volume: $\Upsilon=25 \text{ KN/m}^3$

Classe di Esposizione XC2 (Superfici di calcestruzzo a contatto con

acqua per lungo tempo / Molte fondazioni)

3.2 Acciai per armature in c.a.

Tipo B450C saldabile (ex FeB44K saldabile), per diametri compresi tra 6 e 40 mm:

f_{ynom}=450 MPa

 $f_{tnom} = 540 \text{ MPa}$

 $f_{vk} \ge f_{vnom}$ frattile 5%

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

 $f_{tk} \ge f_{tnom}$ frattile 5%

 $1.15 \le (f_t/f_y)k \le 1.35$ frattile 10%

 $(f_y/f_{ynom})k \le 1.25$ frattile 10%

Allungamento $(A_{gt})k \ge 7.5\%$ frattile

10%

Reti e tralicci elettrosaldati:

 $f_{yk} \ge 450 \text{ MPa}$

 $f_{tk} \ge 540 \text{ MPa}$

 $(f_{tk}/f_{yk}) \ge 1.10$

3.3 Acciaio per carpenteria metallica

Tipo: S355 J0

t≤40mm

Modulo di deformazione: E_c=210 GPa

Resistenza a snervamento caratteristica: f_{yk} =355 MPa

Resistenza a snervamento di progetto: f_{yd} =338 MPa

Resistenza a rottura caratteristica: f_{yk} =510 MPa

Peso per unità di volume: Y=78 KN/m³

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

4. CARATTERIZZAZIONE GEOTECNICA

Lo scavo della stazione denominata Pastrengo, come si evince dalla sezione stratigrafica riportata nel seguito, è interessato da una coltre superiore di circa 1,5 m di terreno superficiale denominato Unità 1. Mentre a livelli più profondi fino ad una estensione di interesse per le opere di scavo è presente un materiale ghiaioso sabbioso denominato Unità 2



Figura 3. Stralcio stratigrafia stazione Pastrengo

Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

I parametri geotecnici del presente progetto sono stati definiti in accordo alla relazione geotecnica MTL2T1A0DGEOGENR002-0-0 dove gli strati riconducibili all'unità 2, 3 e 4 sono stati debitamente esaminati e raggruppati nella formazione AFR-INS come indicato al capitolo 7.3, cautelativamente si riconduce quindi alle caratteristiche geomeccaniche fornite per l'unità 2. Per quanto riguarda la sottounità 2B sempre sulla suddetta relazione geotecnica è indicato che "questa sottounità non si ritiene sia rilevante dal punto di vista meccanico e deformativo e pertanto non è stata differenziata dall'Unità 2 ai fini della caratterizzazione geotecnica". I parametri utilizzati per il calcolo sono riportati nella seguente tabella:

Tabella 1 Parametri geotecnici

Stratigrafia e Parametri geotecnici						
Unità	Z da p.c	γ	φ	С	Ev	v
geotecnica	[m]	[kN/m³	[°]	[kPa]	[Mpa]	[-]
U1 (Terreno superficiale)	0 a -1,7	19	29	0	10	0,3
U2/3 (Ghiaie e sabbie)	-1,7 a -39	19	36	10	150	0,3
U5 (Argille azzurre)	>-39	20,5	25	40	60	0,3


I parametri utilizzati per la modellazione delle colonne di Jet grouting costituenti il tampone di fondo sono riassunti nella seguente tabella:

Tabella 2 Parametri colonne Jet grouting

Parametri JG						
γ φ c UCS E v						
[kN/m³]	[°]	[kPa]	[kPa]	[MPa]	[-]	
22	36	150	590	450	0,3	

Il livello della falda considerato è distinto per condizioni di breve periodo e lungo periodo secondo quanto descritto nella relazione geotecnica MTL2T1A0DGEOGENR002-0-0 e rispetto al profilo geotecnico MTL2T1A0DGEOSNOT001-0-0 i calcoli eseguiti tengono conto delle letture piezometriche del 2018 in quanto più cautelative (livelli piezometrici maggiori) in considerazione della scarsa piovosità registrata nel corso del 2021. Il livello di falda considerato nelle analisi è quello specificato di seguito:

Tabella 3 Livelli di falda

	m da p.c.	m.s.l.m
Livello piezometrico da MTL2T1A0DGEOSPAT001	-17	+224.55
Livello piezometrico di riferimento indagini 2018	-16.5	+225.05
B T (+1.5 da livello piezometrico di riferimento) - Fase costruttiva	-15	+226.55
L T (+3 da breve termine) – Fase di lungo termine	-12	+229.55

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

5. PRINCIPALI ASSUNZIONI DELLA PROGETTAZIONE

5.1 Caratterizzazione sismica

Secondo quanto prescritto dal D.M. 17 Gennaio 2018, ai fini delle verifiche di sicurezza delle strutture devono essere definiti i seguenti parametri:

- Vita nominale dell'opera: intesa come il numero di anni nei quali la struttura deve poter essere utilizzata per lo scopo al quale è stata destinata senza necessita di manutenzioni. Per l'opera oggetto di questo elaborato si considera una vita nominale VN=100 anni;
- Classe d'uso: in presenza di azioni sismiche, in relazione alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi z<d'uso. Nel caso in esame si fa riferimento alla classe d'uso III (coefficiente pari a 1.5);
- Periodo di riferimento per l'azione sismica: viene definito come il prodotto tra la vita nominale ed il coefficiente d'uso. Per il caso in esame il periodo di riferimento è di 150 anni.

A partire dalla posizione sul territorio nazionale dell'opera, e in dipendenza dei parametri su descritti, vengono definiti i parametri sismici necessari per le verifiche:

- Vita nominale dell'opera (V_N): nel caso delle stazioni è di **100 anni**;
- Classe d'uso (Cu): In caso di costruzioni che prevedono affollamenti significativi la classe è III, a cui è associato un coefficiente di 1.5;
- *Periodo di riferimento (V_R)*: prodotto tra la vita nominale e la classe d'uso ed è pari a **150 anni**.
- Periodo di ritorno (T_R): $T_R = V_R$ / In (1- P_{VR}), considerando P_{VR} la probabilità di superamento nel periodo di riferimento e considerando la condizione SLV, ovvero lo stato limite di salvaguardia della vita.

Tabella 4 Probabilità di superamento PVR con SLV

VN Cu \		VR	PVR	TR	
[anni]	-	[anni]	-	[anni]	
100	1.5	150	10%	1424	

In relazione al tempo di ritorno e alla probabilità di superamento dello stato limite considerato è possibile dedurre i parametri di accelerazione massima (a_g) e i parametri spettrali (F_0 , T^*c).

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

Tabella 5 Parametri sismici del sito

Stazione	ag	F0	T*c
	[g]	-	[sec]
PASTRENGO	0.067	2.890	0.292

Vi saranno effetti amplificativi dovuti alla stratigrafia ed alla topografia del suolo, tenuti in conto con i seguenti coefficienti:

- Coefficiente topografico (S_T) : per superfici pianeggianti è considerato pari a **1**.
- Coefficiente stratigrafico (S_s): Per sottosuolo di categoria B è considerato pari a **1.2**.

Di conseguenza il valore dell'accelerazione orizzontale massima in superficie è:

$$a_{max}/g = S_s \cdot S_T \cdot a_q/g = 1.2 \cdot 1 \cdot 0.067 = 0.0804$$

5.2 Combinazioni di carico

In accordo con le NTC2018 le combinazioni di carico considerate e verificate nel seguito sono:

•	Stato limite di servizio	SLE
•	Stato limite ultimo verifiche STR: Combinazione A1+M1	SLU1
•	Stato limite ultimo verifiche GEO: Combinazione A2+M2	SLU2
•	Sisma verifiche STR: Combinazione A1 (unitari)+M1	SISMA STR
•	Sisma verifiche GEO: Combinazione A2 (unitari)+M2	SISMA GEO

A seconda della verifica che si intende effettuare, verranno utilizzati coefficienti che riducono i parametri meccanici di resistenza del terreno o coefficienti che amplificano gli effetti delle azioni.

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

In particolare, sono stati considerati i seguenti coefficienti per le verifiche:

Tabella 6 Coefficienti parziali per le azioni o per l'effetto delle azioni (Tab. 6.2.I)

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_{F} (o γ_{E})	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	ΥGI	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ _{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γG1

Tabella 7 Coefficienti parziali per i parametri geotecnici del terreno (Tab. 6.2.II)

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	$\gamma_{ m cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 8 Coefficienti parziali per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno (Tab. 6.5.I)

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

5.3 Criteri della modellazione numerica

La modellazione numerica viene effettuata con il software bidimensionale agli elementi finiti Plaxis 2D, che permette la simulazione dell'interazione terreno-struttura, delle fasi costruttive e del comportamento non lineare del terreno durante le sequenze di scavo.

I modelli di calcolo sono stati generati con una maglia di elementi triangolari a 15 nodi impostando la posizione dei bordi in maniera tale che nessun disturbo venga indotto alla soluzione numerica.

Tutte le strutture sono state modellate mediante elementi già implementati nella libreria del software. Si è utilizzato:

- per i diaframmi: elementi "plate"
- per le solette: elementi "plate" (vincolate con cerniera ai diaframmi)
- per le barrette: elementi "plate";

Attraverso l'analisi numerica si intende simulare il percorso delle tensioni e delle deformazioni nel terreno conseguente allo scavo. La condizione geostatica è stata inizializzata ipotizzando un coefficiente di spinta a riposo K0 ottenuto attraverso la relazione di Jaky:

$$k0 = 1 - sen\omega'$$

Per il terreno è stato considerato il modello costitutivo elasto-plastico tipo "Mohr Coulomb".

5.3.1 Geometria del modello numerico

Il modello geometrico è mostrato nella figura seguente e deriva definizione della geometria della sezione considerata in termini di configurazione delle strutture della stazione e delle condizioni geologiche considerate.

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

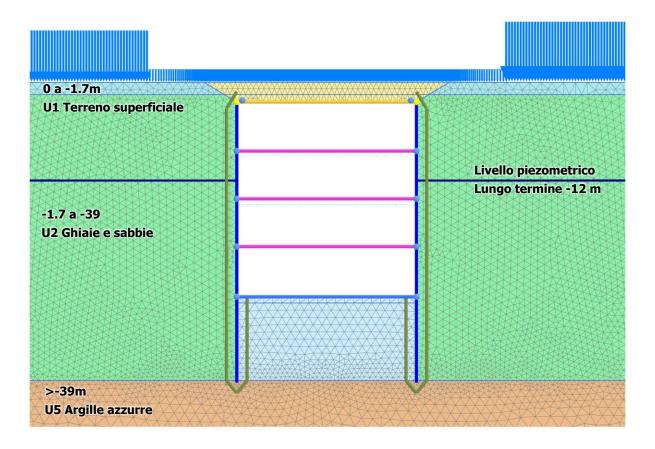


Figura 4. Sezione di calcolo

La geometria delle sezioni considerate è generata a partire dalle distanze asse-asse ed è la seguente:

Elemento	Z [m]
Quota piano campagna	0,00
Soletta di copertura	-2,40
Soletta intermedia 1	-8,40
Soletta intermedia 2	-14,25
Soletta intermedia 3	-20,0
Soletta di base	-26,25
Piede paratia	-36,75

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

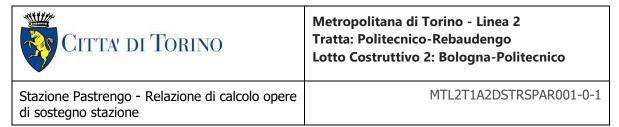
5.3.2 Elementi strutturali

La modellazione degli elementi strutturali è stata effettuata tramite l'utilizzo di elementi plate la cui rigidezza è stata valutata per metro di sviluppo del modello.

I parametri utilizzati nel modello FEM per gli elementi strutturali sono riportati nelle tabelle di seguito.

Tabella 9 Parametri input elementi strutturali

Paratia H=120 cm		
EA	37,20E+6	kN/m
EI	4,46E+6	kNm²/m


Soletta di copertura H=150 cm		
EA	4,93E+07	kN/m
EI	9,24E+06	kNm²/m

Soletta intermedia H=120 cm		
EA	37,20E+6	kN/m
EI 4,46E+6 kNm²/m		

Soletta di base H=180 cm		
EA	5,91E+07	kN/m
EI 1,60E+07 kNm ² /m		kNm²/m

La modellazione della sezione in interferenza con la galleria di stazione (Sezione BB) prevede l'installazione di una puntonatura temporanea composta da due HEB800 affiancati lateralmente e due tubolari (559mm x sp.20mm), come mostrato in Figura 5.

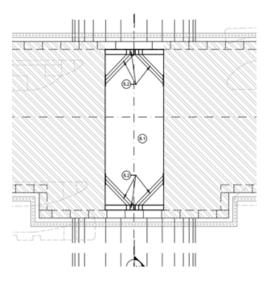


Figura 5. Sezione di calcolo BB - Puntonatura - Stazione Pastrengo

Mediante un modello strutturale *ad hoc* (si veda Figura 6) è stata ricavata la rigidezza del sistema provvisorio pari a K = 186000 kN/m.

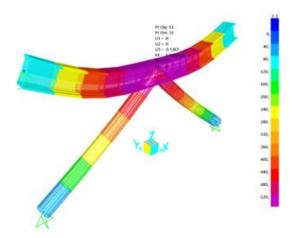


Figura 6. Modello strutturale sistema di puntonatura - Stazione Pastrengo

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

5.3.3 Carichi

5.3.3.1 Carichi superficiali

La definizione dei carichi distribuiti e puntuali inseriti nel modello è avvenuta in considerazione delle particolari condizioni di carico peculiari della sezione considerata, come la presenza di edifici in adiacenza al manufatto di stazione.

Tabella 10 Carichi superficiali

Posizione nel modello	Entità del carico	Estensione		
Destra	120 kPa	45 m		
Sinistra	80 kPa	45 m		
Destra/Sinistra (ad esclusione della zona maggiorata)	20 kPa	Tutta la superfice		
Soletta superficiale	20 kPa	Zona soletta		

A tale riguardo non essendo nota la quota di imposta del piano di fondazione di tali strutture, a favore di sicurezza si è ritenuto di trascurare la presenza dei piani interrati essendo il peso di volume del terreno maggiore del carico relativo al solaio interrato.

Riguardo l'entità del riempimento della soletta di copertura si è tenuto in conto lo spessore del ricoprimento di progetto incrementato di ulteriori 0,50 m.

5.3.3.2 Azione sismica

L'azione sismica valutata secondo il metodo di Wood (1973), che fornisce la sovraspinta sismica del terreno su una parete interrata.

Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

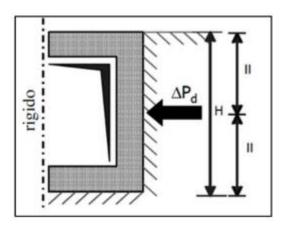


Figura 7. Schematizzazione metodo di Wood

Il metodo di Wood è utilizzato nel caso di manufatti scatolari e l'incremento di spinta legato al sisma può essere stimato secondo la relazione:

$$\Delta P_d = \frac{a_g}{g} \cdot S \cdot \gamma \cdot H^2$$

In cui γ è il peso specifico del terreno supposto uniforme, dove $\frac{a_g}{g}$ è l'accelerazione orizzontale massima in superficie ($\frac{a_{max}}{g}$). Poiché tale risultate ha il punto di applicazione a metà dell'altezza H del muro, è possibile assumere considerare una pressione uniforme di entità pari a:

$$\Delta p_d = \frac{a_g}{g} \cdot S \cdot \gamma \cdot H$$

L'impatto dell'azione sismica viene valutata per una condizione di carico di lungo periodo in cui sono presenti le fodere interne della struttura alle quali è affidata la spinta idrostatica della falda. Pertanto, la paratia è scaricata della spinta dell'acqua e l'azione sismica è ripartita tra la paratia e le fodere interne secondo la relazione:

$$p_{paratia} = P_{Tot} \frac{I_{paratia}}{I_{paratia} + I_{fodera}}$$

$$p_{Fodera} = P_{Tot} \frac{I_{Fodera}}{I_{paratia} + I_{fodera}}$$

L'entità dell'azione sismica applicata al modello numerico è riportata nel seguito.

Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 11 Parametri input azione sismica

Tabella 11 Parametri input azione sismica			
Calcolo spinta sismica da applicare al	m	odello nume	erico
γt	=	19,5	kN/mc
Н	=	26,5	m
ag	=	0,0724	
S _s	=	1,2	
S_T	=	1	
a _{max}	=	0,08688	
α	=	1,0	
β	=	1,0	
k _h	=	0,08688	
	ı		T
P _{ground}	=	44,90	kPa
P ground su paratia	=	34,63	kPa
	ı		
Paratia			T
Profondita' sopra fondo scavo	=	26,5	m
B	=	1000	mm
H	=	1200	
l ₁	=	1,E+11	mm ⁴
Fodera			
B	=	1000	mm
H	=	800	
I ₂	=	4,E+10	mm ⁴
	ı		<u> </u>
I tot	=	2,E+11	mm ⁴
	ı		T
W paratia	=	795	kN
P paratia	=	2,6064	kPa
P tot	=	37,24	kPa

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

Nella tabella seguente vengono riassunti i carichi applicati al modello.

Tabella 12 Parametri input azione sismica

Tipologia carico	Valore	
Peso strutture in calcestruzzo	25	kN/m³
Sovraccarico superficiale	20	kPa
Carico edifici	10	kPa/piano
Spinta sismica sulla paratia	37.24	kPa

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

6. ANALISI NUMERICHE

Le analisi numeriche sono condotte seguendo le assunzioni indicate nel capitolo precedente Le sezioni ritenute rappresentative delle condizioni geotecniche e strutturali del manufatto sono indicate nella figura di seguito. Le analisi svolte considerano sia il vincolo di incastro sia quello di cerniera nel nodo di collegamento tra diaframma e soletta di copertura.

La sezione BB e considerata nella sezione di passaggio della TBM in cui la profondità di scavo è incrementata di 4.1 m ed è presente una puntonatura temporanea in sostituzione della soletta del secondo mezzanino che verrà rimossa per il passaggio della fresa.

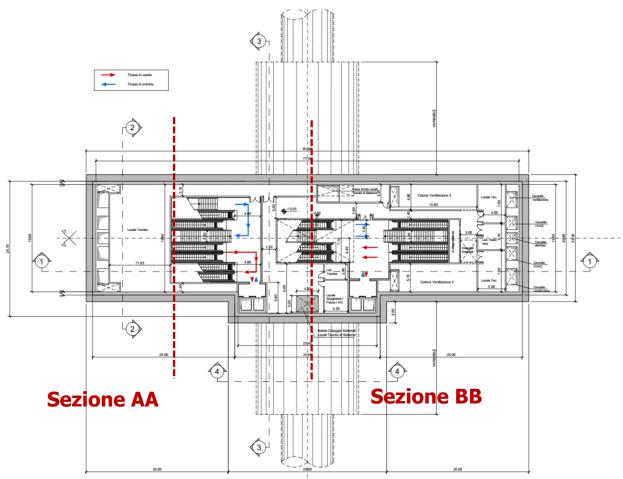


Figura 8. Stralcio planimetria stazione Pastrengo con indicazione delle sezioni di calcolo AA e BB

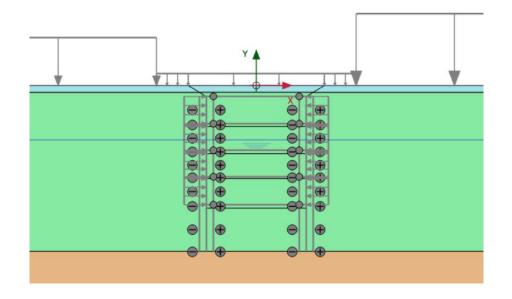
CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

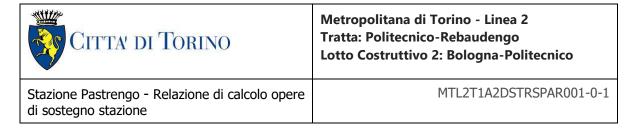
6.1 Fasi di calcolo modello geotecnico

La modellazione numerica dello scavo con paratie puntonate viene effettuata seguendo differenti fasi di calcolo, ciascuna rappresentativa delle fasi costruttive dell'opera. Tale procedimento si rende necessario in quanto in un'analisi FEM in cui il comportamento del terreno è assunto essere di tipo elastoplastico, la risposta del mezzo in termini tensionali e deformativi è influenzata dalla storia tensionale che subisce e pertanto è importante tenere in considerazione le configurazioni precedenti.

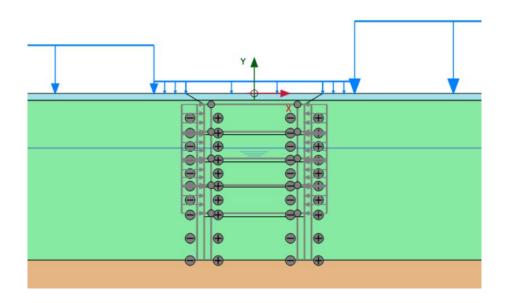
Le fasi di calcolo considerate per le sue sezioni di calcolo sono riportate nella seguente tabella e nelle successive figure.

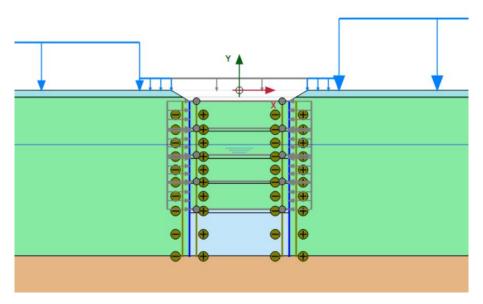
Tabella 13 Fasi di calcolo - Sezione AA

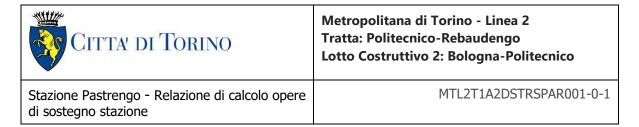

Fase di calcolo	Descrizione
Fase 1	Definizione delle condizioni geostatiche ed idrostatiche
Fase 2	Definizione dei carichi superficiali accidentali e permanenti
Fase 3	Scavo fino a quota intradosso solaio di copertura
Fase 4	Realizzazione tampone di fondo e diaframmi
Fase 5	Realizzazione del solaio di copertura
Fase 6	Prima fase di scavo e ripristino condizioni superficiali
Fase 7	Scavo fino a quota della prima soletta intermedia ed abbassamento del livello piezometrico all'interno dello scavo
Fase 8	Installazione prima soletta intermedia
Fase 9	Scavo fino a quota della seconda soletta intermedia ed abbassamento del livello piezometrico all'interno dello scavo
Fase 10	Installazione seconda soletta intermedia
Fase 11	Scavo fino a quota della terza soletta intermedia ed abbassamento del livello piezometrico all'interno dello scavo
Fase 12	Installazione terza soletta intermedia
Fase 13	Scavo fino a quota scavo finale
Fase 14	Installazione soletta di base
Fase 15	Ripristino delle condizioni idrauliche

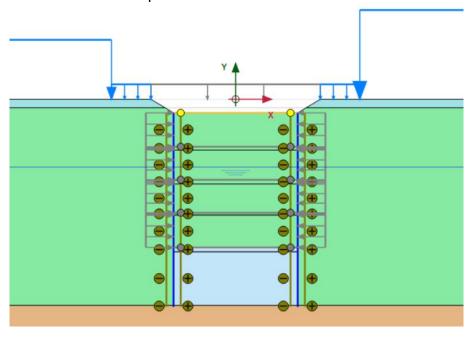

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

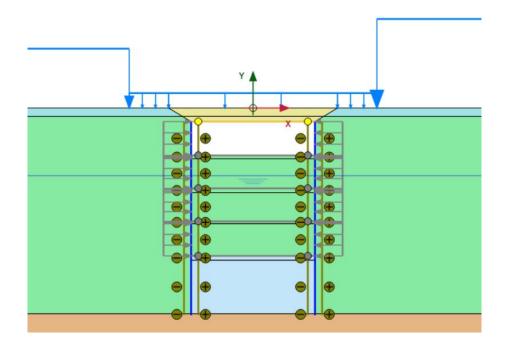
Fase 16	Applicazione dell'azione sismica
Fase 17	Ricerca del fattore di sicurezza di lungo periodo
Fase 18	Valutazione della deformabilità a lungo termine a SLE

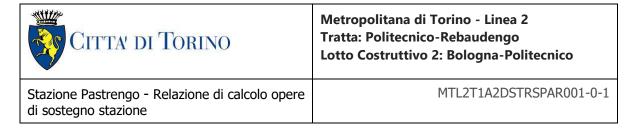

Fase 1 – Condizioni iniziali

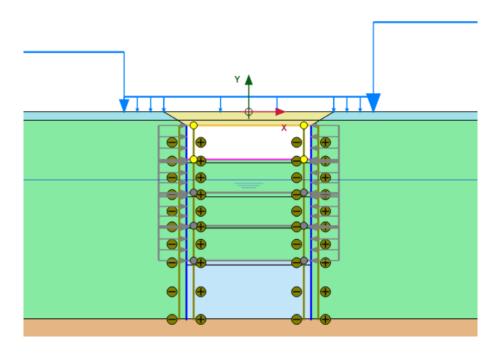


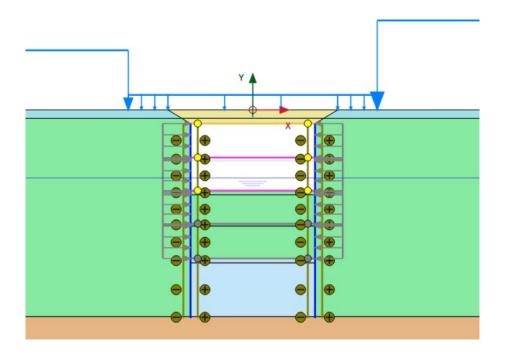

Fase 2 – Applicazione dei carichi superficiali


Fase 3 – Installazione diaframmi e tampone di fondo

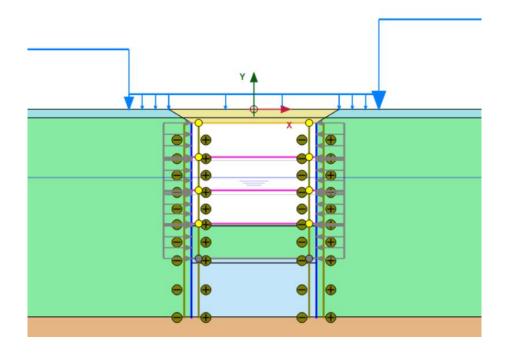


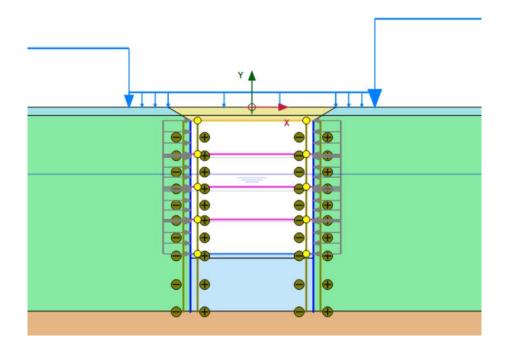

Fase 5 – Installazione soletta di copertura

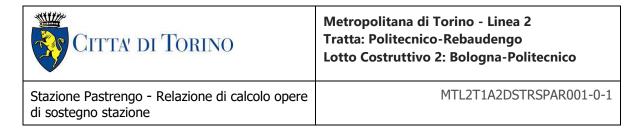

Fase 6 – Prima fase di scavo e ripristino delle condizioni in superficie



Fase 7-8 – Primo scavo e installazione prima soletta intermedia


Fase 9-10 – Secondo scavo e installazione seconda soletta intermedia




Fase 11-12 – Terzo scavo e installazione terza soletta intermedia

Fase 13-14 – Scavo fino a quota finale e installazione soletta di fondo

Fase 16 – Applicazione azione sismica

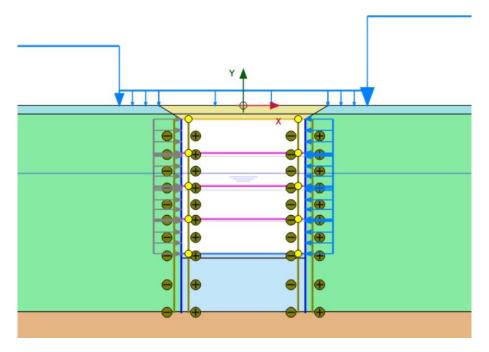
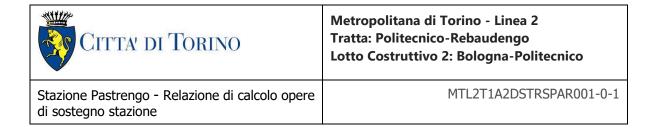
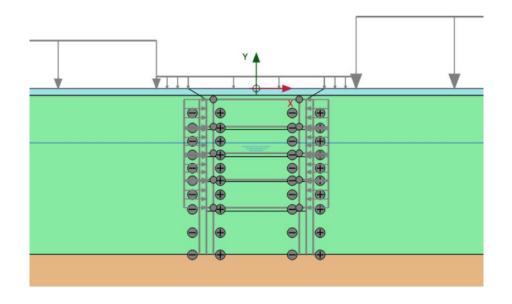


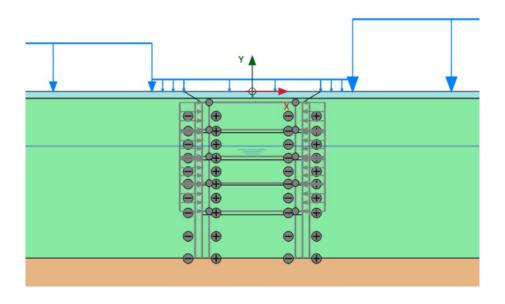
Figura 9. Fasi di calcolo modello geotecnico – Sezione AA

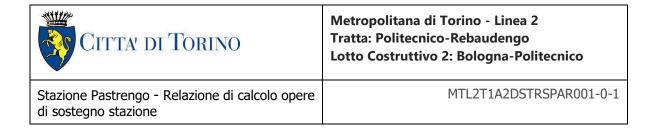

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

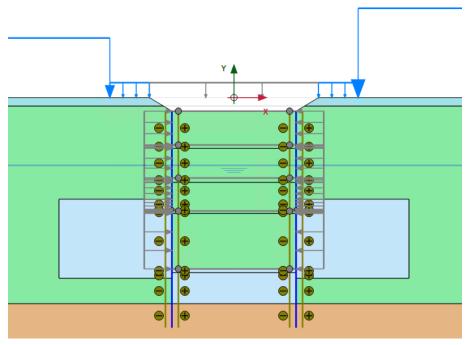
MTL2T1A2DSTRSPAR001-0-1

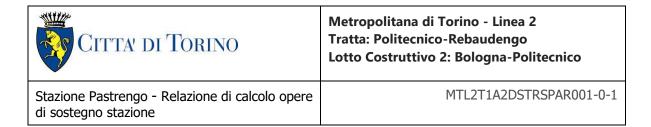

Tabella 14 Fasi di calcolo - Sezione BB

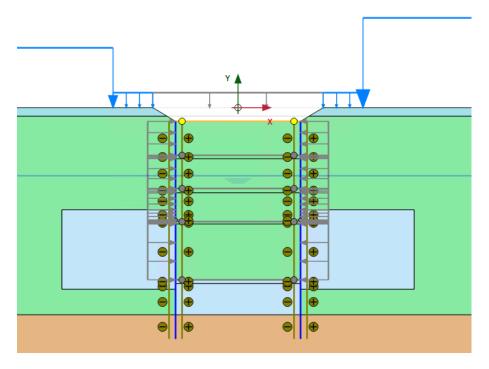
Fase di calcolo	Descrizione		
Fase 1	Definizione delle condizioni geostatiche ed idrostatiche		
Fase 2	Definizione dei carichi superficiali accidentali e permanenti		
Fase 3	Scavo fino a quota intradosso solaio di copertura		
Fase 4	Realizzazione tampone di fondo e diaframmi		
Fase 5	Realizzazione del solaio di copertura		
Fase 6	Prima fase di scavo e ripristino condizioni superficiali		
Fase 7	Scavo fino a quota della prima soletta intermedia ed abbassamento del livello piezometrico all'interno dello scavo		
Fase 8	Installazione prima soletta intermedia		
Fase 9	Scavo fino a quota della seconda soletta intermedia ed abbassamento del livello piezometrico all'interno dello scavo		
Fase 10	Installazione seconda soletta intermedia		
Fase 11	Scavo fino a quota della terza soletta intermedia ed abbassamento del livello piezometrico all'interno dello scavo		
Fase 12	Installazione puntonatura temporanea		
Fase 13	Scavo fino a quota scavo finale		
Fase 14	Installazione soletta di base		
Fase 15	Passaggio della TBM e successiva rimozione della puntonatura		
Fase 16	Installazione terza soletta		
Fase 17	Ripristino delle condizioni idrauliche		
Fase 18	Applicazione dell'azione sismica		
Fase 19	Ricerca del fattore di sicurezza di lungo periodo		
Fase 20	Valutazione della deformabilità a lungo termine a SLE		

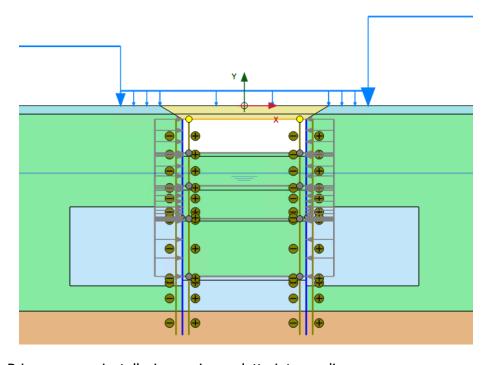


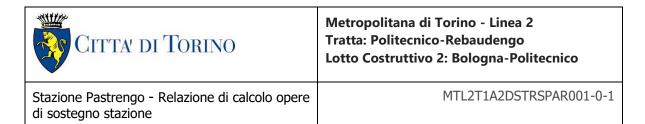

Fase 1 – Condizioni iniziali

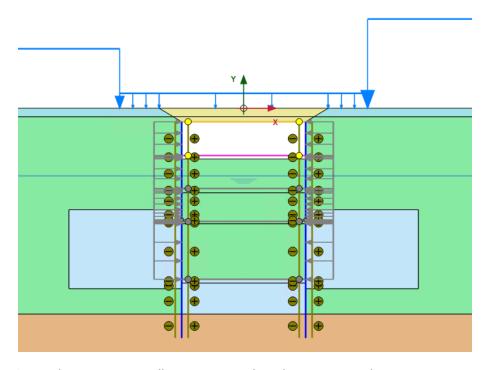

Fase 2 – Applicazione dei carichi superficiali

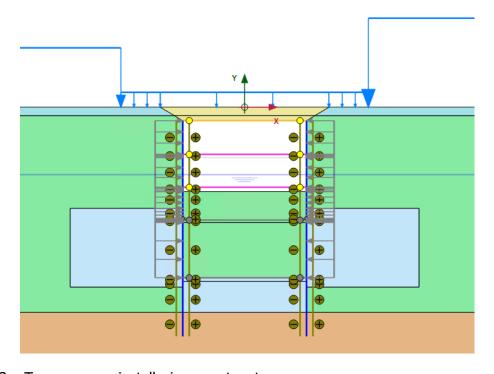


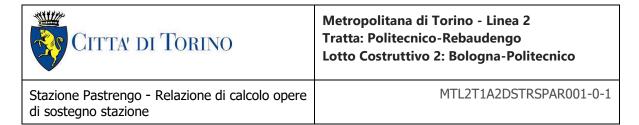

Fase 3 – Installazione diaframmi e tampone di fondo

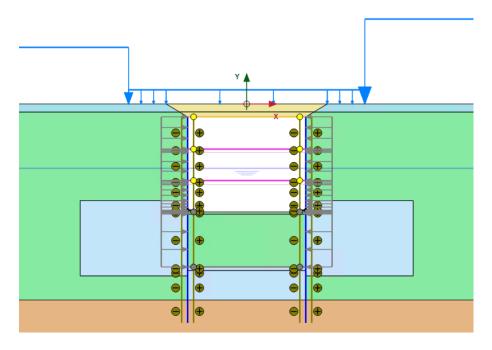

Fase 5 – Installazione soletta di copertura

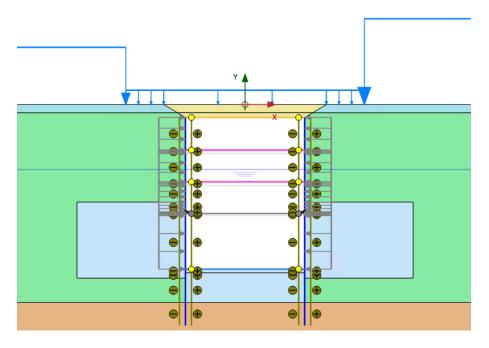


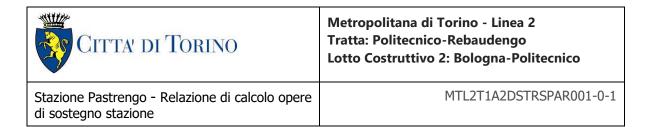

Fase 6 – Prima fase di scavo e ripristino delle condizioni in superficie

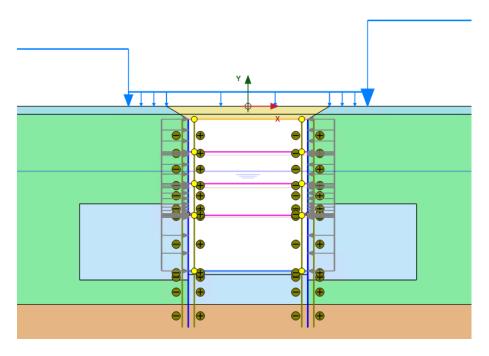

Fase 7-8 – Primo scavo e installazione prima soletta intermedia




Fase 9-10 – Secondo scavo e installazione seconda soletta intermedia


Fase 11-12 – Terzo scavo e installazione puntonatura




Fase 13-14 – Scavo fino a quota finale e installazione soletta di fondo

Fase 15-16 Rimozione puntonatua, passaggio TBM e installazione terza soletta

Fase 18 – Applicazione azione sismica

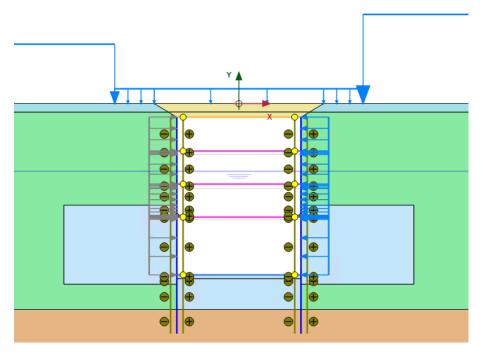


Figura 10. Fasi di calcolo modello geotecnico – Sezione BB

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

6.2 Output

6.2.1 Sezione AA - Cerniera - Sollecitazioni paratia diaframmi

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

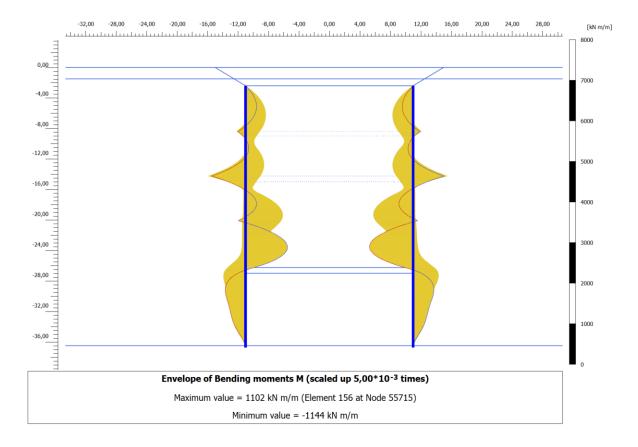
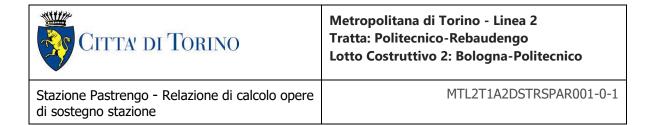



Figura 11. Sezione AA Diaframma - Cerniera - SLE Momento flettente - Inviluppo

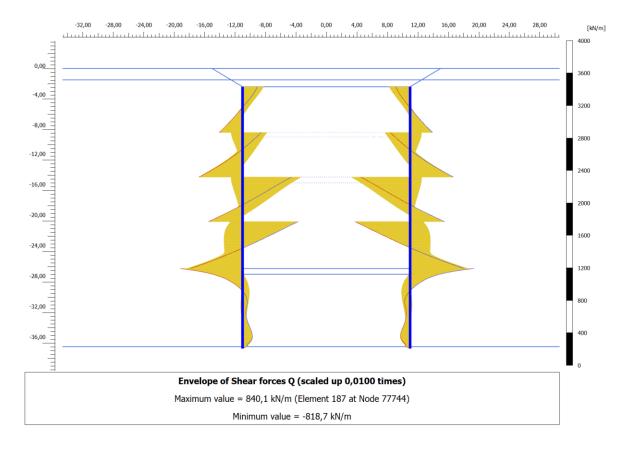
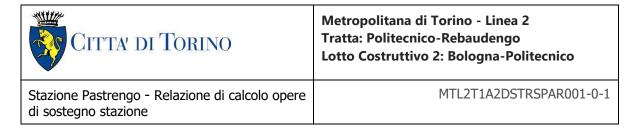



Figura 12. Sezione AA Diaframma - Cerniera - SLE Diagramma taglio — Inviluppo

6.2.2 Sezione AA – Cerniera - Spostamenti paratia

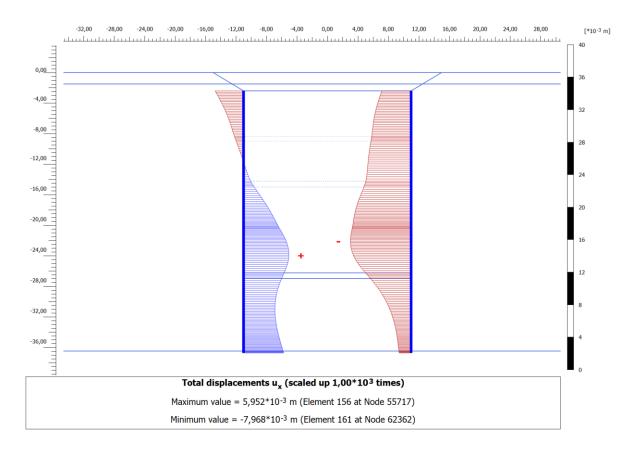
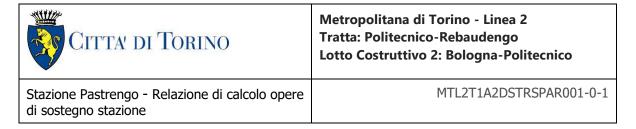



Figura 13. Sezione AA Diaframma - Cerniera - SLE Diagramma degli spostamenti orizzontali

Tabella 15 Sollecitazioni paratia Sezione AA - Cerniera

	Paratia SLE	Paratia SLU
M _{max} [kNm/m]	1144	1602
M _{min} [kNm/m]	-894	-1252
T max [kN/m]	840	1176
T min [kN/m]	-772	-1081
Spostamento max [mm]	8	-

6.2.3 Sezione AA - Incastro - Sollecitazioni paratia diaframmi

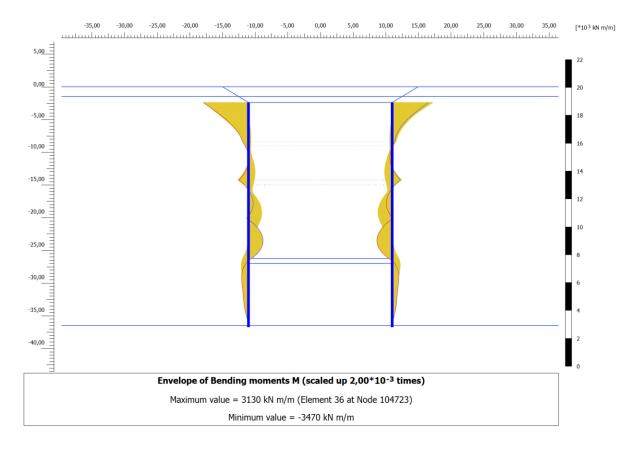


Figura 14. Sezione AA Diaframma - Incastro - SLE Momento flettente - Inviluppo

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

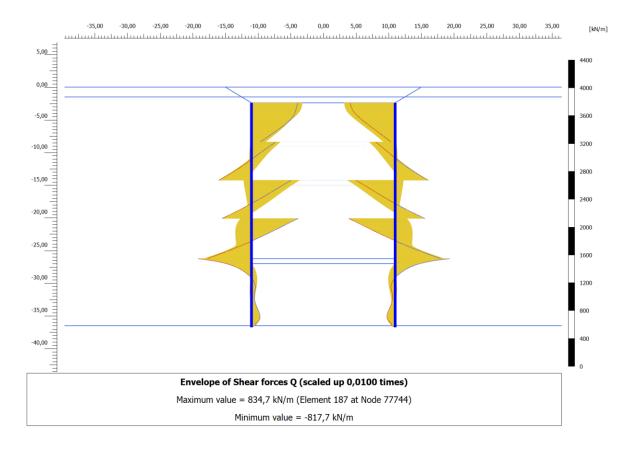
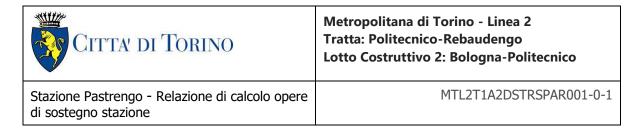



Figura 15. Sezione AA Diaframma – Incastro - SLE Diagramma taglio – Inviluppo

6.2.4 Sezione AA – Incastro - Spostamenti paratia

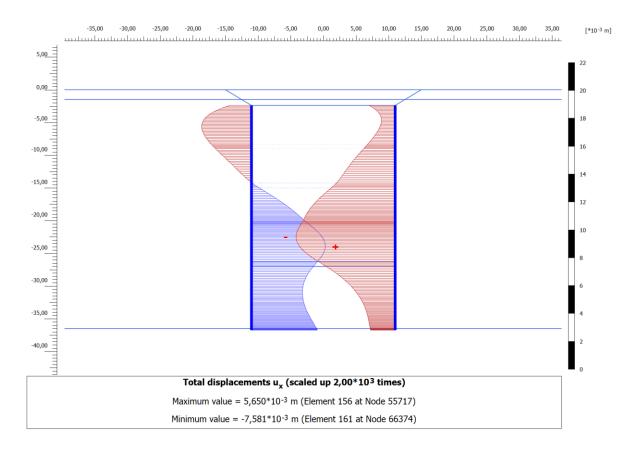
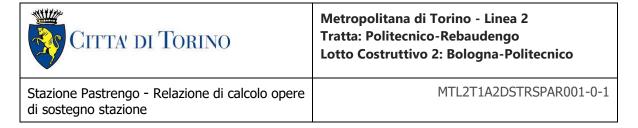



Figura 16. Sezione AA Diaframma - Incastro - SLE Diagramma degli spostamenti orizzontali

Tabella 16 Sollecitazion<u>i paratia Sezione AA - Incastro</u>

	Paratia SLE	Paratia SLU
M _{max} [kNm/m]	1120	1568
M _{min} [kNm/m]	-3470	-4858
T max [kN/m]	775.5	1086
T min [kN/m]	-817.7	-1145
Spostamento max [mm]	7.6	-

6.2.5 Sezione BB – Cerniera - Sollecitazioni paratia

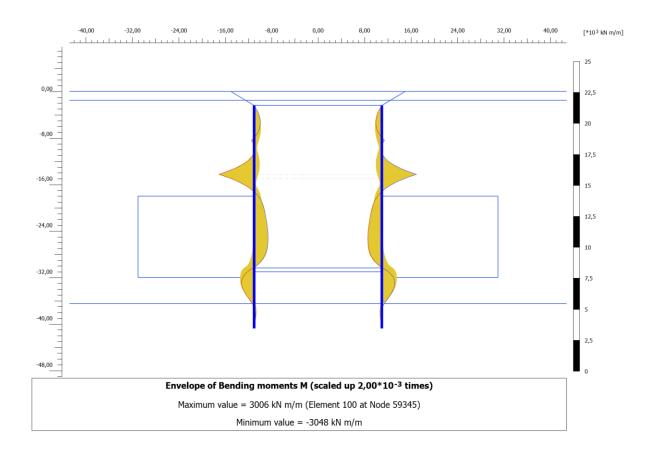


Figura 17. Sezione BB Diaframma - Cerniera - SLE Diagramma momento – Inviluppo

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

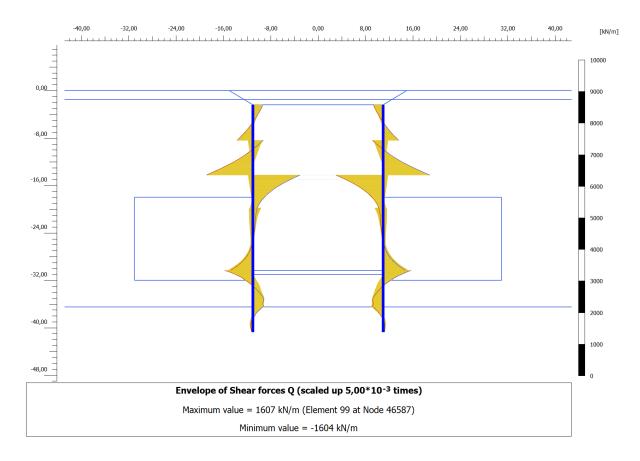
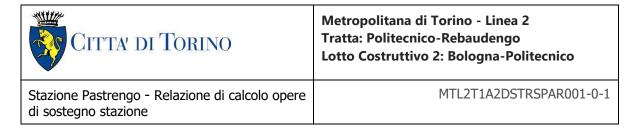



Figura 18. Sezione BB Diaframma – Cerniera - SLE Diagramma taglio – Inviluppo

6.2.6 Sezione BB – Cerniera – Spostamenti paratia

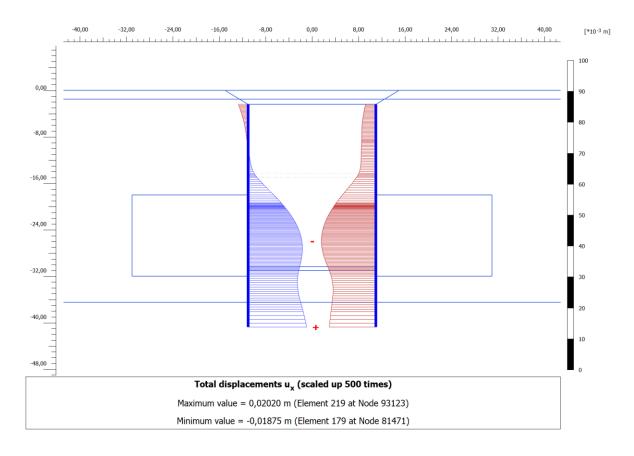
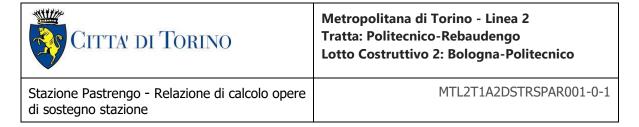



Figura 19. Sezione BB Diaframma - Cerniera - SLE Diagramma degli spostamenti orizzontali

Tabella 17 Sollecitazioni paratia Sezione BB - Cerniera

	Paratia SLE	Paratia SLU
M _{max} [kNm/m]	1200	2582
M _{min} [kNm/m]	-3048	-1222
T _{max} [kN/m]	1607	1999
T min [kN/m]	-1580	-1833
Spostamento max [mm]	18.8	-

6.2.7 Sezione BB – Incastro - Sollecitazioni paratia

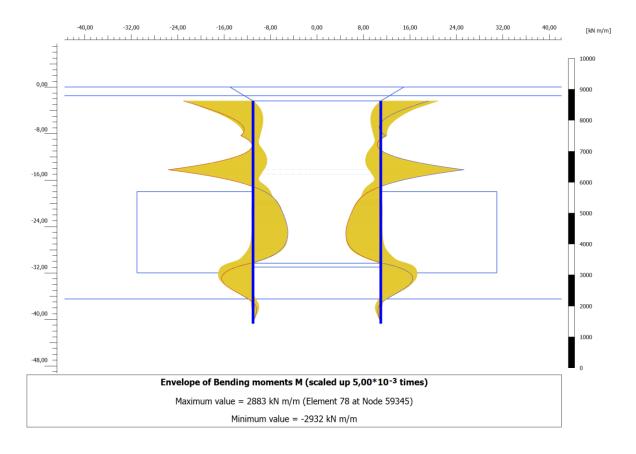


Figura 20. Sezione BB Diaframma – Incastro - SLE Diagramma momento – Inviluppo

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

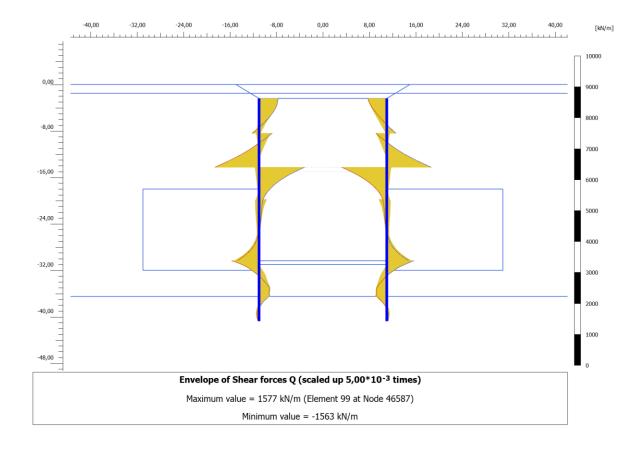
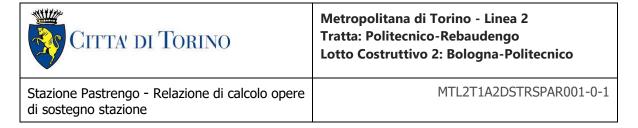



Figura 21. Sezione BB Diaframma – Incastro - SLE Diagramma Taglio – Inviluppo

6.2.8 Sezione BB – Incastro - Spostamenti paratia

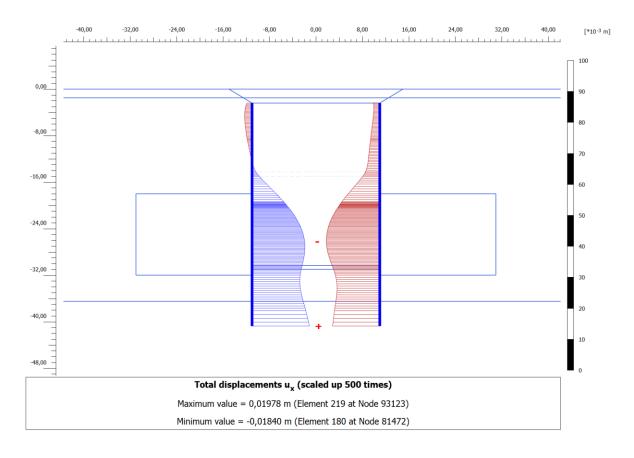


Figura 22. Sezione BB Diaframma - Incastro - SLE Diagramma degli spostamenti orizzontali

Tabella 18 Sollecitazioni paratia BB - Incastro

	Paratia SLE	Paratia SLU
M _{max} [kNm/m]	1202	1683
M _{min} [kNm/m]	-2932	-4105
T max [kN/m]	1577	2208
T min [kN/m]	-1531	-2143
Spostamento max [mm]	18.4	-

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

7. VERIFICHE STRUTTURALI

Le fasi costruttive prevederanno la realizzazione di diaframmi primari e secondari. Le cui rispettive dimensioni, ipotizzate per le seguenti verifiche, sono: 260 cm per il primario e 280 cm per il secondario.

Le verifiche di seguito riportate sono riferite al diaframma secondario.

7.1 Verifiche delle sollecitazioni flettenti SLU

La verifica agli SLU è stata realizzata attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabola-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 (σ_{max} = 0.85 x 0.83 x R_{ck}/1.5);
- legame costitutivo dell'armatura d'acciaio elastico-perfettamente plastico ($f_{yd} = f_{vk}/1.15$)

Di seguito sono riportati il diagramma di inviluppo dei momenti flettenti nella condizione di cerniera ed incastro in testa al diaframma e momenti resistenti della sezione e la tabella di determinazione della massima capacità della sezione a SLU.

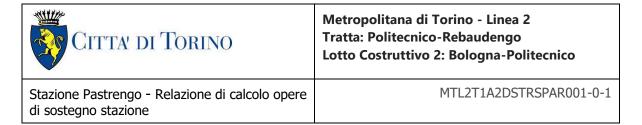
La verifica è condotta sul diaframma nelle sezioni AA e BB.

In riferimento alla paratia considerata verranno adottate 4 gabbie di armatura al fine di coprire i momenti sollecitanti aventi le seguenti caratteristiche:

Tabella 19 Armature longitudinali paratia sezione AA

	Lunghezza [m]	Lato interno	Lato esterno
Gabbia 1	12	2Ф 20/125	3 Ф 26/125
Gabbia 2	12	2Ф 26/125	2 Ф 26/125
Gabbia 3	12	2Ф 26/125	Ф 26/125
Gabbia 4	3	Ф 20/125	Ф 20/125

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1


Tabella 20 Armature longitudinali paratia sezione BB

	Lunghezza [m]	Lato interno	Lato esterno
Gabbia 1	12	2Ф 20/125	3 Ф 26/125
Gabbia 2	12	2Ф 26/125	3 Ф 26/125
Gabbia 3	12	2Ф 26/125	2 Ф 26/125
Gabbia 4	7	Ф 26/125	Ф 26/125

Le lunghezze indicate includono la lunghezza di sovrapposizione.

La particolare condizione in corrispondenza delle tasche per la connessione tra la paratia e la soletta intermedia e di base in cui l'altezza della sezione è temporaneamente ridotta a 90 cm è stata studiata ed è presentata nel relativo allegato.

7.1.1 Sezione AA

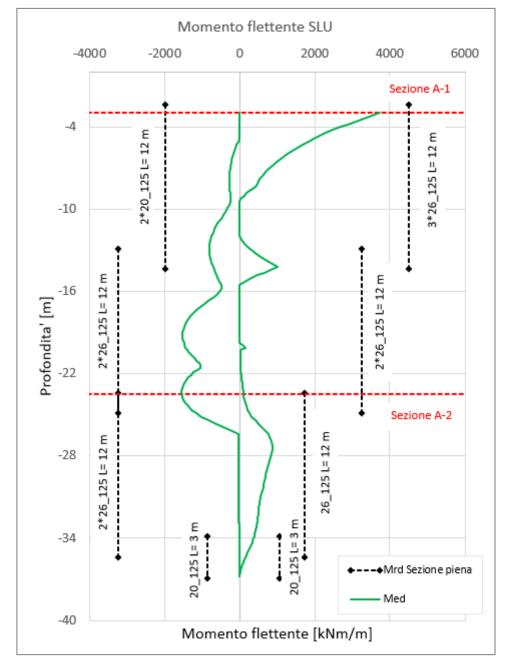


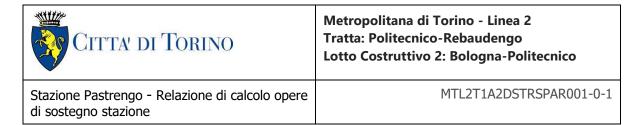
Figura 23. Diaframmi - SLU Diagramma delle sollecitazioni flettenti – Sezione AA

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 21 Diaframmi - Verifica SLU flessione Sezione A-1

Sezione di verifica SLU: Sezione A-1		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	1200	[mm]
Larghezza della sezione trasversale di calcestruzzo		[mm]
Copriferro		[mm]
Altezza utile della sezione		[mm]
Armature	2070	[]
Armatura tesa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti		[-]
Diametro dei ferri correnti secondo strato		[mm]
Numero dei ferri correnti secondo strato		[-]
Diametro dei ferri correnti terzo strato	26	
Numero dei ferri correnti terzo strato		[-]
Area dell'armatura tesa		[mm2]
Armatura compressa		į <u>,</u>
Diametro dei ferri correnti	20	[mm]
Numero dei ferri correnti		[-]
Diametro dei ferri correnti secondo strato		[mm]
Numero dei ferri correnti secondo strato		[-]
Diametro dei ferri correnti terzo strato	0	
Numero dei ferri correnti terzo strato	8	
Area dell'armatura compressa	5027	[mm2]
Materiali		
Calcestruzzo		
Resistenza caratteristica cubica	30	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	1,5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	0,85	[-]
Resistenza di progetto a compressione del calcestruzzo	14,17	[MPa]
Resistenza di progetto a trazione del calcestruzzo	1,20	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,00	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	11,25	[MPa]
Acciaio		
Resistenza a snervamento dell'acciaio	450	[MPa]
Coefficiente di sicurezza parziale per l'acciaio	1,15	[-]
Resistenza di progetto a trazione dell'acciaio	391	[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	360	[MPa]
Momento resistente della sezione	4462,46	
Momento sollecitante a SLU assunto in valore assoluto	3512,60	
		Verificato


Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 22 Diaframmi - Verifica SLU flessione Sezione A-2

Sezione di verifica SLU: Sezione A-2		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	1200	[mm]
Larghezza della sezione trasversale di calcestruzzo	1000	[mm]
Copriferro	75	[mm]
Altezza utile della sezione	1075	[mm]
Armature		
Armatura tesa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti	8	[-]
Diametro dei ferri correnti secondo strato	26	[mm]
Numero dei ferri correnti secondo strato	8	[-]
Diametro dei ferri correnti terzo strato	0	[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura tesa	8528	[mm2]
Armatura compressa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti	8	[-]
Diametro dei ferri correnti secondo strato	26	[mm]
Numero dei ferri correnti secondo strato	8	[-]
Diametro dei ferri correnti terzo strato	0	[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura compressa	8495	[mm2]
Materiali		
Calcestruzzo		
Resistenza caratteristica cubica	30	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	1,5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	0,85	[-]
Resistenza di progetto a compressione del calcestruzzo	14,17	[MPa]
Resistenza di progetto a trazione del calcestruzzo	1,20	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,00	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	11,25	[MPa]
Acciaio	Í	-
Resistenza a snervamento dell'acciaio	450	[MPa]
Coefficiente di sicurezza parziale per l'acciaio	1,15	
Resistenza di progetto a trazione dell'acciaio		[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS		[MPa]
·		
Momento resistente della sezione	3375,21	[kNm]
Momento sollecitante a SLU assunto in valore assoluto	1545,00	
		Verificato

7.1.2 Sezione BB

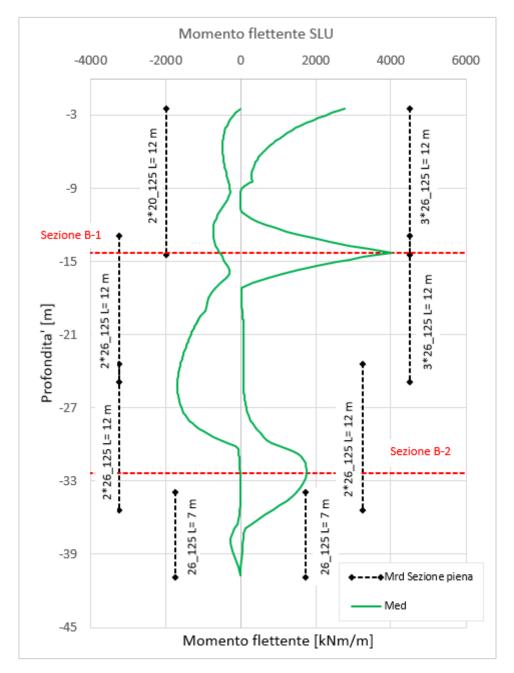


Figura 24. Diaframmi - SLU Diagramma delle sollecitazioni flettenti – Sezione BB

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 23 Diaframmi - Verifica SLU flessione Sezione B-1

Sezione di verifica SLU: Sezione B-1		
Sezione di Verifica Seo. Sezione 6-1		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	1200	[mm]
Larghezza della sezione trasversale di calcestruzzo		[mm]
Copriferro		[mm]
Altezza utile della sezione		[mm]
Armature	1075	[italia]
Armatura tesa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti		[-]
Diametro dei ferri correnti secondo strato		[mm]
Numero dei ferri correnti secondo strato		[-]
Diametro dei ferri correnti terzo strato	26	
Numero dei ferri correnti terzo strato		[-]
Area dell'armatura tesa		[mm2]
Armatura compressa		[]
Diametro dei ferri correnti	20	[mm]
Numero dei ferri correnti		[-]
Diametro dei ferri correnti secondo strato		[mm]
Numero dei ferri correnti secondo strato		[-]
Diametro dei ferri correnti terzo strato		[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura compressa	5027	[mm2]
Materiali		
Calcestruzzo		
Resistenza caratteristica cubica	30	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	1,5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	0,85	[-]
Resistenza di progetto a compressione del calcestruzzo	14,17	[MPa]
Resistenza di progetto a trazione del calcestruzzo	1,20	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,00	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	11,25	[MPa]
Acciaio		
Resistenza a snervamento dell'acciaio	450	[MPa]
Coefficiente di sicurezza parziale per l'acciaio	1,15	[-]
Resistenza di progetto a trazione dell'acciaio	391	[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	360	[MPa]
Momento resistente della sezione	4462,46	[kNm]
Momento sollecitante a SLU assunto in valore assoluto	4020,00	
	.525,66	Verificato

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 24 Diaframmi - Verifica SLU flessione Sezione B-2

Sezione di verifica SLU: Sezione B-2		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	1200	[mm]
Larghezza della sezione trasversale di calcestruzzo	1000	[mm]
Copriferro	75	[mm]
Altezza utile della sezione	1075	[mm]
Armature		
Armatura tesa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti	8	[-]
Diametro dei ferri correnti secondo strato	26	[mm]
Numero dei ferri correnti secondo strato	8	[-]
Diametro dei ferri correnti terzo strato	0	[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura tesa	8528	[mm2]
Armatura compressa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti	8	[-]
Diametro dei ferri correnti secondo strato	26	[mm]
Numero dei ferri correnti secondo strato	8	[-]
Diametro dei ferri correnti terzo strato	0	[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura compressa	8495	[mm2]
Materiali		
Calcestruzzo		
Resistenza caratteristica cubica	30	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	1,5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	0,85	[-]
Resistenza di progetto a compressione del calcestruzzo	14,17	[MPa]
Resistenza di progetto a trazione del calcestruzzo	1,20	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,00	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	11,25	[MPa]
Acciaio		
Resistenza a snervamento dell'acciaio	450	[MPa]
Coefficiente di sicurezza parziale per l'acciaio	1,15	[-]
Resistenza di progetto a trazione dell'acciaio	391	[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	360	[MPa]
Momento resistente della sezione	3375,21	
Momento sollecitante a SLU assunto in valore assoluto	1748,00	
		Verificato

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

7.2 Verifica delle sollecitazioni taglianti SLU

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 < ctg\theta < 2.5$$

La verifica di resistenza (SLU) è soddisfatta se è verificata la seguente relazione:

$$V_{Rd} \ge V_{Ed}$$
 dove V_{Ed}

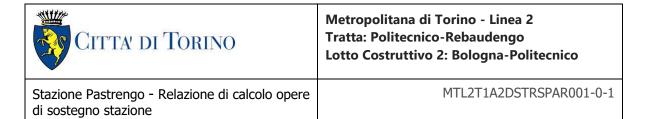
è il valore di calcolo dello sforzo di taglio agente.

La resistenza di calcolo a "taglio trazione" dell'armatura trasversale è stata calcolata con la seguente relazione:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

La resistenza di calcolo a "taglio compressione" del calcestruzzo d'anima è stata calcolata con la seguente relazione:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$


La resistenza al taglio della sezione è la minore delle due relazioni sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

La verifica delle azioni taglianti è condotta per pannello di paratia pari a 2,80 m.

Per verifica vengono adottate due tipologie di staffatura, una con staffa esterna a 2 braccia diametro 16 mm ed una interna a 4 braccia diametro da 14 mm con passo 200 mm. La seconda tipologia e' costituita da una con staffa esterna a 2 braccia diametro 16 mm ed una interna a 6 braccia diametro da 16 mm con passo 100 mm L'immagine di seguito mostra l'inviluppo delle azioni taglianti e la resistenza offerta dalla sezione.

7.2.1 Sezione AA

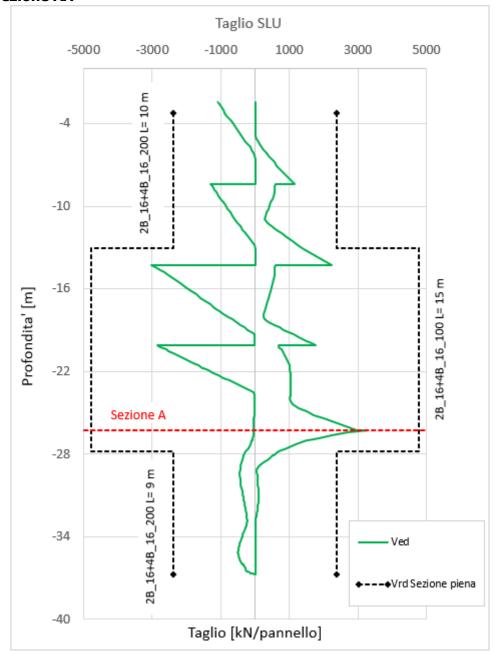
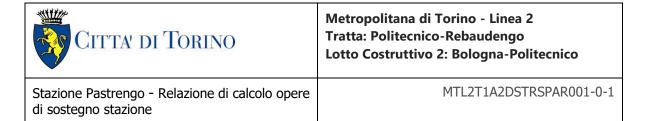


Figura 25. Diaframma - SLU Diagramma delle sollecitazioni taglianti – Sezione AA


Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 25 Diaframma - Verifica SLU — Taglio — Sezione A -1

Verifica elementi a taglio			
Pannello diaframma 2800 x 1200 mm - φ16 2 braccia + φ16	4 braccia p	asso 100 mn	1
Geometria			
Altezza sezione	Н	1200	mm
Base sezione	В	2800	mm
Barre longitudinali tese	фѕІ	26	mm
Diametro staffe	ϕ_{sw}	16	mm
Copriferro	С	75	mm
Altezza utile	d	1096	mm
Materiali			
Calcestruzzo			
Resistenza caratteristica cubica	R _{ck}	30	MPa
Resistenza caratteristica cilindrica	f _{ck}	25	MPa
Coefficiente parziale calcestruzzo	γ _c	1,5	
Coefficiente che tiene conto degli effetti a lungo termine	α_{cc}	0,85	
Resistenza di progetto a compressione calcestruzzo	f _{cd}	14,17	MPa
Resistenza a compressione ridotta del calcestruzzo d'anima	f' _{cd}	7,08	MPa
Acciaio		1	
Resistenza a snervamento dell'acciaio	f _{yk}	450	MPa
Coefficiente di sicurezza parziale acciaio	Ϋ́s	1,15	
Resistenza di progetto a trazione dell'acciaio	f _{yd}	391,30	MPa
Elementi con armatura a taglio			
Diametro staffe esterne	φ _{sw1}	16	mm
Numero braccia	n _{b1}	2	
Diametro staffe esterne	φ _{sw2}	16	mm
Numero braccia	n _{b2}	4	
Passo staffe	S		mm
Inclinazione tra puntone compresso e asse elemento	θ	45,00	
Inclinazione armatura trasversale rispetto asse elemento	α	90	
Area sezione trasversale armatura a taglio	A _{sw}	1205,76	mm2
Braccio coppia interna	Z	986,4	
Resistenza offerta dall'armatura a taglio	V _{Rsd}	4654	kN
Resistenza offerta dai puntoni	V_{Rcd}	9782	kN
Resistenza a taglio della sezione armata trasversalmente	V_{Rd}	4654	kN
Taglio sollecitante SLU	V _{ed}	3293	
-	cu	+	icato

7.2.2 Sezione BB

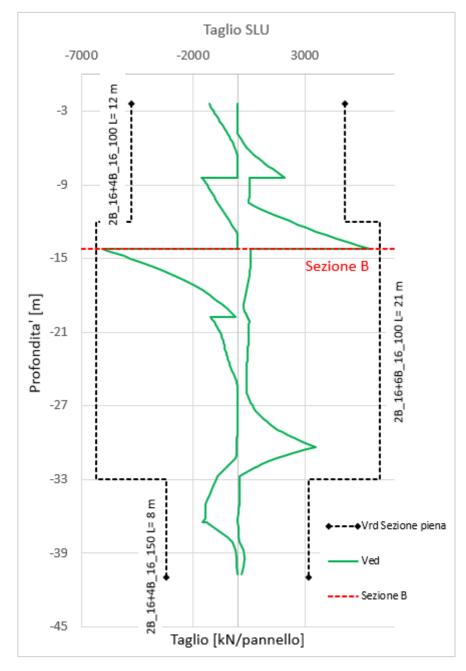


Figura 26. Diaframma - SLU Diagramma delle sollecitazioni taglianti – Sezione BB

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 26 Diaframma - Verifica SLU - Taglio - Sezione B -1

Verifica elementi a taglio	.gc	LIONE B I	
Pannello diaframma 2800 x 1200 mm - φ16 2 braccia + φ16	6 braccia p	passo 100 mn	1
Geometria			
Altezza sezione	Н	1200	mm
Base sezione	В	2800	mm
Barre longitudinali tese	фsI	26	mm
Diametro staffe	φ_{sw}	16	mm
Copriferro	С	75	mm
Altezza utile	d	1096	mm
Materiali			
Calcestruzzo			
Resistenza caratteristica cubica	R _{ck}	30	MPa
Resistenza caratteristica cilindrica	f_{ck}	25	MPa
Coefficiente parziale calcestruzzo	γ _c		<u> </u>
Coefficiente che tiene conto degli effetti a lungo termine	α_{cc}	Sezione A	·1
Resistenza di progetto a compressione calcestruzzo	f_{cd}	14,17	MPa
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	7,08	MPa
Acciaio		•	•
Resistenza a snervamento dell'acciaio	f _{yk}	450	MPa
Coefficiente di sicurezza parziale acciaio	γs	1,15	
Resistenza di progetto a trazione dell'acciaio	f_{yd}	391,30	MPa
Elementi con armatura a taglio			
Diametro staffe esterne	one A	16	mm
Numero braccia	one A n _{b1}	2	
Diametro staffe esterne	φ _{sw2}	16	mm
Numero braccia	n _{b2}	6	
Passo staffe	S	100	mm
Inclinazione tra puntone compresso e asse elemento	θ	45,00	o
Inclinazione armatura trasversale rispetto asse elemento	α	90	٥
Area sezione trasversale armatura a taglio	A _{sw}	1607,68	mm2
Braccio coppia interna	Z	986,4	mm
Resistenza offerta dall'armatura a taglio	V_{Rsd}	6205	kN
Resistenza offerta dai puntoni	V_{Rcd}	9782	kN
Resistenza a taglio della sezione armata trasversalmente	V _{Rd}	6205	kN
Taglio sollecitante SLU	V _{ed}	6041	
			icato

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

7.3 Verifiche a fessurazione SLE

Nelle verifiche agli SLE si è tenuto in conto che per tutte le strutture sono state previste condizioni ambientali "ordinarie" con classi di esposizione XC2.

In funzione del tipo di armatura (poco sensibili) i limiti fessurativi risultano:

o Combinazione di azioni caratteristica:

 $w_k \le w = 0.3 \text{ mm}$

I limiti tensionali considerati per i diaframmi (C 25/30) sono relativi alla combinazione di carico caratteristica.

Calcestruzzo:

Combinazione di azioni	Limite tensionale
Caratteristica (rara)	σ _c <=0.60f _{ck} =14.94 MPa(C25/30)

Acciaio:

Combinazione di azioni	Limite tensionale
Caratteristica (rara)	$\sigma_a <= 0.80 \; f_{yk} = 360 \; MPa$

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

7.3.1 Sezione AA

Tabella 27 Diaframmi - Verifica SLE - Sezione A-1

Sezione di verifica SLE: Sezione A-1		
<u> </u>		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	1200	[mm]
Larghezza della sezione trasversale di calcestruzzo	1000	[mm]
Copriferro	75	[mm]
Altezza utile della sezione	1075	[mm]
Limitazione delle tensioni		
Area dell'armatura tesa	12742	[mm2]
Area dell'armatura compressa	5027	[mm2]
Momento sollecitante	2509	[kNm]
Posizione dell'asse neutro	463,14	[mm]
Momento d'inerzia della sezione rispetto a x	1,34532E+11	[mm4]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,0	[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	360,0	[MPa]
Tensione nel calcestruzzo	8,6	[MPa]
Tensione calcestruzzo < 15 Mpa		Verificato
Tensione nell'armatura tesa	209,4	[MPa]
Tensione acciaio < 360 Mpa		Verificato
Apertura delle fessure		
Tensione indotta nell'armatura tesa considerando la sezione fessurata	209,36	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	2,56	[MPa]
Fattore dipendente dalla durata del carico	0,40	[-]
Altezza efficace	245,62	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	245620	[mm2]
Rapporto geometrico sull'area efficace	0,0519	[-]
Rapporto tra Es/Ecm	6,67	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	0,000870	[-]
Determinazione del diametro equivalente delle barre tese	26,00	[mm]
Distanza massima tra le fessure	340,20	[mm]
Ampiezza delle fessure	0,296	[mm]
Ampiezza massima delle fessure	0,3	[mm]
		Verificato

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 28 Diaframmi - Verifica SLE -Sezione A-2

Tabella 28 Diaframmi - Verifica SLE –Sezione A Sezione di verifica SLE: Sezione A-2	- <u>z</u>	
<u>Sezione di Verifica SEE. Sezione A-2</u>		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	1200	[mm]
Larghezza della sezione trasversale di calcestruzzo		[mm]
Copriferro		[mm]
Altezza utile della sezione		[mm]
		. ,
Limitazione delle tensioni		
Area dell'armatura tesa	8528	[mm2]
Area dell'armatura compressa	8495	[mm2]
Momento sollecitante	1103,6	[kNm]
Posizione dell'asse neutro	363,93	[mm]
Momento d'inerzia della sezione rispetto a x	1,08187E+11	[mm4]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,0	[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	360,0	[MPa]
Tensione nel calcestruzzo	3,7	[MPa]
Tensione calcestruzzo < 15 Mpa		Verificato
Tensione nell'armatura tesa	133,1	[MPa]
Tensione acciaio < 360 Mpa		Verificato
Apertura delle fessure		
Tensione indotta nell'armatura tesa considerando la sezione fessurata	133,08	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	2,56	[MPa]
Fattore dipendente dalla durata del carico	0,40	[-]
Altezza efficace	278,69	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	278691	[mm2]
Rapporto geometrico sull'area efficace	0,0306	[-]
Rapporto tra Es/Ecm	6,67	
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	0,000441	[-]
Determinazione del diametro equivalente delle barre tese	26,05	[mm]
Distanza massima tra le fessure	399,73	-
Ampiezza delle fessure	0,176	
Ampiezza massima delle fessure	0,3	[mm]
		Verificato

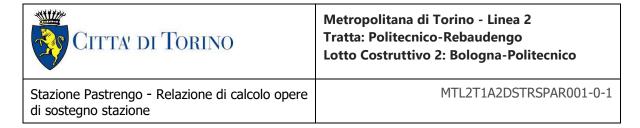
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

7.3.2 Sezione BB

Tabella 29 Diaframmi - Verifica SLE - Sezione B-1

Sezione di verifica SLE: Sezione B-1		
SCHOOL AT VEHICLE SELF SCHOOL D 1		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	1200	[mm]
Larghezza della sezione trasversale di calcestruzzo	1000	[mm]
Copriferro	75	[mm]
Altezza utile della sezione	1075	[mm]
Limitazione delle tensioni		
Area dell'armatura tesa	5027	[mm2]
Area dell'armatura compressa		[mm2]
Momento sollecitante		[kNm]
Posizione dell'asse neutro	256,77	
Momento d'inerzia della sezione rispetto a x	75111618579	
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica		[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS		[MPa]
Tensione nel calcestruzzo		[MPa]
Tensione calcestruzzo < 15 Mpa		Verificato
Tensione nell'armatura tesa	104,9	[MPa]
Tensione acciaio < 360 Mpa		Verificato
Apertura delle fessure		
Tensione indotta nell'armatura tesa considerando la sezione fessurata	104,93	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	2,56	[MPa]
Fattore dipendente dalla durata del carico	0,40	[-]
Altezza efficace	312,50	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	312500	[mm2]
Rapporto geometrico sull'area efficace	0,0161	[-]
Rapporto tra Es/Ecm	6,67	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	0,000163	[-]
Determinazione del diametro equivalente delle barre tese	20,00	[mm]
Distanza massima tra le fessure	466,38	[mm]
Ampiezza delle fessure	0,140	[mm]
Ampiezza massima delle fessure	0,3	[mm]
		Verificato


Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 30 Diaframmi - Verifica SLE -Sezione B-2

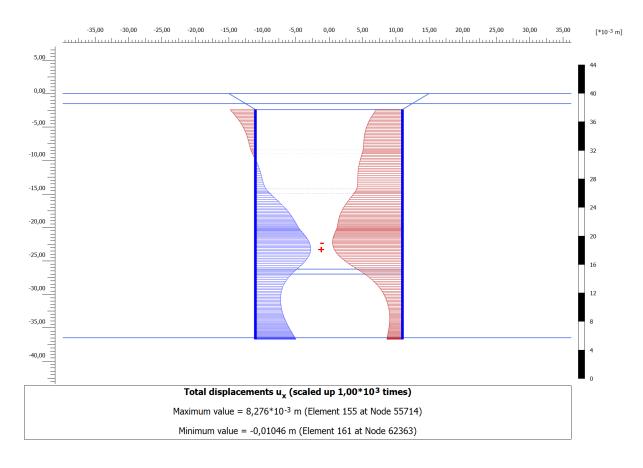
Sezione di verifica SLE: Sezione B-2		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	1200	[mm]
Larghezza della sezione trasversale di calcestruzzo	1000	[mm]
Copriferro	75	[mm]
Altezza utile della sezione	1075	[mm]
Limitazione delle tensioni		
Area dell'armatura tesa	8528	[mm2]
Area dell'armatura compressa	8495	[mm2]
Momento sollecitante	1197	[kNm]
Posizione dell'asse neutro	363,93	[mm]
Momento d'inerzia della sezione rispetto a x	1,08187E+11	[mm4]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,0	[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	360,0	[MPa]
Tensione nel calcestruzzo	4,0	[MPa]
Tensione calcestruzzo < 15 Mpa		Verificato
Tensione nell'armatura tesa	144,3	[MPa]
Tensione acciaio < 360 Mpa		Verificato
Apertura delle fessure		
Tensione indotta nell'armatura tesa considerando la sezione fessurata	144,35	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	2,56	[MPa]
Fattore dipendente dalla durata del carico	0,40	[-]
Altezza efficace	278,69	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	278691	[mm2]
Rapporto geometrico sull'area efficace	0,0306	[-]
Rapporto tra Es/Ecm	6,67	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	0,000495	[-]
Determinazione del diametro equivalente delle barre tese	26,05	[mm]
Distanza massima tra le fessure	399,73	[mm]
Ampiezza delle fessure	0,198	[mm]
Ampiezza massima delle fessure	0,3	[mm]
		Verificato

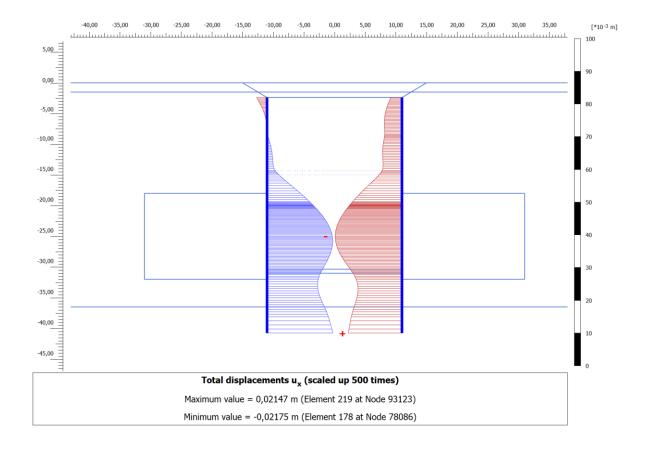
7.4 Verifica di deformabilità a lungo termine

La verifica di deformabilità a lungo termine è condotta tenendo in considerazione gli effetti del fluage del calcestruzzo. Per simulare il fluage delle strutture in calcestruzzo sotto carico costante è stato applicato al modulo elastico del calcestruzzo un coefficiente di riduzione pari a 2.75.

Lo spostamento massimo ammissibile stabilito dalle NTC218 paragrafo 7.11.6.3 è pari a u_s =0.005H dove H è l'altezza complessiva della paratia.

7.4.1 Sezione AA




Figura 27. Spostamenti orizzontali a lungo termine

Lo spostamento massimo risulta essere di 10.46 mm e compatibile con il limite stabilito pari a 12.5 cm, considerando l'altezza della paratia pari a 25m.

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

7.4.2 Sezione BB

Lo spostamento massimo risulta essere di 21.75 mm e compatibile con il limite stabilito pari a 12.5 cm, considerando l'altezza della paratia pari a 25m.

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

8. VERIFICHE GEOTECNICHE

8.1 Verifica del tampone di fondo

La verifica della stabilità del tampone di fondo è condotta considerando tutti i possibili meccanismi di collasso evidenziati nella figura sottostante.

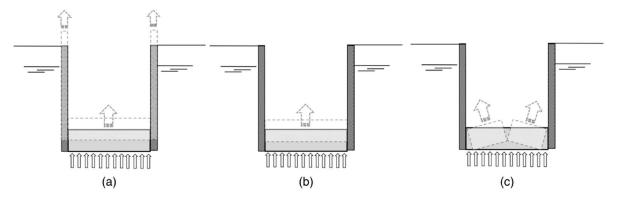


Figura 28. Possibili meccanismi di collasso: a) sollevamento del tampone di fondo e dei diaframmi b) sollevamento del tampone di fondo c) rottura del tampone di fondo

Di seguito sono riportati i parametri utilizzati per le verifiche del tampone e le relative verifiche.

Tabella 31 Verifica tampone di fondo

Parametri geometrici e geotecnici			
Larghezza diaframmi	=	1,2	m
Altezza soletta di copertura	=	1,2	m
Altezza solette intermedie	=	1,2	m
Altezza riempimento	=	1,8	m
Larghezza interna scavo	=	20,8	m
Fondo scavo	=	-27,25	m
Hw	=	-15	m
Profondita' paratia	=	-37,25	m
Altezza terreno saturo al di sopra del tampone	=	0,00	m
Battente idraulico	=	22,25	m
Altezza tampone di fondo	=	10,00	m
Profondita' infissione paratia	=	10,00	m

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Coefficienti parziali			
γ _G fav	=	0,9	
γ_G unfav	=	1,1	
γф	=	1,25	
γс	=	1,25	
Parametri geotecnici			
$\gamma_{ m jg}$	=	22	kN/mc
γ _s	=	19	kN/mc
$\frac{\gamma_s}{\delta}$	=	1	
$\Phi_{s,k}$	=	36,0	0
$C_{s,k}$	=	10,00	kPa
$\phi_{s\text{-int,d}}$	=	30,2	0
C _{s-int,d}	=	0	kPa
$\varphi_{jg,k}$	=	36	0
C _{jg,k}	П	150,00	kPa
C _{jg-int,d}	=	120	kPa
$\phi_{jg\text{-int,d}}$	=	30,2	0
qu _{jg-int,k}	=	589	kPa
qu _{jg-int,d}	=	471	kPa

Verifica galleggiamento della struttura a breve termine			
Forze agenti			
Azioni instabilizzanti	<u> </u>		
Pressione U alla base della paratia	=	222,5	kPa
Pressione U alla base del tampone	=	222,5	kPa
Forza instabilizzante	=	5162,0	kN/m
Azioni stabilizzanti			
Peso tampone	=	4576,0	kN/m
Peso terreno saturo sopra tampone	=	0,0	kN/m
Peso diaframmi	=	2127,0	kN/m
Peso riempimento	=	793,4	kN/m
Peso soletta copertura	=	624,0	kN/m
Peso di 2 solette intermedie	=	1248,0	KN/m
Forze stabilizzanti totali	=	9368,4	KN/m
Resistenze			
K_{σ}	=	0,33	
Tensione normale media agente sulla paratia	=	55,5	kPa
Contributo angolo di attrtio	=	1144,3	kN/m
Contributo coesione	=	0	kN/m
Forza stabilizzante dovuta all'attrito	=	2288,6	kN/m
Forza instabilizzante progetto	=	5678,2	kN/m
Forza stabilizzante + resistenze di progetto	=	10720,2	
FS	=	1,89	

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Verifica a galleggiamento del tampone di fondo a breve termine			
Forze agenti			
Azioni instabilizzanti			
Pressione U alla base del tampone	=	222,50	kPa
Forza instabilizzante	=	4628,00	kN/m
Azioni stabilizzanti			
Peso tampone	=	4576,00	kN/m
Peso terreno saturo sopra tampone	=	0,00	kN/m
Forze stabilizzanti totali	=	4576,00	KN/m
Resistenze			
K ₀	=	0,50	
Soil			
Tensione normale media	=	0,0	kPa
Contributo angolo di attrtio	=	0,0	kN/m
Contributo coesione	=	0,0	kN/m
Forza stabilizzante dovuta all'attrito	=	0,0	kN/m
Grout			
Tensione normale media	=	54,7	kPa
Contributo angolo di attrtio	=	318,2	kN/m
Contributo coesione	=	1200,0	kN/m
Forza stabilizzante dovuta all'attrito	=	3036,4	kN/m
Forza instabilizzante progetto	=	5090,80	kN/m
Forza stabilizzante + resistenze di progetto	=	7154,84	kN/m
FS	=	1,41	ОК

Verifica resistenza interna tampone di fondo			
Forze agenti			
Azioni instabilizzanti			
M instabilizzante	=	13236	kNm/m
Azioni stabilizzanti			
M stabilizzante	=	10708	kNm/m
Resistenze			
Resistenza interna del tampone di fondo	=	7065	kNm/m
Forza instabilizzante progetto	=	13236,08	kNm/m
Forza stabilizzante + resistenze di progetto	=	17773,24	kNm/m
FS	=	1,34	ОК

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

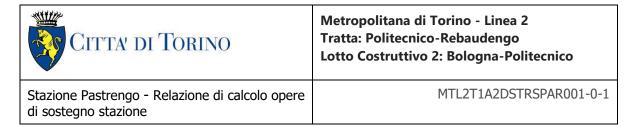
8.2 Verifica capacità portante paratia

Come descritto nel paragrafo precedente i diaframmi risultano sostanzialmente poco caricati durante le differenti fasi costruttive dell'opera. Di seguito si riporta la verifica a capacità portante della paratia nella fase temporanea.

Il valore delle tensioni efficaci adottato per la verifica è desunto dalle analisi numeriche.

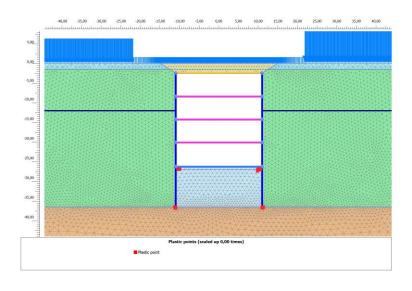
Tabella 32 Verifica capacità portante paratia

	Tabella	a 32 Ver	
Parametri geoteci	nici		
Ck	10	kPa	
фк	36	0	
γk	19	kN/mc	
Dimensione del pa	alo		
В	1,2	m	
L	1	m	
Lunghezza del pa	lo		
Lunghezza	10,5 m		
Capacità portante di	base		
Sc	1,92		
Sq Sγ	1,46		
d _c	1,58		
$d_q d_{\gamma}$	1,	36	
ic iq	1,	00	
İγ	1,	00	
Nc	50,53		
Nq	37,71		
Νγ	40,01		
q _c	1539	kPa	
qq	39890	kPa	
q_{γ}	667	kPa	


q ult	42096	kPa
Fattore sicurezza parziale	1,35	
R di base di progetto	37419	kN

Forza agente		
Carico caratteristico	2748	kN
Carico di progetto	3847	kN

Capacita' portante laterale				
σ' _ν	532	kPa		
σ' _v average	367	kPa		
K ₀	0,41			
σ' _h average	241	kPa		
Delta	0,5			
Resistenza palo terreno	18	•		
Ka	0,260			
Attrito palo terreno	83,31	kPa		
Resistenza laterale	3849	kN		
Fattore di sicurezza parziale	1,15			
R laterale di progetto	3347	kN		


R totale di progetto	40766	kN
Carico di progetto	3847	kN
	Verific	ato

8.3 Verifica capacità portante della soletta di fondo

Le modellazioni numeriche eseguite non evidenziano criticità in termini deformativi e di sviluppo di fasce plastiche al di sotto della soletta di base anche nella fase finale di disattivazione dei trattamenti del fondo scavo. Per tanto, non sono necessarie ulteriori verifiche della relativa capacità portante.

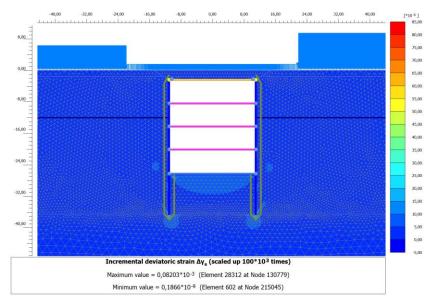


Figura 29. Zone di plasticizzazione

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

8.4 Stabilità globale

Il fattore di sicurezza relativo alla stabilità globale è valutato sia nella fase di breve termine che di lungo termine. L'analisi è stata condotta con la combinazione A2-M2 applicando i fattore di riduzione dei parametri in accordo al punto 6.5.3.1.2 delle NTC.

Lo spostamento di tre punti lungo ciascuna paratia viene monitorato, uno in testa, uno al fondo scavo ed uno al piede.

Breve termine

Il fattore di sicurezza ottenuto è maggiore 1,18.

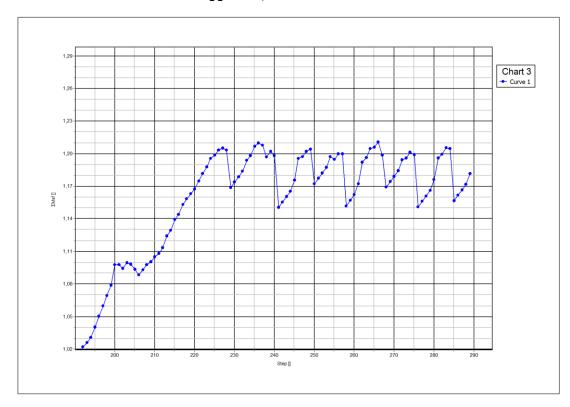


Figura 30. Fattore di sicurezza a lungo termine

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

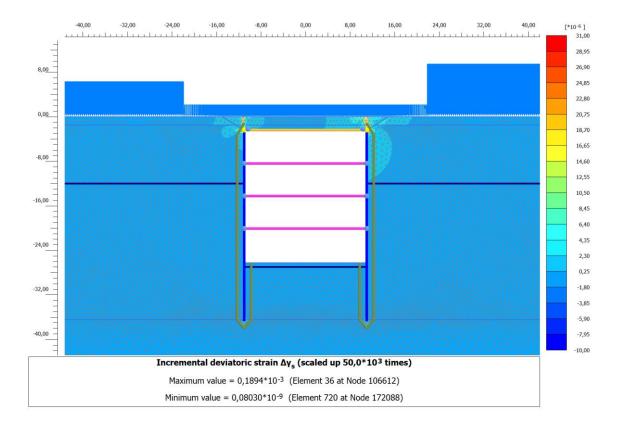
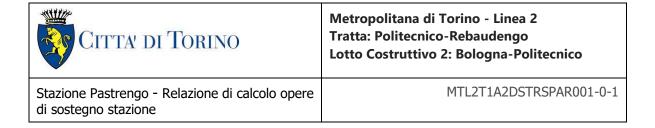



Figura 31. Rapporto tra tensione tangenziale massima e tensione tangenziale mobilitata

La Figura 31 mostra il rapporto tra tensione tangenziale limite e tensione tangenziale agente in corrispondenza dell'ultimo step di calcolo. L'output fornisce indicazioni riguardo la mobilitazione delle spinte limite sulla parete.

Le modellazioni numeriche eseguite non evidenziano criticità in termini deformativi e di sviluppo di fasce plastiche al di sotto della soletta di base anche nella fase finale di disattivazione dei trattamenti del fondo scavo. Per tanto non sono necessarie ulteriori verifiche della relativa capacità portante.

• Lungo termine

Il fattore di sicurezza ottenuto è maggiore 1,76.

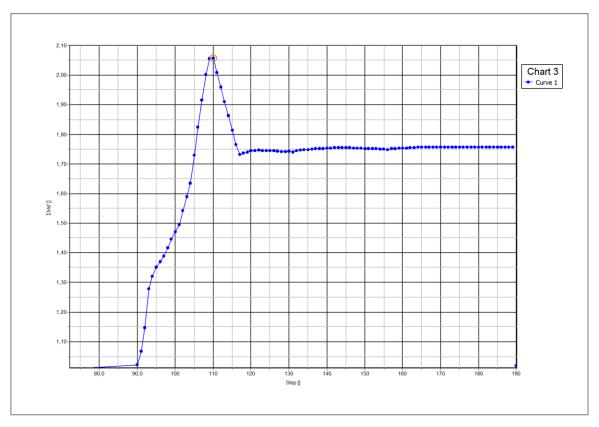


Figura 32. Fattore di sicurezza a lungo termine

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

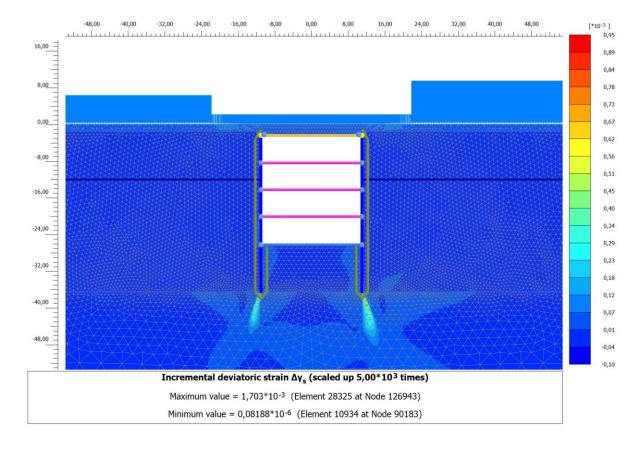
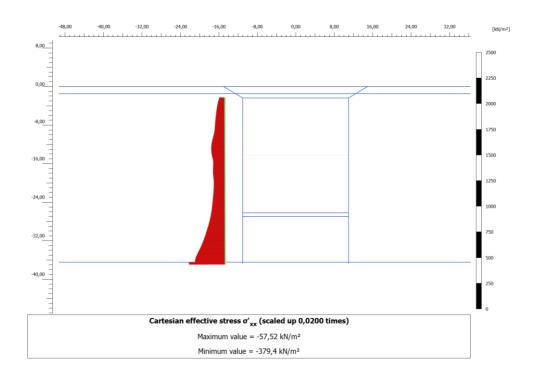


Figura 33. Rapporto tra tensione tangenziale massima e tensione tangenziale mobilitata –


La Figura 33 mostra il rapporto tra tensione tangenziale limite e tensione tangenziale agente in corrispondenza dell'ultimo step di calcolo. L'output fornisce indicazioni riguardo la mobilitazione delle spinte limite sulla parete.

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

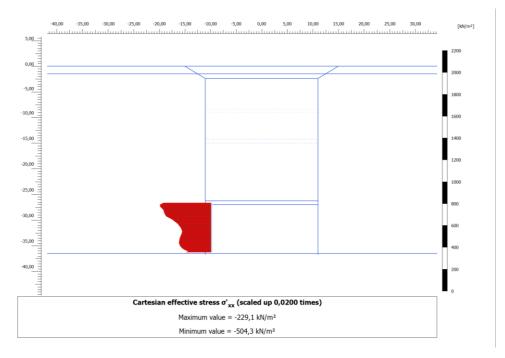
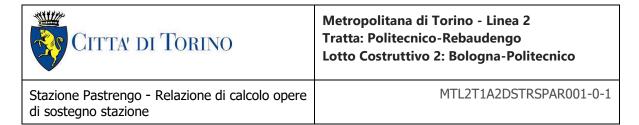



Figura 34. Tensioni orizzontali efficaci paratia - Lato monte e valle

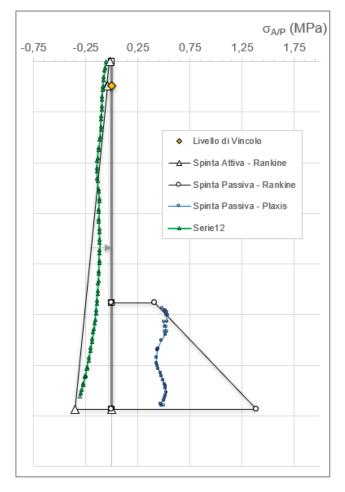


Figura 35. Confronto tensioni limite attive e passive con tensioni orizzontali Plaxis

E' possibile osservare come, oltre al margine di sicurezza garantito dall'aver eseguito una analisi con i parametri di resistenza ridotti del fattore 1.25, la resistenza passiva a monte risulta attivata in una percentuale inferiore al 50% rispetto alla spinta calcolabile con Rankine. Ciò garantisce un ulteriore margine di sicurezza nei riguardi del meccanismo.

8.5 Verifica galleggiamento stazione

				Forze	Forze stabilizzanti - Peso	ti - Peso					
Ritombamento				Diaframmi				Soletta copertura			
Altezza	I	Ш	1,8 m	Spessore	S	п	1,2 m	Altezza	I	п	1,2 m
Altezza di calcolo	H _{calc}	п	ш 0	Profondita'	I	II	35 m	Area	A	п	1880 m ²
Area	∢	11	2849 m ²	Lunghezza	_	II	280 m	Peso per unita' di volume	>	п	25 kN/m³
Peso per unita' di volume	>	11	18 kN/m ³	Peso per unita' di volume	>	II	25 kN/m³	Peso strutturale	W cop,str	п	56400 kN
Peso ritombamento	¥ *	II	O KN	Peso diaframmi	W Diaf	II	294000 kN	Peso non strutturale (10%)	W cop,non str =	II	5640 kN
Solette intermedie				Banchine				Pilastri			
Numero	c	11	2	Area soletta banchina x 2	∢	II	952 m²	Area pilastri tipo 1	Ą	п	1,96 m²
Altezza	I	п	1,2 m	Spessore soletta banchina	s	Ш	1,2 m	Numero pilastri tipo 1	n ₁	п	0
Area	∢	11	1737 m ²	Peso per unita' di volume	>	II	25 kN/m³	Area pilastri tipo 2	A_2	п	2,8 m ²
Percentuale vuoti	^%	Ш	30 %	Peso strutturale	W Sol B,str	II	28560 kN	Numero pilastri tipo 2	n ₂	п	0
Area di calcolo	Acalc	п	2431,8 m	Peso non strutturale (10%)	W Sol B,non st =	II II	2856 kN	Altezza	I	п	19,15 m
Peso per unita' di volume	>	11	25 kN/m ³	Muri banchina	_	II	113,4 m	Peso per unita' di volume	>	п	25 kN/m³
Peso ritombamento	W Atr,str	II	72954 kN	Spessore muri banchina	s	п	0,4 m	Peso strutturale	W PII,str	п	0 kN
Peso non strutturale (10%)	W Atr, non str =	II	7295 kN	Peso strutturale	W Mur B,str	II	1134 kN				
Soletta di base				Fodere piano banchina				Fodere			
Altezza	I	П	1,8 m	Altezza	I	П	4,7 m	Altezza	I	п	14 m
Area	⋖	п	1880 m ²	Spessore	s	п	0,4 m	Spessore	s	п	0,4 m
Peso per unita' di volume	>	п	25 kN/m ³	Lunghezza	_		171,4 m	Lunghezza	_		209 m
Peso strutturale	W cop,str	II	84600 kN	Peso per unita' di volume	>	п	25 kN/m^3	Peso per unita' di volume	>	п	25 kN/m³
Peso non strutturale (10%)	W cop,non str =	# # # # # # # # # # # # # # # # # # #	8460 kN	Peso strutturale	W Fod, B,str		8056 kN	Peso strutturale	W Fod,str	"	29260 kN

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Forze stabilizzanti - Attrito				
Angolo di attrito terreno	ф	=	30 °	
Angolo attrito muro-terreno	δ	=	15,08331 °	
Peso per unita' di volume	γ	=	19,5 kN/m³	
Coefficiente di spinta a riposo	K_A	=	0,33	
Tensione normale media	σ_{N}	=	58,62 kPa	
Resistenza attrito per unita' lun	ıgh	=	560,06 kN/m	
Lunghezza diaframmi	L	=	280 m	
Forza stabilizzante attrito	F_{attr}	=	156817 kN	

Forze	instabilizza	nti	
Fondo scavo	FEL	=	27,25 m da p.c.
Profondita' paratie	H Par	=	37,3 m da p.c.
H falda breve termine	$H_{w,Breve}$	=	15 m da p.c.
H falda lungo termine	$H_{w,Lungo}$	=	12 m da p.c.
Area soletta di fondo	A _{Sol}	=	1880 m ²
Area piede paratie	A _{Par}	=	336 m ²
Spinta idraulica breve termino	e U breve	=	305060 kN
Incremento spinta a lungo ter	rr∆U lungo	=	66480 kN

Verifica a gall	leggiamento	o a lungo termine		
Coefficiente parziale carichi permanenti favorevoli	Y G,fav	=	0,9	
Coefficiente parziale carichi permanenti sfavorevoli	$\gamma_{G,sfav}$	=	1,1	
Coefficiente parziale carichi variabili sfavorevoli	Y Q,sfav	=	1,5	
Forze stabilizzanti di progetto (Peso+Attrito)	V_{stab}	=	680429	kN
Forze instabilizzanti di progetto	V_{inst}	=	435286	kN
Fattore di sicurezza	FS	=	1,56	Verificato

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

9. Validazione dei modelli eseguiti

In accordo al "giudizio motivato di accettabilità dei risultati" al § 10.2.1 delle NTC 2018, i risultati numerici ottenuti utilizzando il codice di calcolo agli elementi finiti Plaxis 2D, sono stati confrontati con quelli ottenuti attraverso il software di calcolo ParatiePlus utilizzato durante il progetto preliminare. In entrambi i modelli la realizzazione dello scavo, sostenuto da paratie puntonate, viene seguita simulando le diverse fasi realizzative.

9.1 Confronto dei modelli numerici

Nelle immagini successive sono riportati i due modelli numerici una volta raggiunto il fondo scavo:

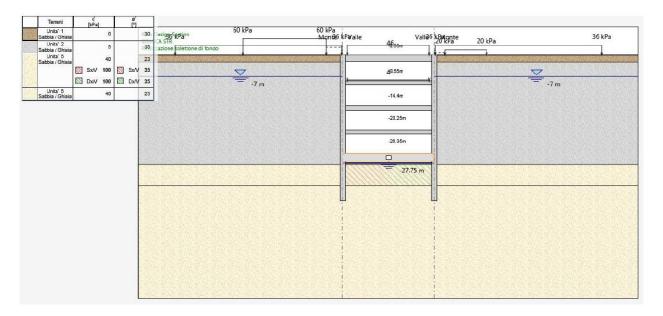
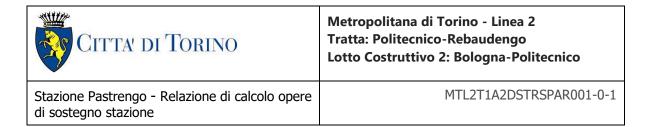



Figura 36. Modello numerico ParatiePlus

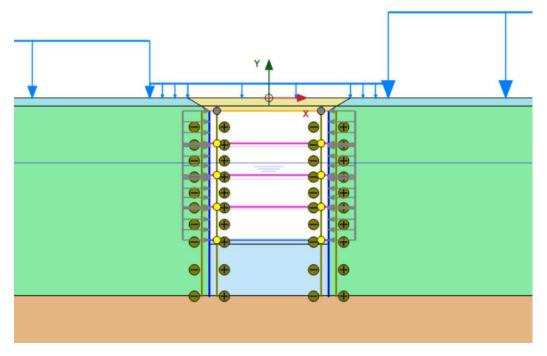


Figura 37. Modello numerico Plaxis

Di seguito sono rappresentati gli inviluppi dei momenti flettenti ottenuti attraverso entrambi i codici di calcolo:

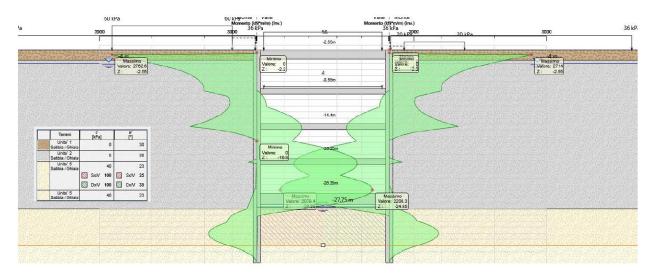


Figura 38. Inviluppo momenti flettenti ParatiePlus

CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

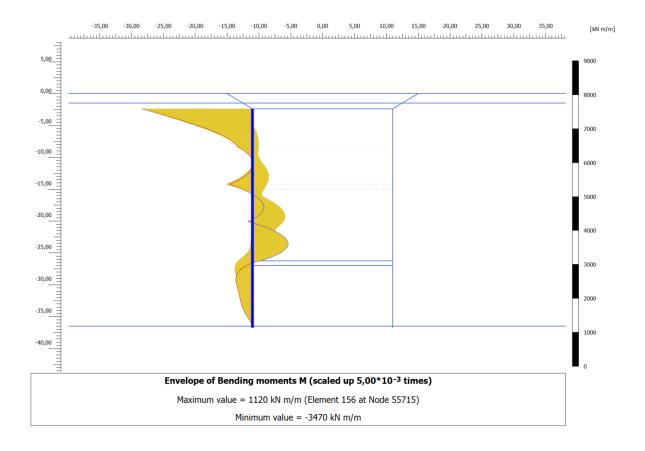
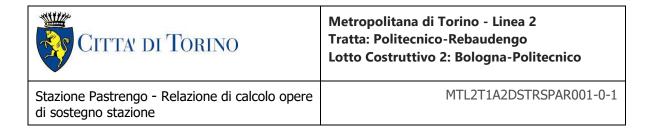
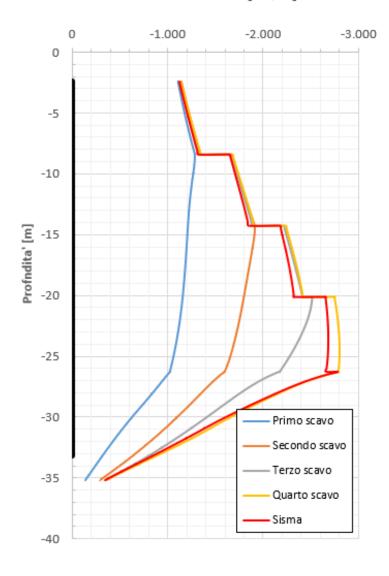



Figura 39. Inviluppo momenti flettenti Plaxis

Si riscontra come gli andamenti del momento flettente risultino molto simili, con le principali differenze localizzate in mezzeria al diaframma, dovuti alla differente condizione di vincolo imposta. Le differenze in valore assoluto riportate sono riconducibili principalmente ad alcune differenze nella modellazione relativa al tampone di fondo (assente nel modello di ParatiePlus) ed ad una modellazione più completa ottenuta con Plaxis 2D. Si ritiene pertanto che tale confronto dimostri la robustezza e validità delle analisi effettuate.

ALLEGATO N.1

Risultati delle analisi numeriche

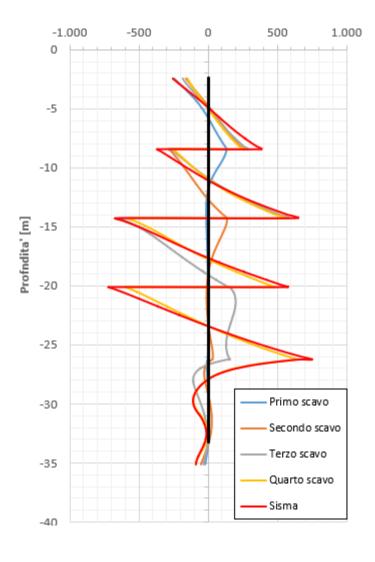


Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Sollecitazioni sezione A-A - Diaframma

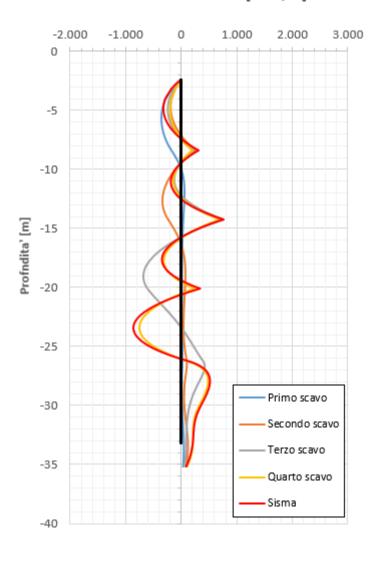
Forza normale [kN/m]



Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

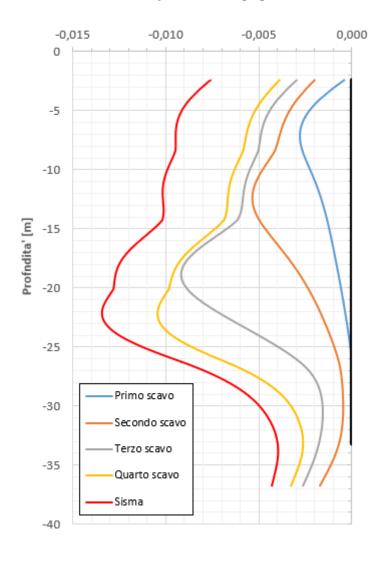
Forza di taglio [kN/m]

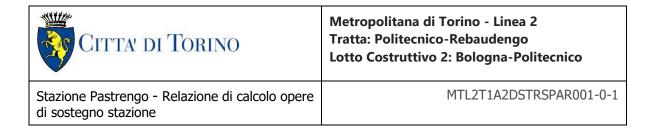


Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Momento flettente [kNm/m]




Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

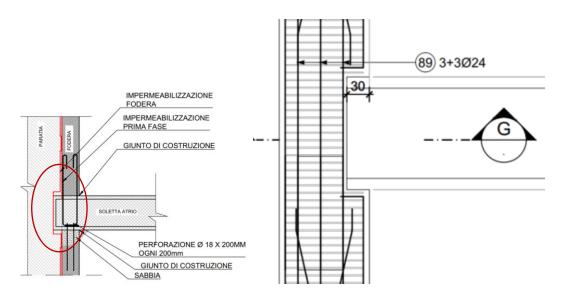
MTL2T1A2DSTRSPAR001-0-1

Spostamento [m]

ALLEGATO N.2

Verifiche integrative del nodo di connessione soletta /diaframma

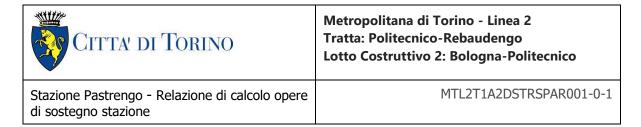
CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1


1. VERIFICA DELLA CONNESSIONE SOLETTA-DIAFRAMMA

1.1 Introduzione

Il collegamento tra le solette di stazione e le paratie è realizzato per mezzo di tasche d'appoggio rettangolari, realizzate grazie all'inserimento di scatole metalliche, già assemblate nelle gabbie d'armatura dei diaframmi.

Le tasche di appoggio hanno larghezza pari a 30 cm e la sezione corrente del diaframma presenta una zona localizzata di spessore ridotto da 120 cm a 90cm. Con lo scopo di dimostrare il corretto funzionamento del nodo di connessione si presentano di seguito le seguenti analisi/verifiche integrative:


- 1. valutazione degli effetti della eccentricità dei carichi dovuti alla connessione diaframma/solette
- 2. verifiche a flessione e taglio della sezione ridotta del diaframma
- 3. verifiche delle massime pressioni di contatto localizzate sugli appoggi
- 4. verifiche delle massime pressioni di contatto sulle impermeabilizzazioni

1.2 Analisi Plaxis aggiuntive per tener conto della eccentricità

La verifica strutturale include la valutazione degli effetti della eccentricità dei carichi dovuti alla connessione diaframma/solette. Tale contributo è stato verificato mediante modello ad hoc come rappresentato nella figura seguente.

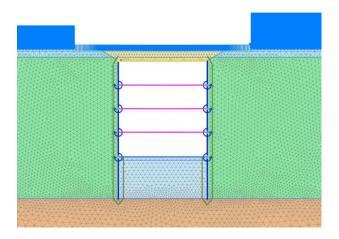


Figura 40. Modellazione dell'eccentricità tra soletta e diaframma

Il modello è stato modificato introducendo sul nodo generico di collegamento soletta/diaframma un momento calcolato come il valore della reazione massima, pari a 330KN/m moltiplicata per l'eccentricità massima pari a 0.45m.

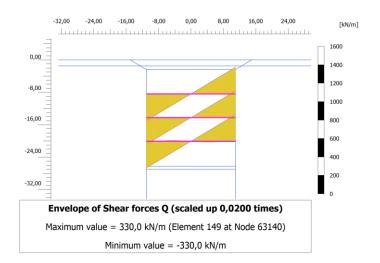
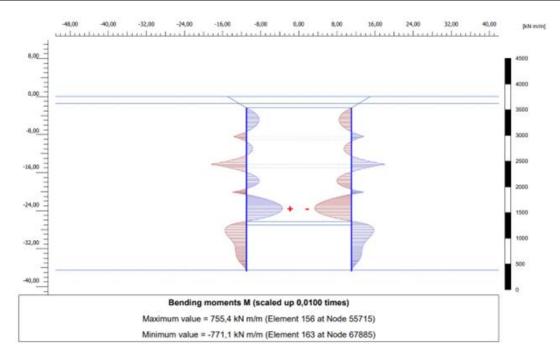
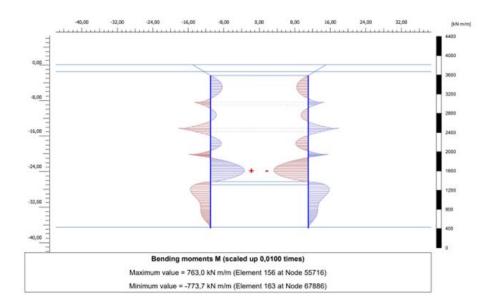


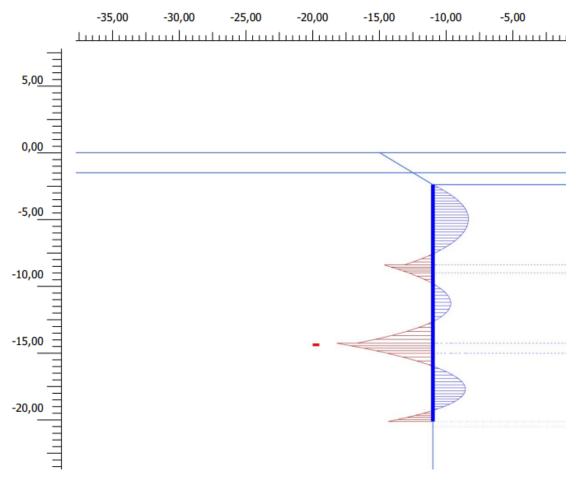
Figura 41. Valore di reazione vincolare di riferimento per il calcolo del momento flettente aggiuntivo


L'analisi è stata eseguita con riferimento alla fase più sfavorevole ovvero durante lo scavo delle stazioni in assenza delle fodere. Si è riscontrato che le variazioni in termini di sollecitazioni flettenti sono inferiori al 5% del valore dimensionante e pertanto trascurabili ai fini del progetto delle strutture.

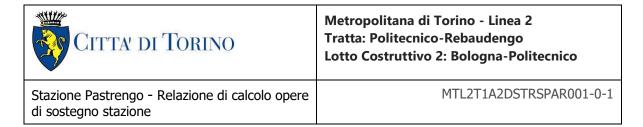


Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1


Distribuzione dei momenti flettenti in assenza di eccentricita' (fase finale di scavo – assenza di fodere)

Distribuzione dei momenti flettenti considerando l'eccentricità (fase finale di scavo – assenza di fodere)



CITTA' DI TORINO	Metropolitana di Torino - Linea 2 Tratta: Politecnico-Rebaudengo Lotto Costruttivo 2: Bologna-Politecnico
Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione	MTL2T1A2DSTRSPAR001-0-1

Distribuzione dei momenti flettenti considerando l'eccentricità (fase finale di scavo – assenza di fodere)

1.3 Verifica a flessione e taglio della sezione ridotta

Si presentano di seguito le verifiche a flessione e taglio considerando l'inviluppo delle sollecitazioni a breve termine. A lungo termine la verifica non è più necessaria in quanto le solette sono completate e per tanto si garantisce la continuità della sezione.

1.3.1 Sezione AA

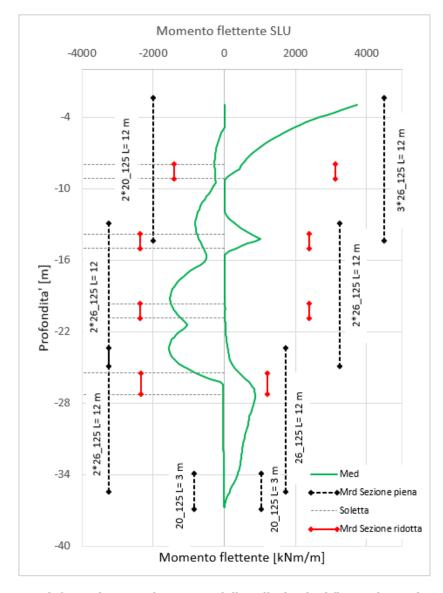


Figura 42. Diaframmi – SLU Diagramma delle sollecitazioni flettenti – Sezione AA ridotta

Si riporta la verifica della zona più critica, che nel caso in esame è quella relativa al piano banchina.

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 33 Diaframmi – Verifica SLU flessione - Sezione AA ridotta -Piano Banchina

Sezione di verifica SLU: Piano Banchina		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	900	[mm]
Larghezza della sezione trasversale di calcestruzzo	1000	[mm]
Copriferro	75	[mm]
Altezza utile della sezione	775	[mm]
Armature		
Armatura tesa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti	8	[-]
Diametro dei ferri correnti secondo strato	0	[mm]
Numero dei ferri correnti secondo strato		[-]
Diametro dei ferri correnti terzo strato	0	[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura tesa	4247	[mm2]
Armatura compressa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti	8	[-]
Diametro dei ferri correnti secondo strato	26	[mm]
Numero dei ferri correnti secondo strato	8	[-]
Diametro dei ferri correnti terzo strato	0	[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura compressa	8495	[mm2]
Materiali		
Calcestruzzo		
Resistenza caratteristica cubica	30	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	1,5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	0,85	[-]
Resistenza di progetto a compressione del calcestruzzo	14,17	[MPa]
Resistenza di progetto a trazione del calcestruzzo	1,20	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,00	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	11,25	[MPa]
Acciaio		
Resistenza a snervamento dell'acciaio	450	[MPa]
Coefficiente di sicurezza parziale per l'acciaio	1,15	[-]
Resistenza di progetto a trazione dell'acciaio	391	[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	360	[MPa]
Momento resistente della sezione	1202,89	[kNm]
Momento sollecitante a SLU assunto in valore assoluto		[kNm]
	372	Verificato

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

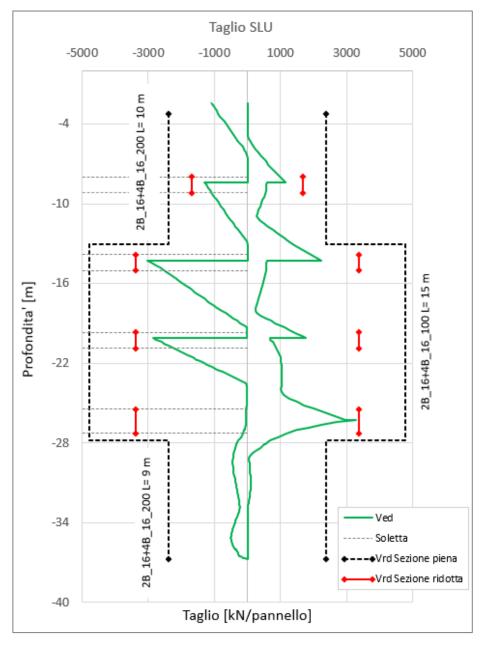


Figura 43. Diaframmi – SLU Diagramma delle sollecitazioni taglianti – Sezione AA ridotta

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 34 Diaframmi – Verifica SLU Sollecitazioni taglianti – Sezione AA ridotta

Verifica elementi a taglio			
Pannello diaframma 2800 x 1200 mm - φ16 2 braccia + φ16	4 braccia p	asso 100 mn	1
Geometria			
Altezza sezione	Н	900	mm
Base sezione	В	2800	mm
Barre longitudinali tese	фѕІ	26	mm
Diametro staffe	фsw	16	mm
Copriferro	С	75	mm
Altezza utile	d	796	mm
Materiali			
Calcestruzzo			
Resistenza caratteristica cubica	R _{ck}	30	MPa
Resistenza caratteristica cilindrica	f_{ck}	25	MPa
Coefficiente parziale calcestruzzo	γ _c	1,5	
Coefficiente che tiene conto degli effetti a lungo termine	α_{cc}	0,85	
Resistenza di progetto a compressione calcestruzzo	f _{cd}	14,17	MPa
Resistenza a compressione ridotta del calcestruzzo d'anima	f' _{cd}	7,08	MPa
Acciaio		'	
Resistenza a snervamento dell'acciaio	f_{yk}	450	MPa
Coefficiente di sicurezza parziale acciaio	γs	1,15	
Resistenza di progetto a trazione dell'acciaio	f_{yd}	391,30	MPa
Elementi con armatura a taglio			
Diametro staffe esterne	φ.	16	mm
Numero braccia	φ _{sw1}	2	111111
	n _{b1}		100 100
Diametro staffe esterne	φ _{sw2}		mm
Numero braccia	n _{b2}	100	
Passo staffe	s θ	45,00	mm •
Inclinazione tra puntone compresso e asse elemento Inclinazione armatura trasversale rispetto asse elemento	α	45,00	
·			
Area sezione trasversale armatura a taglio	A _{sw}	1205,76	
Braccio coppia interna	4	716,4	[111111
Resistenza offerta dall'armatura a taglio	V_{Rsd}	3380	kN
Resistenza offerta dai puntoni	V_{Rcd}	7104	kN
Resistenza a taglio della sezione armata trasversalmente	V_{Rd}	3380	kN.
Taglio sollecitante SLU	V _{Rd}	3293	
ragno sonecitante seo	▼ ed	Verif	

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

1.3.2 Sezione BB

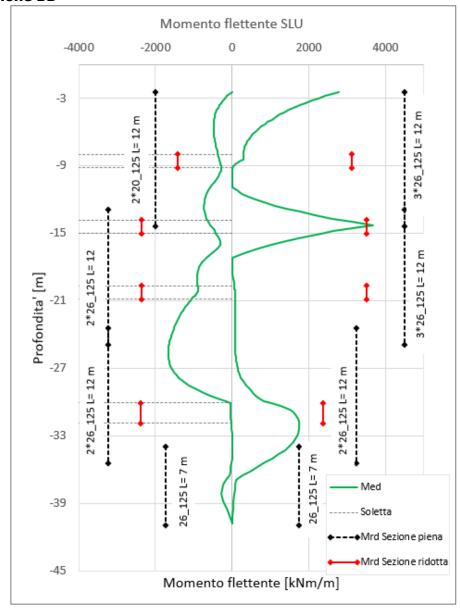


Figura 44. Diaframmi – SLU Diagramma delle sollecitazioni flettenti – Sezione BB ridotta

Considerando che dovuto alla modellazione si presentano dei picchi in corrispondenza dei nodi tra gli elementi strutturali, le sollecitazioni di momento possono essere prese in considerazione in corrispondenza della faccia dell'elemento strutturale; così facendo tutte le tasche del diaframma risultano verificate. Si riporta di seguito la verifica della zona più critica, che nel caso in esame è quella relativa al piano Mezzanino come si evince dal diagramma.

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Tabella 35 Diaframmi – Verifica SLU flessione - Sezione BB ridotta -Piano Mezzanino

Sezione di verifica SLU: Piani Mezzanino		
SEZIONE AI VENJICA SEO. FIAM MICZZAMINO		
Geometria sezione:		
Altezza della sezione trasversale di calcestruzzo	900	[mm]
Larghezza della sezione trasversale di calcestruzzo		[mm]
Copriferro		[mm]
Altezza utile della sezione		[mm]
Armature		
Armatura tesa		
Diametro dei ferri correnti	26	[mm]
Numero dei ferri correnti		[-]
Diametro dei ferri correnti secondo strato		[mm]
Numero dei ferri correnti secondo strato	_	[-]
Diametro dei ferri correnti terzo strato	26	[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura tesa	12742	[mm2]
Armatura compressa		
Diametro dei ferri correnti	20	[mm]
Numero dei ferri correnti	8	[-]
Diametro dei ferri correnti secondo strato	20	[mm]
Numero dei ferri correnti secondo strato	8	[-]
Diametro dei ferri correnti terzo strato	0	[-]
Numero dei ferri correnti terzo strato	8	[-]
Area dell'armatura compressa	5027	[mm2]
Materiali		
Calcestruzzo		
Resistenza caratteristica cubica	30	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	1,5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	0,85	[-]
Resistenza di progetto a compressione del calcestruzzo	14,17	[MPa]
Resistenza di progetto a trazione del calcestruzzo	1,20	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	15,00	[MPa]
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	11,25	[MPa]
Acciaio		
Resistenza a snervamento dell'acciaio	450	[MPa]
Coefficiente di sicurezza parziale per l'acciaio	1,15	
Resistenza di progetto a trazione dell'acciaio	391	[MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	360	[MPa]
Momento resistente della sezione	3112,81	
Momento sollecitante a SLU assunto in valore assoluto	2621,00	
		Verificato

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

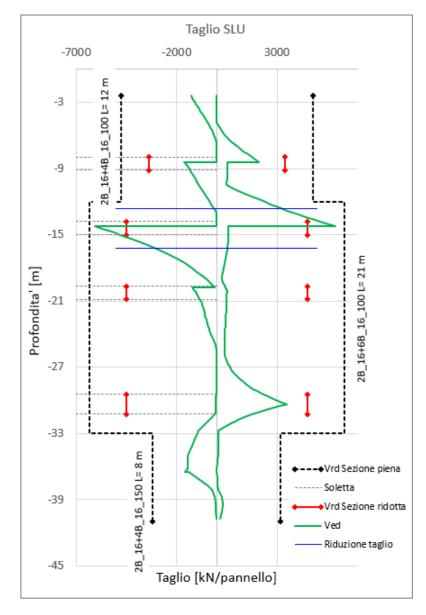
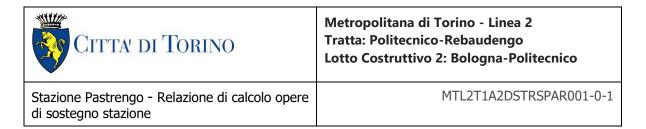


Figura 45. Diaframmi – SLU Diagramma delle sollecitazioni taglianti – Sezione BB ridotta

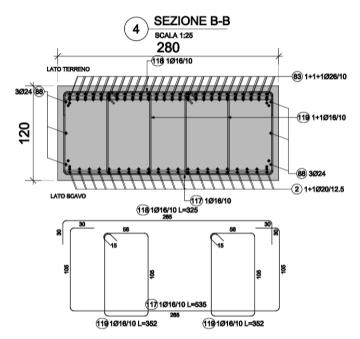
Considerando che dovuto alla modellazione possono presentarsi dei picchi in corrispondenza dei nodi tra gli elementi strutturali, le sollecitazioni di taglio potranno essere ridotte e sarà sempre cautelativo assumere nel tratto terminale il valore di taglio agente calcolato alla distanza d dall'appoggio (indicazione della linea blu nel grafico sovrastante). Per cui i diaframmi risultano verificati a taglio pur considerando la sezione ridotta in corrispondenza delle tasche di appoggio delle solette. Si riporta di seguito la verifica della zona più critica, che nel caso in esame è quella relativa al piano Mezzanino come si evince dal diagramma.


Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

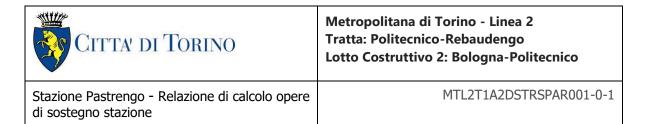
MTL2T1A2DSTRSPAR001-0-1

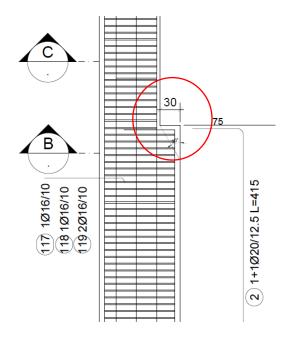
Tabe<u>lla 36 Diaframmi – Verifica SLU Sollecitazioni taglianti - Sezione BB ridotta -Piano Mezzanino</u>

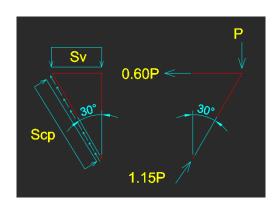
Verifica elementi a taglio			
Pannello diaframma 2800 x 1200 mm - φ16 2 braccia + φ16	6 braccia p	asso 100 mn	า
Geometria			
Altezza sezione	Н	900	mm
Base sezione	В	2800	mm
Barre longitudinali tese	фѕІ	26	mm
Diametro staffe	ϕ_{sw}	16	mm
Copriferro	С	75	mm
Altezza utile	d	796	mm
Materiali			
Calcestruzzo			
Resistenza caratteristica cubica	R _{ck}	30	MPa
Resistenza caratteristica cilindrica	f _{ck}	25	MPa
Coefficiente parziale calcestruzzo	γc	1,5	
Coefficiente che tiene conto degli effetti a lungo termine	α_{cc}	0,85	
Resistenza di progetto a compressione calcestruzzo	f_{cd}	14,17	MPa
Resistenza a compressione ridotta del calcestruzzo d'anima	f' _{cd}	7,08	MPa
Acciaio			
Resistenza a snervamento dell'acciaio	f_{yk}	450	MPa
Coefficiente di sicurezza parziale acciaio	γs	1,15	
Resistenza di progetto a trazione dell'acciaio	f_{yd}	391,30	MPa
Elementi con armatura a taglio			
Diametro staffe esterne	φ _{sw1}	16	mm
Numero braccia	n _{b1}	2	
Diametro staffe esterne	φ _{sw2}	16	mm
Numero braccia	n _{b2}	6	
Passo staffe	s	100	mm
Inclinazione tra puntone compresso e asse elemento	θ	45,00	۰
Inclinazione armatura trasversale rispetto asse elemento	α	90	•
Area sezione trasversale armatura a taglio	A_{sw}	1607,68	mm2
Braccio coppia interna	z	716,4	mm
Resistenza offerta dall'armatura a taglio	V_{Rsd}	4507	kN
Resistenza offerta dai puntoni	V_{Rcd}	7104	kN
Resistenza a taglio della sezione armata trasversalmente	V _{Rd}	4507	kN
Taglio sollecitante SLU	V _{ed}	3090	kN
-	, 54	-	icato


1.4 Verifica dell'appoggio soletta-paratia

La massima reazione applicata R=330kN/m (Stazioni S4G – per le altre stazioni tale reazione è minore di 180KN/m)


$$VEd = 1.4 \times R = 462 \text{ kN/m}$$


Per la valutazione della resistenza del cuneo si ipotizza una modalità di rottura a taglio su un piano inclinato a 30 gradi (da normativa tale valore risulta in un range 22.5-45 gradi)


I meccanismi resistenti sono rappresentati dal contributo del calcestruzzo al taglio nel piano di rottura, dal contributo dell'armatura principale (barra n.2 - $2\phi 20/125$) intercettata in due sezioni e dal contributo delle staffe (barre n. 117,118 e 119 - $6\phi 16/100$).

Resistenza al taglio del calcestruzzo:

GEOMETRIA	Н	=	60	cm	altezza sezione				
	b _w	=	100	cm	larghezza sezione				
	h'	=	10	cm	copriferro				
	d	=	50	cm	altezza utile				
ARMATURA TESA	ф	=	0	mm	diametro armatura				
	n°	=	0	•	numero barre				
	As	=	0.0	cm ²	area dell'armatura t	tesa			
	ρ_{l}	=	0.0000		rapporto geometric	co d'armatura longitudi	nale (≤0,02)	min[As/bd;0,02	2]
AZIONI DI COMPRESSIONE	N _{Ed}	=	380	kN	valore di calcolo de	ella compressione assia	ale (se presen	te)	
	σ_{cp}	=	0.63	Мра	tensione media di d			min[Ned/bh;0,	2fcd]
Resistenza senza armatura a taglio									
RESISTENZA SENZA ARMATURA A TAGLIO	V_{Rd}	=	383	kN				max[Vrd1;Vrd2	2]
Resistencia concreto	V _{Rd} ,c				nento fessurato da mome			_	a con
			$V_{Rd} = \max \left\{ \left[0 \right] \right\}$	$0.18 \cdot k \cdot (10)$	$(0 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15$	$\cdot \sigma_{cp} \bigg] b_w \cdot d; \ (v_{\min} + 0,$	$(15 \cdot \sigma_{cp}) \cdot b_w d$	[4.1.23]	
			con	» MD»					
			f_{ck} espresso is						
				$(0/d)^{1/2} \le 2$					
			$v_{min} = 0.035k$	$^{3/2} f_{ck}^{1/2}$					

VRd,c = 383 kN/m < VEd è necessario considerare il contributo delle barre di armatura Contributo delle barre di armatura (contributo valutato su pannelli larghi 2,80 m)

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

i) Contributo dell'armatura principale (barra n.2 - 2φ20/125)

numero di barre = 21 numero di strati = 2 Totale barre = 2x21 = 42

Diametro barra = 20mm

Nota: il piano di rottura interseca i due strati dell'armatura principale in due sezioni, tuttavia viene considerata in modo conservativo solo un strato e una sezione.

Nef = 21 As =
$$3.14$$
cm² fyd = 390 MPa
VRd,s = Nef As fyd = $21 \times 314 \times 390 / 1000 = 2570$ kN

ii) Contributo delle staffe (barre n. 117,118 e 119 - 6ϕ 16/100)

Numero di barre = 6 Numero di strati = 3 Totale barre = 3x6 = 18

Diametro barra = 16mm

Nota: il piano di rottura interseca tre strati delle staffe, in modo conservativo se ne considerano due.

Nef =
$$2x6=12$$
 As = $2.01cm^2$ fyd = 390 MPa
VRd,s = Nef As fyd = $12 \times 201 \times 390 / 1000 = 940 \text{ kN}$

iii) Contributo dei riforzi (per unità di larghezza)

$$VRd,s = (2570 + 940)/2.80 = 1250 \text{ kN/m} > Ved \dots FS = 1250/462 = 2.70$$

iv) Verifica della tensione nell'armatura orizzontale

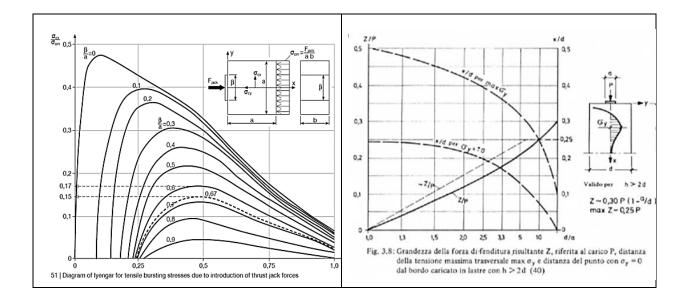
$$NEd = 0.60 \times VEd = 0.60 \times 462 \text{ kN/m} = 278 \text{ kN/m}$$

Considerando conservativamente solo uno strato di armatura orizzontale

$$As = 8\phi 20 = 8x3.14cm^2 = 25.12 cm^2$$

$$NRd,s = As fyd = 2512 \times 390 / 1000 = 980 kN/m > Ned ... FS = 980 / 278 = 3.50$$

v) Verifica delle trazioni indotte localmente



Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

La compressione alla base della tasca induce tensioni di trazioni orizzontali locali immediatamente al di sotto della base di appoggio. Utilizzando i consueti metodi di analisi delle pressioni indotte (Leonardth and Iyengar), nelle condizioni più estreme, le trazioni indotte sono limitate al 50% delle massime sollecitazioni di compressione.

$$\sigma_{t _max} = 0.50 x \sigma_{cm} = 0.50 \ x \ 1.54 \ MPa = 0.77 \ MPa < f_{ctm} = 2.60 \ MPa$$

La verifica è pertanto soddisfatta

1.5 Verifica delle pressioni di contatto sulle impermeabilizzazioni

Pressione di contatto media:

$$\sigma_{cm}$$
 = VEd / Ac dove Ac = 30cm x 100cm = 3000 cm²

 $\sigma_{cm} = 462 / 300 = 1.54 \text{ MPa} < 7.0 \text{ MPa}$ Resistenza a compressione a lungo termine

Stazione Pastrengo - Relazione di calcolo opere di sostegno stazione

MTL2T1A2DSTRSPAR001-0-1

Spessore effettivo	2.00 (-5 / +10 %) mm incl	(EN 1849-2)	
Massa areica	2.56 (-5 / +10 %) kg/m ²	(EN 1849-2)	
INFORMAZIONI TECNICHE			
Resistenza a trazione	17.0 (± 2.0) N/mm² (longi 16.0 (± 2.0) N/mm² (trasv	itudinale) rersale)	(ISO 527)(EN 12311-2)
Allungamento a rottura	≥ 300 % (longitudinale/tra	asversale)	(ISO 527)
Modulo di elasticità a trazione	≤ 20 N/mm² (longitudinal (tra 1 % e 2 % di allungam	(ISO 527)	
Resistenza allo scoppio	≥ 80 % (D=1.0 m)		(EN 14151)
Resistenza al punzonamento statico	2.35 (± 0.25) kN		(EN ISO 12236)
Resistenza all'urto	Impermeabile con altezza (peso 500 g, Metodo A)	(EN 12691)	
Resistenza a compressione a lungo ter mine	- Impermeabile con carico	d <mark>i 7.0 N/</mark> mm² (50 h)	(simile a SIA V280/14)
Flessibilità a freddo	Nessuna rottura a - 20 °C		(EN 495-5)
Variazione dimensionale dopo riscalda mento	- <2.0% (longitudinale/tras	versale)	(EN 1107-2) (+80 °C / 6 h)
Resistenza all'ossidazione	Variazione dell'allunga- mento a rottura	≤ 10 %	(EN 14575) (120 gg / 80 °C)
	Variazione della resistenza a trazione	≤ 10 %	
	Madadaa dalla	< 20 %	(SIA V280/13 e
Comportamento dopo stoccaggio in ac qua calda	resistenza a trazione	(longitudinale/trasversale)	OEBV)
			(+50 °C / 8 mesi)
	resistenza a trazione Variazione dell'allunga-	(longitudinale/trasversale) < 20 %	(+50 °C / 8 mesi)

