MINISTERO DELLE INFRASTRUTTURE E DELLA MOBILITÀ SOSTENIBILI STRUTTURA TECNICA DI MISSIONE

COMUNE DI TORINO

METROPOLITANA AUTOMATICA DI TORINO LINEA 2 – TRATTA POLITECNICO – REBAUDENGO

PROGETTAZIONE DEFINITIVA

Lotto Costruttivo 1: Rebaudengo - Bologna

PROGETTO DEFINITIVO														
DIRETTORE PROGETTAZIONE Responsabile integrazione discipline specialistiche	IL PROGETTISTA							er la mo			IN	FRAT	RASPORT	ΓI S.r.l.
Ing. R. Crova Ordine degli Ingegneri della Provincia di Torino n. 6038S	Ing. F. Rizzo Ordine degli Ingegneri della Provincia di Torino n. 9337K	STRUTTURE E METODI COSTRUTTIVI GALLERIA DI LINEA - GALLERIA NATURALE RELAZIONE DI CALCOLO												
		ELABORATO REV. SCALA DATA				DATA								
BIM MANAGER Geom. L. D'Accardi			L2	T1	A1	D	STR	GN0	R	001	0	1	-	18/11/2022

AGGIORNAMENTI Fg. 1 di 1

REV.	DESCRIZIONE	DATA	REDATTO	CONTROLLATO	APPROVATO	VISTO
0	EMISSIONE	31/01/22	TC	F. Rizzo	F. Rizzo	R. Crova
1	Emissione finale a seguito di verifica preventiva	18/11/22	GQU	PDM	F. Rizzo	R. Crova
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

LOTTO 1	CARTELLA	9.5.2	1	MTL2T1A1D	STRGN0R001
	CHILLERY	7.5.2	-	111122117(11)	5111011001

STAZIONE APPALTANTE

DIRETTORE DI DIVISIONE INFRASTRUTTURE E MOBILITÀ Ing. R. Bertasio

RESPONSABILE UNICO DEL PROCEDIMENTO Ing. A. Strozziero

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

INDICE

1.	PREMESSA	8
1.1	SCOPO E CAMPO DI APPLICAZIONE	8
1.2	DESCRIZIONE DELL'OPERA	9
2.	DOCUMENTI DI RIFERIMENTO	15
2.1	DOCUMENTI DEL PROGETTO DEFINITIVO	15
2.2	NORMATIVE DI RIFERIMENTO	15
3.	CARATTERISTICHE DEI MATERIALI	16
4.	CARATTERIZZAZIONE GEOTECNICA	20
4.1	Unità geotecniche	20
4.2	INQUADRAMENTO IDROGEOLOGICO	20
4.3	PARAMETRI DI RIFERIMENTO PER IL DIMENSIONAMENTO GEOTECNICO E STI 21	RUTTURALE
5.	DESCRIZIONE DELLA SOLUZIONE PROGETTUALE	22
5.1	GALLERIA NATURALE CON CONSOLIDAMENTO DA SUPERFICIE — TIPO 1	22
5.2	GALLERIA NATURALE— TIPO 2	26
5.3	PROCEDURA DI SCAVO	28
5.4	SCELTA DELLE SEZIONI DI VERIFICA	29
6.	CRITERI DI DIMENSIONAMENTO	30
6.1	BASI PER IL CALCOLO	30
6.2	DEFINIZIONE DEI CARICHI STATICI	30
6.3	AZIONE SISMICA	30
6.4	FATTORI RIDUTTIVI DELLE RESISTENZE DEI MATERIALI	35
6.5	COMBINAZIONI DI CARICO	35

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

6.5.1	Carichi variabili – Accidentali	36
7.	MODELLAZIONE NUMERICA	37
7.1	SEZIONE PK 14+586 - SOTTOPASSO DI VIA TOSCANINI CON CONSOLIDAME	NTO
	D — TIPO 1	39
7.1.1	FASI DI MODELLAZIONE	39
7.1.2 7.1.2.1	RISULTATI Condizioni tancia defermativa finali al conterno	41
7.1.2.1 7.1.2.2		41 42
7.1.2.2	Sollecitazioni sul rivestimento definitivo	42
7.2	SEZIONE PK 15+162 — CONSOLIDAMENTO IN AVANZAMENTO E SEZIONE DI	SCAVO
PARZIALIZ	ZZATA — TIPO 2	46
7.2.1	FASI DI MODELLAZIONE	46
7.2.2	RISULTATI	48
7.2.2.1	Condizioni tensio-deformative finali al contorno	48
7.2.2.2	Sollecitazioni sul sostegno di prima fase	49
7.2.2.3	Sollecitazioni sul rivestimento definitivo	50
7.3	STABILITÀ DEI FRONTI DI SCAVO	53
8.	VERIFICHE STRUTTURALI	58
8.1	SEZIONE DI PROGETTO TIPO 1 - SOSTEGNO DI PRIMA FASE	58
8.1.1	VERIFICA A PRESSO FLESSIONE	59
8.1.1	VERIFICA A TAGLIO	60
8.2	SEZIONE DI PROGETTO TIPO 1 - RIVESTIMENTO DEFINITIVO	61
8.3	SEZIONE DI PROGETTO TIPO 2 - SOSTEGNO DI PRIMA FASE	72
8.3.1	VERIFICA A PRESSO FLESSIONE	73
8.3.2	VERIFICA A TAGLIO	74
8.4	SEZIONE DI PROGETTO TIPO 2 - RIVESTIMENTO DEFINITIVO	75
8.5	VERIFICHE DI RESISTENZA AL FUOCO	86
9.	PIANO DI MONITORAGGIO	89
10.	CONCLUSIONI	91
10.1	RIASSUNTO ARMATURE	91

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

INDICE DELLE FIGURE

Figura 1-1 Key-plan della linea 2 – tratta funzionale Politecnico-Rebaudengo	9
Figura 1-2 Planimetria tratta in esame	10
Figura 1-3 Profilo tratta in esame	11
Figura 1-4 Gabarit della linea nella tratta in esame	12
Figura 1-5 Tipologico sezione tipo 1 di scavo con consolidamento dall'alto	12
Figura 1-6 Tipologico sezione tipo 2 di scavo con consolidamenti in avanzamento a geome	etria
troncoconica	13
Figura 5-1 Sezione tipo 1 – Tipologie di consolidamento con colonne di Jet Grouting	24
Figura 5-2 Sezione tipo 1 – Tipologie di consolidamento con iniezioni di miscele cementizio	e 25
Figura 5-3 Schema consolidazione arco rovescio eseguita dall'interno del tunnel	26
Figura 6-1 Vista del modello deformato	35
Figura 7-1 Calcolo della sezione equivalente secondo Carranza Torres (2004)	38
Figura 7-2 Fasi di scavo e rilasci per la realizzazione di un tunnel	39
Figura 7-4 Andamento delle sollecitazioni caratteristiche – Rivestimento prima fase	42
Figura 7-5 Spostamenti totali corrispondenti alla fase di fine posa rivestimento di prima fa	se43
Figura 7-6 Andamento delle sollecitazioni caratteristiche – Rivestimento definitivo	44
Figura 7-7 Spostamenti totali corrispondenti alle condizioni di lungo termine	45
Figura 7-8 Fasi di scavo e rilasci per la realizzazione di un tunnel	47
Figura 7-9 Punti di plasticizzazione – fase di posa in opera del rivestimento di prima fase di	е
rivestimento definitivo	48
Figura 7-10 Andamento delle sollecitazioni caratteristiche – Rivestimento prima fase con c	
giovane successivo allo scavo della zona di calotta e maturo corrispondete allo	
dell'intera sezione	49
Figura 7-11 Spostamenti totali corrispondenti alla fase di fine posa rivestimento di prima f	
Figura 7-12 Andamento delle sollecitazioni caratteristiche – Rivestimento definitivo	51
Figura 7-13 Spostamenti totali corrispondenti alle condizioni di lungo termine	52
Figura 7-14 Schema proposto da Tamez	53
Figura 7-15 Verifica di stabilità secondo Tamez del fronte senza contributo dei VTR	54
Figura 7-16 Contributo dei VTR	54
Figura 7-17 Schema iniezioni di consolidazione al fronte mediante VTR	55
Figura 7-18 Incremento della coesione di progetto con contributo dei VTR	56
Figura 7-19 Verifica di stabilità secondo Tamez del fronte con contributo dei VTR	57
Figura 8-1 Modello di suddivisione della sezione tipo 1– Sostegno di prima fase	58
Figura 8-2 Le verifiche a presso/tenso flessione, eseguite secondo la teoria di Carranza To	
(2004)	59
Figura 8-3 Le verifiche a taglio – ipotesi che le sole centine assorbano l'intera aliquota di t	_
agente Figura 8-4 Modelle di suddivisione della sozione tipo 1 – Sestegno definitivo	60 61
Figura 8-4 Modello di suddivisione della sezione tipo 1 – Sostegno definitivo Figura 8-5 Verifica presso flessione SLU condizioni statiche – Rivestimento definitivo	61
Figura 8-6 Verifica presso flessione SLU S condizioni statiche – Rivestimento definitivo	62 62
I INNIA OFO VEHINA DI ESSO HESSIONE SLO S CONUIZIONI SISMICHE – KIVESUMENIO UEMINUVO	02

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Tabella 8-2 Verifica taglio mediante il calcolo del taglio resistente dato dalle sole armati prevista a flessione	ura 63
Figura 8-7 Verifica del taglio massimo agente in ognuna delle parti principali della sezio analizzata mediante il calcolo del taglio resistente dato dalle sole armatura	
a flessione	65
– Condizione a lungo termine –	65
Figura 8-8 Verifica del taglio massimo agente in ognuna delle parti principali della sezio	
analizzata mediante il calcolo del taglio resistente dato dalle sole armatura	
a flessione	67
– Condizione Sismica –	67
Figura 8-9 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato	
dall'aggiunta di armatura a taglio — Condizione Sismica - Piedritti —	68
Figura 8-10 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato)
dall'aggiunta di armatura a taglio — Condizione Sismica — Arco rovescio —	69
Figura 8-11 Verifica fessurazione - massima fessura calcolata lungo la calotta e i piedrit	ti 70
Figura 8-12 Verifica fessurazione - massima fessura calcolata nell'are di arco rovescio	71
Figura 8-13 Modello di suddivisione della sezione tipo 2- Sostegno di prima fase riferito	sia alla
prima fase di scavo (verifica con cls giovane) sia all'intera sezione (cls matu	ro senza
arco rovescio)	72
Figura 8-14 Le verifiche a presso/tenso flessione, eseguite secondo la teoria di Carranza	
(2004)	73
Figura 8-15 Le verifiche a taglio – ipotesi che le sole centine assorbano l'intera aliquota	_
agente	74
Figura 8-16 Modello di suddivisione della sezione tipo 2 – Sostegno definitivo	75
Figura 8-17 Verifica presso flessione SLU condizioni statiche – Rivestimento definitivo	76
Figura 8-18 Verifica presso flessione SLU S condizioni sismiche – Rivestimento definitivo	
Figura 8-19 Verifica del taglio massimo agente in ognuna delle parti principali della sezi	
analizzata mediante il calcolo del taglio resistente dato dalle sole armatura i	
a flessione	79 - 0
- Condizione a lungo termine -	79
Figura 8-20 Verifica del taglio massimo agente in ognuna delle parti principali della sezi	
analizzata mediante il calcolo del taglio resistente dato dalle sole armatura p	
a flessione	80
- Condizione Sismica -	80
Figura 8-21 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato dall'aggiunta di armatura a taglio – Condizione a lungo termine – Arco rove	
Figura 8-22 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato	
dall'aggiunta di armatura a taglio – Condizione Sismica - Piedritti –	, 82
Figura 8-23 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato	
dall'aggiunta di armatura a taglio – Condizione Sismica – Arco rovescio –	, 83
Figura 8-24 Verifica fessurazione - massima fessura calcolata lungo la calotta e i piedrit	
Figura 8-25 Verifica fessurazione - massima fessura calcolata nell'area di arco rovescio	.u 84 85
rigara o 25 vermea ressarazione i massima ressara calcolata nell'area di dico fovescio	33

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Figura 8-28 Grafico di riduzione della resis	tenza a snervamento dell'acciaio in relazione alla
temperatura	88
Figura 8-29 Verifica di resistenza al fuoco	$(5+5\phi 20)$ 88

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

INDICE DELLE TABELLE

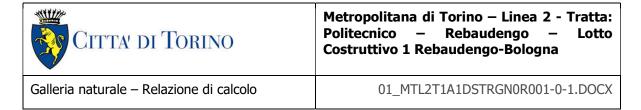
Tabella 1-1 Applicazione sezioni tipo	13
Tabella 4-1 Parametri fisico-meccanici del terreno	21
Tabella 4-2 Parametri geotecnici di calcolo	21
Tabella 5-1 Sintesi delle caratteristiche delle sezioni tipo1 e 2.	29
Tabella 6-1 Parametri spettrali del sito	31
Tabella 6-2 Fattore moltiplicativo C secondo Hashash, 2001	33
Tabella 6-3 Fattore moltiplicativo k secondo Hashash, 2001	34
Tabella 6-4 Fattori parziali per materiali allo SLU	35
Tabella 6-5 Combinazioni di carico considerate per sezione Tipo 1.	36
Tabella 6-6 Combinazioni di carico considerate per sezione Tipo 2.	36
Tabella 7-1 Caratteristiche rivestimento di prima fase in Plaxis 2D.	38
Tabella 7-2 Parametri utilizzati per la simulazione del consolidamento da Piano Campagna.	39
Tabella 7-3 Valori di progetto delle sollecitazioni - Rivestimento prima fase	42
Tabella 7-4 Spostamenti totali netti – Rivestimento di prima fase.	43
Tabella 7-5 Valori di progetto delle sollecitazioni – Rivestimento definitivo	44
Tabella 7-6 Spostamenti totali.	45
Tabella 7-7 Parametri di calcolo per la simulazione del miglioramento del terreno in calotta	.46
Tabella 7-8 Valori di progetto delle sollecitazioni – Rivestimento prima fase	49
Tabella 7-9 Spostamenti totali netti – Rivestimento di prima fase corrispondete alla fase 9 d	della
modellazione.	50
Tabella 7-10 Valori di progetto delle sollecitazioni - Rivestimento definitivo	51
Tabella 7-11 Spostamenti totali.	52
Tabella 7-12 Caratteristiche VTR 60/40	55
Tabella 8-1 Caratteristiche rivestimento di prima fase – Centine, Cls giovane e Cls maturo.	59
Tabella 8-3 Caratteristiche rivestimento di prima fase – Centine, Cls fresco e Cls maturo.	73
Tabella 8-4 Verifica taglio mediante il calcolo del taglio resistente dato dalle sole armatura	
prevista a flessione	77
Figura 8-26 Curva di fuoco standard considerata	86
Tabella 10-1 Frequenza letture di monitoraggio	90
Tabella 9-1 Armature rivestimento definitivo - Galleria	91

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

1. PREMESSA

1.1 Scopo e campo di applicazione

La presente relazione si inserisce nell'ambito dell'affidamento dei servizi di ingegneria relativi alla Progettazione Definitiva della Tratta Politecnico-Rebaudengo della Linea 2 della Metropolitana, disciplinato dal Contratto tra la Città di Torino e la società Infratrasporti. TO s.r.l., ed ha per oggetto le fasi realizzative, le analisi strutturali e le verifiche relative alle Gallerie naturali a foro cieco scavate con metodo tradizionale previste tra le PK 15+235 e PK 14+561 circa; in particolare si farà riferimento alla GN1 compresa tra Retrostazione Rebaudengo e Stazione Rebaudengo e la GN2 compresa tra Stazione Rebaudengo ed il camerone di avvio della Galleria Artificiale, oltrepassata via Toscanini (Pozzo PT2).


Il 1º lotto funzionale della Linea 2 della Metropolitana di Torino, incluso tra le stazioni Rebaudengo e Politecnico, si colloca interamente nel territorio comunale di Torino, presenta una lunghezza di circa 9,7km, e, procedendo da nord verso sud, si sviluppa a partire dalla stazione di corrispondenza con la stazione F.S. Rebaudengo-Fossata, proseguendo poi lungo la ex trincea ferroviaria posta tra via Gottardo e via Sempione. Il tracciato, a partire dalla fermata Corelli passa lungo via Bologna, al fine di servire meglio gli insediamenti dell'area interessata esistenti e futuri con le fermate intermedie Cimarosa-Tabacchi, Bologna e Novara. Dopo la fermata Novara, il tracciato si allontana dall'asse di Via Bologna mediante una curva in direzione sud-est e si immette sotto l'asse di Corso Verona fino alla Stazione Verona ubicata in Largo Verona. Dopo la fermata Verona, sotto attraversato il fiume Dora e Corso Regina Margherita, la linea entra nel centro storico della città con le fermate Mole/Giardini Reali e Carlo Alberto, portandosi poi in corrispondenza di via Lagrange, sino ad arrivare alla stazione Porta Nuova, posta lungo via Nizza, che sarà di corrispondenza sia con la linea F.S. che con la Linea 1 della metropolitana di Torino.

Dalla fermata Porta Nuova il tracciato prosegue lungo l'allineamento di via Pastrengo, per poi portarsi su corso Duca degli Abruzzi fino alla fermata Politecnico.

Il 1° lotto funzionale è costituito dalle seguenti opere:

- 13 stazioni sotterranee
- 12 pozzi intertratta aventi funzione di ventilazione, uscita di emergenza ed accesso dei soccorsi
- La galleria di linea costituita da:
- Un tratto in galleria naturale realizzato con scavo tradizionale per una lunghezza di 277m circa, che va dal manufatto di retrostazione Rebaudengo alla Stazione Rebaudengo e prosegue oltre fino a sottopassare via Toscanini per ulteriori 293m circa;
- Un tratto in galleria artificiale in Cut&Cover ad uno o due livelli, per una lunghezza complessiva di circa 3,0km che, partendo da via Toscanini collega le stazioni Giulio Cesare, San Giovanni Bosco, Corelli, Cimarosa/Tabacchi, Bologna fino al manufatto in retrostazione Bologna che include anche il pozzo Novara;

- Un tratto in galleria naturale realizzato con scavo meccanizzato mediante una TBM (Tunnel Borin Machine) avente diametro di circa 10,00m di scavo dal manufatto in retrostazione Bologna fino al tronchino in retrostazione Politecnico per una lunghezza complessiva di circa 5,6km;
- Un pozzo terminale di fine tratta funzionale per l'estrazione della TBM, posto all'estremità del tronchino in retrostazione Politecnico;
- Il manufatto in retrostazione Rebaudengo, avente la funzione di deposito-officina, per la manutenzione ordinaria programmata sui treni, oltre che il parcheggio di 7 treni in stalli predisposti e complessivamente di 10 treni a fine servizio;
- La predisposizione per la realizzazione del manufatto di bivio nella diramazione nord verso San Mauro Torinese.

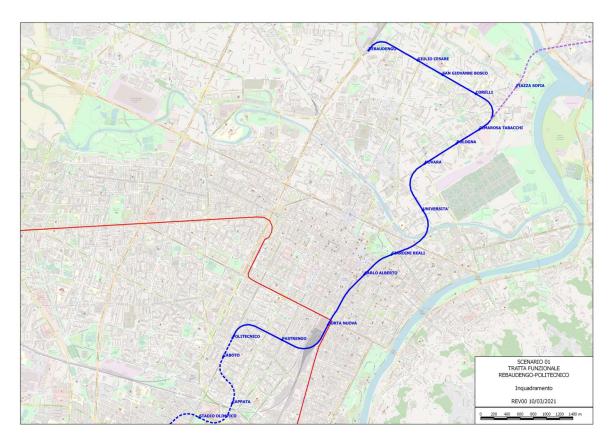


Figura 1-1 Key-plan della linea 2 – tratta funzionale Politecnico-Rebaudengo

1.2 Descrizione dell'opera

La tratta in esame è ubicata in una zona del tracciato in cui la superficie è principalmente occupata da aree verdi, strutture sportive e sostanzialmente priva di sottoservizi rilevanti.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

La livelletta è piuttosto superficiale collocandosi a circa 17m sotto il piano campagna attuale e l'opera sarà ubicata all'interno di un orizzonte di terreno incoerente in cui la falda si pone a circa -13m circa da piano campagna come meglio precisato nel seguito.

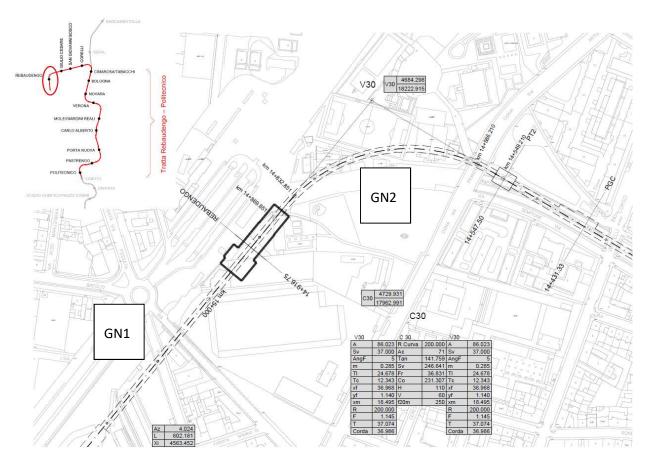
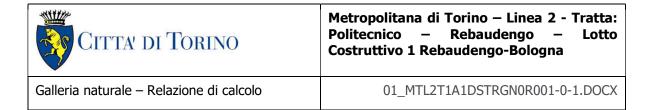



Figura 1-2 Planimetria tratta in esame

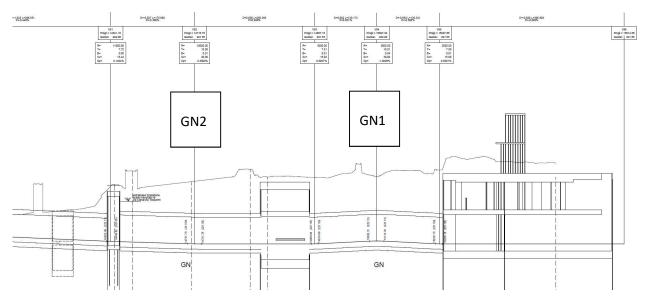
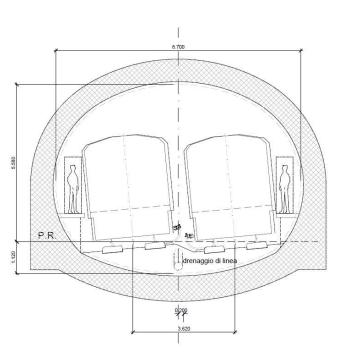



Figura 1-3 Profilo tratta in esame

Tali evidenze geometriche e geotecniche hanno fatto propendere per la realizzazione di questo tratto di linea mediante uno scavo a foro cieco con metodo tradizionale la cui sezione geometrica è rappresentata nella figura seguente che considera anche la presenza di una curva di raggio pari a 200m.

GALLERIA TRADIZIONALE - DOPPIO BINARIO

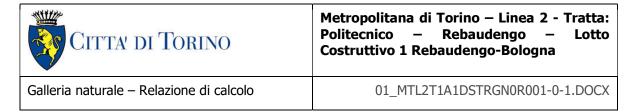
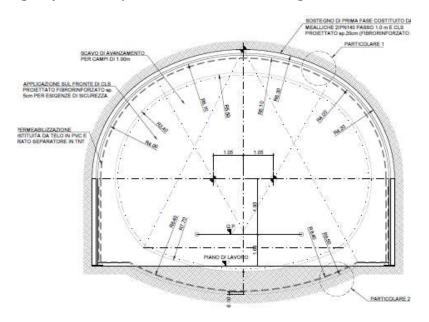
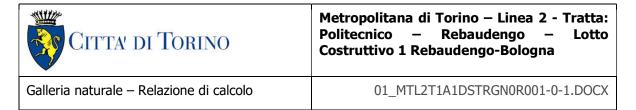


Figura 1-4 Gabarit della linea nella tratta in esame

In queste condizioni, potendo facilmente implementare tecniche di consolidamento dalla superficie, lo scavo predilige un avanzamento di forma cilindrica all'interno di un blocco consolidato dall'alto mediante jet-grouting a forma di capanna, secondo gli schemi rappresentati nella figura che segue (Sezione Tipo 1 – vedi documento allegato MTL2T1A1D STRGN0T001).




Figura 1-5 Tipologico sezione tipo 1 di scavo con consolidamento dall'alto

Nell'ambito della tratta in questione esistono però alcuni punti singolari in cui non è possibile eseguire misure di consolidamento dal piano campagna a causa di ostacoli costituiti da fabbricati esistenti che si vogliono preservare; lungo tali tratti verrà realizzato un consolidamento in avanzamento mediante:

- presostegno in calotta costituito da bulloni autoperforanti iniettati con resine bicomponenti a base di silicati e sostenuti da centine metalliche disposte a passo ravvicinato con raggio di curvatura crescente
- esecuzione di consolidamento del fronte con VTR

Inoltre, per limitare al minimo gli effetti dello scavo della galleria a foro cieco sui cedimenti previsti in superficie, lo scavo verrà parzializzato in due fasi separate (Sezione Tipo 2 – vedi documento allegato MTL2T1A1D STRGN0T004), opzione che consente anche di eseguire i trattamenti d'impermeabilizzazione dal piano dello scavo di calotta della galleria invece che dalla superficie per quelle porzioni di linea in cui la falda si colloca in sezione.

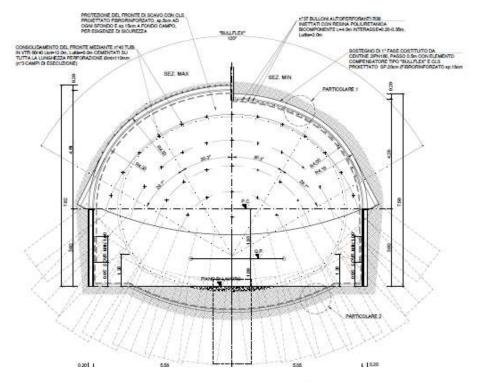


Figura 1-6 Tipologico sezione tipo 2 di scavo con consolidamenti in avanzamento a geometria troncoconica

In sintesi, l'applicazione delle sezioni tipo seguirà l'alternanza indicata in Tabella 1-1 ed è dettagliata negli elaborati grafici di riferimento MTL2T1A1D STRGN0T007.

Tabella 1-1 Applicazione sezioni tipo

	PK inizio [km]	PK fine [km]	Sezione tipo	Lunghezza applicazione [m]
	14+561	14+726	1	165
GN2	14+726	14+806	2	80
	14+806	14+857	1	51
	14+857	14+956	Stazione	REBAUDENGO (L ≈ 100 m)
	14+956	15+046	1	90
	15+046	15+096	2	50
GN1	15+096	15+150	1	54
	15+150	15+174	2	24
	15+174	15+236	1	62
	Riepilogo			
	Sezione tipo 1		422	
	Sezione tipo 2		154	
		Totale galleria		676 (576 al netto della stazione REBAUDENGO)

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Per il calcolo delle sezioni tipo di scavo e sostegno della galleria a foro cieco sono state condotte analisi bidimensionali agli elementi finiti, che, mediante la simulazione delle fasi esecutive hanno permesso di individuare lo stato tenso-deformativo atteso ed eseguire i dimensionamenti e le verifiche geotecniche e strutturali elaborate in conformità al metodo degli stati limite.

La relazione è articolata secondo la seguente struttura:

- Capitolo 1: Premessa
- Capitolo 2: Documenti di riferimento
- Capitolo 3: Caratteristiche dei materiali
- Capitolo 4: Caratterizzazione geotecnica
- Capitolo 5: Descrizione della soluzione progettuale
- Capitolo 6: Criteri di dimensionamento
- Capitolo 7: Modellazione numerica
- Capitolo 8: Verifiche strutturali
- Capitolo 9: Piano di monitoraggio
- Capitolo 10: Conclusioni

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

2. DOCUMENTI DI RIFERIMENTO

2.1 Documenti del Progetto Definitivo

- [1] MTL2T1A0DGEOGENT003.1@6: Profilo geotecnico
- [2] MTL2T1A0DGEOGENR002: Relazione geotecnica
- [3] MTL2T1A0DGEOGENT002.1@6: Carta e sezione idrogeologica
- [4] MTL2T1A0DGEOGENT001.1@6: Carta e sezione geologica
- [5] MTL2T1A0DGEOGENR001: Relazione geologica e idrogeologica

2.2 Normative di riferimento

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le prescrizioni delle seguenti normative.

- D.M. 17.01.2018 (NTC 2018): "Norme tecniche per le costruzioni";
- D.M. 14.01.2008 (NTC 2008): "Norme tecniche per le costruzioni-Allegato B";
- D.M. 11.03.1988: "Norme tecniche riguardanti le indagini sui terreni e sulle rocce; la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione ";
- Circ. Min. LL.PP. 14.02.74, n. 11951, "Applicazione della Legge 05.11.71, n. 1086";
- Circ. Min. LL.PP. 23.10.1979, n. 1977, "Competenza amministrativa: Legge 05.11.1971, n. 1086; Legge 02.02.1974, n. 64";
- UNI EN 1992 1-1: 2015 Eurocodice 2 Progettazione delle strutture di calcestruzzo -Parte 1-1: Regole generali e regole per gli edifici
- UNI EN 1992 1-2: 2015 Eurocodice 2 Progettazione delle strutture di calcestruzzo -Parte 1-2: Regole generali - Progettazione strutturale contro l'incendio
- UNI EN 1997 1: 2013 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali
- UNI EN 1998 1-1: 2013 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici
- UNI EN 1998 1-5: 2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- UNI 11104:2016 Calcestruzzo Specificazione, prestazione, produzione e conformità -Specificazioni complementari per l'applicazione della EN 206
- EN 206:2014 Calcestruzzo Specificazione, prestazione, produzione e conformità

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

3. CARATTERISTICHE DEI MATERIALI

Con riferimento ai materiali utilizzati nell'ambito del progetto, si riportano nel seguito le principali caratteristiche utilizzate nel dimensionamento strutturale.

Calcestruzzo

Calcestruzzo magro

Tipo: C12/15
 Modulo di deformazione: Ec=27000 MPa
 Resistenza caratteristica cubica: Rck=15 MPa
 Resistenza caratteristica cilindrica: fck=12 MPa
 Peso per unità di volume: γ=25 KN/m³

Calcestruzzo proiettato

• Tipo: C25/30 • Resistenza media su carote $h/\phi=1$ (a 10h): ≥7MPa • Resistenza media su carote $h/\phi=1$ (a 48h): ≥15MPa • Contenuto minimo di cemento: 300kg/m³ • Dosaggio di fibre: >30 kg/m³

• Energia di assorbimento <u>></u>700J

Tipo di fibra metallica per calcestruzzo proiettato:

Rapporto lunghezza diametro: I/d>45

Diametro ≥0.65mmLunghezza <35mm

• Fyk <u>></u>1200MPa

Calcestruzzo utilizzato per rivestimento definitivo galleria

Tipo: C25/30 Modulo di deformazione: Ec=31000 MPa Resistenza caratteristica cubica: Rck=30 MPa Resistenza caratteristica cilindrica: fck=25 MPa Diametro massimo degli inerti: ϕ =25mm Peso per unità di volume: $\gamma = 25 \text{ KN/m}^3$ Classe di Esposizione XC2 Consistenza S3 Copriferro c = 5.0 cm

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Acciaio

Armatura in barre

• Tipo: B450C

Modulo di deformazione: Ec=210000 MPa
 Resistenza a snervamento caratteristica: fyk=450 MPa
 Resistenza a snervamento di progetto: fyd=391.3 MPa

Acciaio per tubi degli infilaggi t≤40mm

• Tipo: S355 J0

Modulo di deformazione: Ec=210000 MPa
 Resistenza a snervamento caratteristica: fyk=355 MPa
 Resistenza a snervamento di progetto: fyd=338 MPa
 Resistenza a rottura caratteristica: fyk=510 MPa

Profilati e piastre per centine

• Tipo S275

Tensione caratteristica di snervamento, fyk: 275MPa

Elementi strutturali in vetroresina \(\phi 60/40 \)

Perforazione: ≥110mm
 Resistenza a trazione fyk: 500MPa
 Resistenza a taglio t: 140MPa
 Modulo elastico Ev: 15000MPa

Bulloni autoperforanti R38

Carico di rottura minimo: 420kN
 Perforazione: min 76mm
 besterno 38mm

Miscele cementizie per consolidamento fronte e bulloni autoperforanti

Consolidamento del fronte

- Classe di resistenza cls: C20/25
- Rapporto a/c: 0.6÷0.7
- Additivo fluidificante e antiritiro
- Cementazione con iniezioni semplici (getto in unica soluzione c.d. IGU)

Resina per bulloni autoperforanti

Resina poliuretanica bi-componente tipo Meyco MP355 o similare

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

• Fattore di espansione: <10

<u>Infilaggi</u>

Classe di resistenza cls: C20/25

Rapporto a/c: 0.5

Additivo fluidificante e antiritiro

• Cementazione con iniezioni semplici (getto in unica soluzione – c.d. IGU)

Impermeabilizzazione

Teli in PVC

Spessore: 2±0.5mmPeso specifico: 1.3q/cmq

• Resistenza a trazione media: 15MPa

Tessuto non Tessuto

Massa unitaria: 500g/mq

Spessore: a 2kPa 3.8mm, a 200kPa 1.8mm

Resistenza a punzonamento: 5.0kNResistenza a trazione media: 45kN/m

Cordolino bentonitico

• Dimensione: 20x25mm

• Espansione a contatto con acqua: 6 volte il volume iniziale

• Pressione di rigonfiamento dopo 48h: >600kPa

Elemento compensatore tipo Bullflex

- diametro del tubo vuoto = 320mm
- diametro del tubo completamente riempito = 370mm
- Peso minimo di 600 g/m2
- Resistenza del tessuto non tessuto ≥ 20 MPa
- Larghezza del tubo appiattito = 565mm
- Dilatazione elastica del geotessile = 15%
- Massima pressione di riempimento = 15 bar
- Pressione di iniezione = 6 bar
- Iniezione con cls proiettato C25/30.

L'iniezione del cls proiettato potrà essere eseguita dalla stessa attrezzatura utilizzata per la proiezione dello spritz beton, ma senza l'ausilio di aria compressa. L'iniezione avverrà attraverso 1 valvola in PVC Ø50mm posizionata in calotta e dotata di fermo all'interno del tubo per impedire la fuoriuscita della miscela cementizia quando viene interrotto il pompaggio.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Consolidamenti

Eseguiti con iniezioni cementizie ad alta permeabilità e jet-grouting in base alle sezioni specifiche, per ottenere un miglioramento delle caratteristiche meccaniche del suolo tali da garantire valori:

- c ≥150kPa (coesione non drenata)
- E ≥ 450MPa (modulo elastico).

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta funzionale 1: Politecnico – Rebaudengo
Piano di gestione della Progettazione	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

4. CARATTERIZZAZIONE GEOTECNICA

4.1 Unità geotecniche

L'analisi geotecnica ha evidenziato come la tratta d'interesse sia caratterizzata da due unità geotecniche:

• U1: depositi superficiali di natura antropica (terre di riporto),

Comprende riporti antropici superficiali, costituiti prevalentemente da ghiaia e ciottoli in matrice sabbiosa scarsamente addensati. La potenza dell'unità è variabile tra 0.5 e 10 m

U2: deposito fluvio-glaciali.

Si tratta dell'unità principale del sottosuolo di Torino e si rinviene sistematicamente al di sotto dei terreni di riporto fino ad una profondità massima osservata di 44 m. È costituita da ghiaie eterometriche Ghiaie eterometriche da fini a grosse con presenza di clasti poligenici centimetrici in matrice sabbiosolimosa ed intercalazioni di sabbie fini (a) e livelli a ciottoli (b). Grado di cementazione da nullo a medio. Tale deposito è caratterizzato anche da orizzonti cementati che nella tratta in oggetto raggiungono al massimo il 25% del volume.

4.2 Inquadramento idrogeologico

I dati relativi alla falda (freatica) indicano che il livello di falda si trova circa 14m sotto il piano di campagna nella tratta in esame, variando quindi tra qualche metro al di sopra della quota di progetto e la quota di progetto stessa.

Nello sviluppo del progeto si considerano due livelli distinti:

- falda di progetto posta a 1,5m al di sopra della quota derivata dalle letuare dell'autunno 2021;
- falda di lungo periodo collocata a 3m sopra la precedente

Per quanto concerne i valori della permeabilità, con riferimento ai dati granulometrici che presentano in generale un'alta percentuale di fini in matrice ghiaioso-sabbiosa è ragionevole ipotizzare valori attorno a un intervallo di 10^{-4} - 10^{-6} m/s. Tale intervallo è validato e confermato dagli studi fatti da Geodata nell'ambito del progetto "Metropolitana Automatica di Torino Linea 1, Lotto2" (anno 2000) in cui si indica che questi terreni rientrano nella classe di permeabilità K3 (AFTES,1992) a cui corrispondono appunto valori di permeabilità nel range 10-4-10-6 m/s.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

4.3 Parametri di riferimento per il dimensionamento geotecnico e strutturale

Sulla base della caratterizzazione geotecnica nelle diverse fasi di progetto, il range dei parametri geotecnici per le unità geotecniche coinvolte è strato sintetizzato nella tabella che segue.

Tabella 4-1 Parametri fisico-meccanici del terreno

Unità Geotec.	Profondità da p.c.(m)	Descrizione	γ (kN/m³)	c' (kPa)	φ′ (°)	E' (MPa)	v' (-)
U1	0-4	Terreni di riporto	18-20	0	28-30	10-20	0.2-0.3
U2	4-30	Ghiaie e sabbie addensate con livelli cementati	18-20	0-20	35-37	150-170	0.3-0.4

La tabella successiva riporta invece i parametri impiegati nei calcoli geotecnici condotti nell'ambito della presente relazione (i valori sotto riportati sono i parametri caratteristici e corrispondono ai parametri di progetto secondo NTC2018).

Tabella 4-2 Parametri geotecnici di calcolo

Unità Geotec.	Profondità da p.c.(m)	Descrizione	γ (kN/m³)	c' (kPa)	φ' (°)	E' (MPa)	ν′ (-)
U1	0-4	Terreni di riporto	19	0	29	15	0.3
U2	4-30	Ghiaie e sabbie addensate con livelli cementati	19	10	36	150	0.3

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

5. DESCRIZIONE DELLA SOLUZIONE PROGETTUALE

Di seguito vengono presentati i dimensionamenti e le verifiche geotecniche e strutturali delle sezioni caratteristiche principali degli interventi progettuali previsti per la realizzazione della galleria naturale a foro cieco scavata con metodo tradizionale. La galleria naturale a foro cieco in esame, ha una copertura compresa tra 7.50m e 8.50m dal piano campagna ed interessa un sottosuolo caratterizzato da depositi fluvio-glaciali costituiti da ghiaie eterometriche immerse in una matrice sabbiosa sottostanti lo strato di riporti antropici superficiali costituiti prevalentemente da ghiaia e ciottoli. Lo sviluppo complessivo del tratto di galleria naturale è pari a circa 576 m al netto della stazione REBAUDENGO. In particolare si farà riferimento alla GN1 compresa tra Retrostazione Rebaudengo e Stazione Rebaudengo e la GN2 compresa tra Stazione Rebaudengo ed il camerone di avvio della Galleria Artificiale, oltrepassata via Toscanini.

Come già anticipato, la costruzione della galleria a foro cieco è prevista con metodo di scavo tradizionale attraverso la messa in opera di due sezioni tipo di consolidamento, scavo e sostegno. La direzione di scavo prevista è concorde con le progressive del tracciato e partirà dal camerone di avvio della Galleria Artificiale nello specifico dalla progressiva 14+547 fino alla stazione Rebaudengo (progressiva 14+857) eseguendo cosi lo scavo della GN2; ed in seguito partendo dalla stazione di Rebaudengo (progressiva 14+956) fino alla Retrostazione Rebaudengo (progressiva 15+236) per eseguire lo scavo della GN1 (vedi documento allegato MTL2T1A1D STRGN0T007).

Date le ridotte coperture e considerato che la galleria insiste prevalentemente al di sotto di strade urbane/suburbane, o aree libere da fabbricati, gli scavi saranno preceduti dall'esecuzione di consolidamenti del terreno dalla superficie e dalla messa in opera della Sezione Tipo 1 applicata per la maggior parte del tracciato. In corrispondenza del sottoattraversamento in alcuni punti, data la presenza di edifici che ne limitano l'accessibilità dalla superficie, lo scavo sarà realizzato con l'applicazione della Sezione Tipo 2 che prevede l'esecuzione degli interventi di consolidamento del fronte e del contorno della galleria in sotterraneo. L'applicazione delle sezioni tipo è dettagliata negli elaborati grafici di riferimento.

Considerato il contesto urbano in cui si inserisce la galleria in progetto, la bassa copertura della linea sotterranea nonché la natura litologica del sottosuolo, la categoria di comportamento rappresentativa dei fenomeni tenso-deformativi attesi è riconducibile alle classi e/f (Russo et al.,1998).

5.1 Galleria naturale con consolidamento da superficie – Tipo 1

La sezione tipo 1 (MTL2T1A1D STRGN0T001/2/3) si applica per la maggior parte del tracciato in progetto ed è specifica per quei tratti dove è possibile effettuare i consolidamenti dalla superficie. Lo scavo avviene a sezione piena con utilizzo di centine metalli e calcestruzzo spruzzato fibrorinforzato come sostegno di prima fase. I consolidamenti sono costituiti da trattamenti (Jet Grouting e iniezioni di miscele cementizie) distribuiti in modo da realizzare uno schema di consolidamento "a capanna" e a "setto" come riportato nel documento allegato MTL2T1A1D STRGN0T008.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

In particolare si prevede:

- 1. Consolidamenti mediante colonne di Jet Grouting secanti:
 - Schema di consolidamento tipo C1: è il consolidamento mediante Jet Grouting cosiddetto "a capanna" realizzato in assenza di specifiche limitazioni; questa soluzione consente di migliorare le caratteristiche del terreno nella zona perimetrale dello scavo in modo da ottimizzare i quantitativi di cemento senza inficiare la sicurezza dello scavo stesso. Laddove ci siano necessità d'impermeabilizzazione della porzione di terreno in arco rovescio la capanna potrà essere chiusa anche arco rovescio.
 - Schema di consolidamento tipo C2: è il consolidamento mediante Jet Grouting "a setto" che ha l'obiettivo invece di migliorare le caratteristiche del terreno sia al contorno che al fronte di scavo della galleria, oltre che impermeabilizzare il volume di scavo nelle porzioni in cui si abbia tale necessità; l'applicazione è prevista ad intervalli regolari ogni 10.0 metri circa per una lunghezza pari a 2 file di consolidamenti.
 - Questa tipologia di intervento a sezione piena eseguita mediante colonne di Jet Grouting è prevista anche per tratti di lunghezza pari a 10m nei punti di partenza e di arrivo della galleria presso la Retrostazione Rebaudengo, la Stazione Rebaudengo ed il camerone di avvio della Galleria Artificiale; in particolare si prevede lo schema di consolidamento C2:
 - Partenza della GN2 dal camerone di avvio della Galleria Artificiale da pk 14+561 a pk 14+571
 - Arrivo della GN2 nella Stazione Rebaudengo da pk 14+847 a pk 14+857
 - Partenza della GN1 dalla Stazione Rebaudengo da pk 14+956 a pk 14+966
 - Arrivo della GN1 nella Retrostazione Rebaudengo da pk 15+226 a pk 15+236

E' bene sottolineare poi che, in funzione dell'ubicazione delle preesistenze e dei sottoservizi in superficie, sono previste differenti modalità di realizzazione dei consolidamenti da piano campagna adattando l'inclinazione e la geometria delle perforazioni in funzione degli ostacoli in loco. Per tale motivo vengono riportati di seguito gli schemi di consolidamento con trattamenti inclinati da adattare e specificare nelle seguenti fasi di progettazione.

- Schemi di consolidamento tipo C1* e C2*: riprendono le tipologie C1 e C2, adattandone la geometria di esecuzione delle linee di trattamento in funzione dell'accessibilità disponibile in superficie ed il funzione alle limitazioni dovute alla presenza di preesistenze e di sottoservizi. Gli schemi tipologici sono illustrati nella figura seguente.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

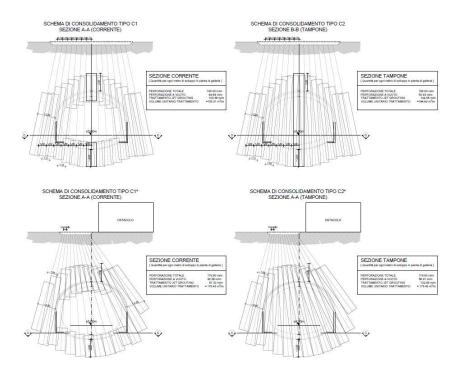


Figura 5-1 Sezione tipo 1 – Tipologie di consolidamento con colonne di Jet Grouting

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

2. Consoldiamenti mediante iniezioni di miscele cementiziei:

- Schema di consolidamento tipo C3: è il consolidamento mediante miscele cementizie a sezione piena (a setto) previsto per l'intera area (circa 30m) lungo il sottoattraversamento del cavalcavia di via Toscanini; anche questa soluzione consente di migliorare le caratteristiche del terreno nella zona perimetrale dello scavo.

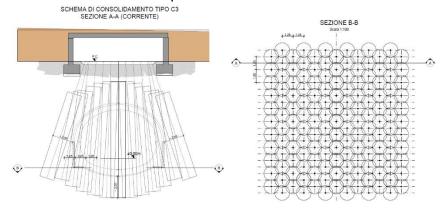


Figura 5-2 Sezione tipo 1 – Tipologie di consolidamento con iniezioni di miscele cementizie

Le fasi esecutive per la realizzazione della sezione tipo 1 possono essere riassunte come segue:

- Esecuzione del consolidamento del terreno mediante trattamenti eseguiti dalla superficie;
- 2. Scavo di avanzamento (1m) a piena sezione con applicazione di cls proiettato fibrorinforzato (spessore=5cm) ad ogni sfondo per esigenze di sicurezza;
- 3. Collocazione in opera del sostegno di prima fase: centine metalliche e cls proiettato fibrorinforzato (spessore 20cm);
- 4. Scavo dell'arco rovescio e getto di cls magro di sottofondo (spessore=10cm);
- 5. Posa sistema di impermeabilizzazione dove previsto e getto dell'arco rovescio;
- 6. Posa impermeabilizzazione sui piedritti ed in calotta;
- 7. Posa armatura e getto di calotta e piedritti.

NOTA:

 I getti del rivestimento definitivo verranno realizzati nel rispetto delle distanze massime indicate nei disegni (circa 1 diametro/9m per l'arco rovescio e circa 4 diametri/36m per piedritti e calotta); per maggiori dettagli sulla sequenza esecutiva si rimanda al disegno MTL2T1A0DSTRGN0T002.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

5.2 Galleria naturale - Tipo 2

La sezione tipo 2 è prevista nei tratti dove non è possibile effettuare i consolidamenti dalla superficie neanche variando le inclinazioni delle perforazioni. Lo scavo avviene in fasi distinte "calotta – ribasso"; scavando prima la parte di calotta e poi, una volta consolidata la base dello scavo, procedendo con il completamento della sezione. In questo modo è possibile minimizzare l'ampiezza del fronte e gestire al meglio le problematiche di scavo. Peraltro, questa sequenza offre la possibilità di eseguire gli interventi di impermeabilizzazione dallo scavo di calotta, quindi ottimizzando questa specifica lavorazione (vedi documento allegato MTL2T1A1D STRGN0T004).

La sezione tipo 2 prevede per la fase di scavo della calotta, un presostegno costituito da bulloni autoperforanti R38 ad interasse variabile (interasse ridotto in calotta e più ampio in corrispondenza dei piedritti) iniettati con resine bicomponenti a base di silicati e sostenuti da centine metalliche disposte a passo ravvicinato con raggio di curvatura crescente munite di elemento compensatore tipo "Bulflex" e l'esecuzione di consolidamento del fronte con VTR L=12,00m utili 6,00m ogni 3 campi di avanzamento. Il rivestimento di prima fase di calotta è poi completato con l'applicazione di 20cm di spritz beton di cui, i primi 18 cm fibrorinforazti.

Successivamente all'avanzamento del fronte di scavo di calotta, verranno eseguite delle iniezioni cementizie nel restante volume di terreno da scavare; creando un blocco consolidato e impermeabile con dimensioni tali da garantire un'ampiezza di consolidamento di almeno 2m oltre il perimetro di scavo. Le lavorazioni per le iniezioni saranno eseguite da un piano orizzontale ricavato sopra l'arco rovescio provvisorio

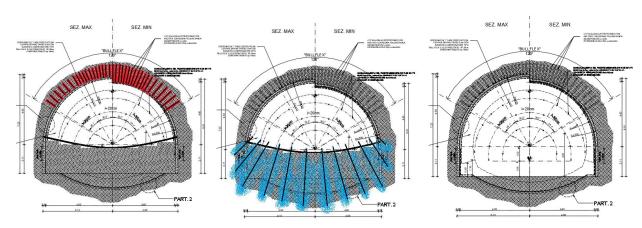


Figura 5-3 Schema consolidazione arco rovescio eseguita dall'interno del tunnel

In questo modo sarà poi possibile procedere con lo scavo della restante parte della sezione di progetto e completare il supporto di prima fase. Infine, al fine di limitare al massimo i cedimenti in superficie, è previsto il getto dell'arco rovescio ad una distanza massima dal fronte di ribasso pari a circa 6,00m, in modo da chiudere la sezione di scavo.

La sezione tipo 2 dovrà essere applicata successivamente alla sezione tipo 1, dopo aver messo in opera gli interventi descritti nella sezione di scavo tipo 1 di transizione dettagliata nel disegno

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

MTL2T1A1DSTRGN0T001. Le fasi esecutive per la realizzazione della sezione tipo 2 possono essere riassunte come segue:

- Abbassamento del livello di falda se necessario con interventi locali eventaulmente anche dalla galleria
- 2. A partire dalla fine della sezione tipo 1 eseguire lo scavo di avanzamento con sfondo pari ad 0.5m
- 3. Protezione del fronte di scavo con cls proiettato fibrorinforzato (sp.15cm) per esigenza di sicurezza
- 4. Posa della centina guida rimossa dal campo precedente dove presente
- 5. Esecuzione del consolidamento di calotta mediante bulloni autoperforanti
- 6. Esecuzione del consolidamento del fronte con VTR L=12,00m utili 6,00m ogni 3 campi
- 7. Scavo di avanzamento "Top Heading" della zona di calotta con sfondo pari a 0.5m.
- 8. Protezione del fronte di scavo con cls proiettato fibrorinforzato (sp=5cm) ad ogni sfondo per esigenza di sicurezza
- 9. Collocazione in opera della centine metalliche a raggio variabile e crescente n.1 con elemento compensatore tipo bullflex e cls proiettato fibrorinforzato
- 10. Rimozione della centina quida
- 11. Ripetizione delle fasi precedenti per la completa realizzazione dello scavo e del sostegno di 2,00m di galleria, mediante l'installazione delle centine n.1, 2 e 3 e l'applicazione di volta in volta del rispettivo cls proiettato fibrorinforzato (spessore 20cm).
- 12. Ripetizione delle fasi precedenti ed avanzamento dello scavo di calotta per l'intera lunghezza del tratto di galleria dove è prevista la sezione di tipo 2.
- 13. Esecuzione dei consolidamenti verticali in arco rovescio mediante iniezioni di malta cementizia
- 14. Scavo del ribasso e completamento del sostegno di prima fase formato da centine e cls proiettato fibrorinforzato.
- 15. Scavo dell'arco rovescio e getto di cls magro di sottofondo (spessore=10cm) per un tratto di lunghezza pari a circa 6,00m
- 16. Posa del sistema di impermeabilizzazione dove previsto, getto arco rovescio e murette esteso sino ad una distanza di 1,00m dal fronte di scavo del ribasso ed esecuzione del ritombamento al di sopra dell'arco rovescio per realizzare un piano di lavoro fino alla quota di imposta delle centine
- 17. Posa impermeabilizzazione sui piedritti ed in calotta
- 18. Posa armatura e getto di calotta e piedritti

NOTE:

- Gli scavi di ribasso con completamento del rivestimento di prima fase (fase 14) potranno essere fatti per una lunghezza massima di 6m prima dello scavo di arco rovescio e getto del rivestimento definitivo in tale zona (a.r.).
- Gli scavi di ribasso e completamento delle centine (fase 14) verranno realizzati con avanzamenti di 0.5m al fine di completare ogni singola centina singolarmente (parimenti allo scavo e installazione dei supporti previsto per la calotta).

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

• Il getto dell'arco rovescio verrà realizzato a massimo 6m dal fronte dello scavo di ribasso; i getti di piedritti e calotta saranno realizzati a circa 4 diametri / circa 36m dal fronte di ribasso; per maggiori dettagli sulla sequenza esecutiva si rimanda al disegno MTL2T1A1DSTRGN0T004.

5.3 Procedura di scavo

Il tratto in esame della galleria naturale GN come anticipato nei capitoli precedenti verrà realizzato mediante scavo a foro cieco con metodo tradizionale tenendo in conto anche la presenza di una curva di raggio pari a 200m. Potendo facilmente implementare tecniche di consolidamento dalla superficie, lo scavo prevede, lungo la maggior parte del tratto in esame, un avanzamento di forma cilindrica all'interno di un blocco consolidato dall'alto mediante jet-grouting a forma di capanna, secondo gli schemi riportati nel paragrafo 5.1 (Sezione Tipo 1). Nei tratti dove non è possibile effettuare i consolidamenti dalla superficie neanche variando le inclinazioni delle perforazioni è prevista una sezione troncoconica con parzializzazione dello scavo e consolidamenti in avanzamento (Sezione Tipo 2).

Come riportato in "Tabella 1-1 Applicazione sezioni tipo" i tratti previsti da scavare con sezione tipo 2 risultano essere 3 di lunghezze variabili (24m, 20m e 80m) alternati a tratti scavati con sezione di tipo 1.

Prima dell'inizio dei lavori di scavo della galleria naturale GN a foro cieco bisognerà realizzare il consolidamento dalla superficie mediante JG dove previsto lungo tutta la tratta in esame.

Nei punti di transizione tra le due sezioni tipo si procederà nel seguente modo:

- Avanzamento del fronte di scavo Sezione tipo 1 fino alla progressiva dove è previsto l'avanzamento con sezione parzializzata (tipo 2) restando comunque all'interno del blocco di JG.
- 2. Esecuzione dei supporti e consolidamenti e getti definitivi in avanzamento previsti per la sezione tipo 2 ed esecuzione dello scavo di calotta per l'intera lunghezza del tratto fino ad intercettare il successivo blocco di JG dove è prevista la ripresa dello scavo a sezione completa tipo 1. In questa fase si procede all'abbattimento della quota di falda in caso di necessità mediante l'attivazione del sistema di pompaggio, eventualmente gestito localmente dalla galleria stessa.
- 3. Esecuzione dei consolidamenti eseguiti mediante iniezioni verticali nell'area di arco rovescio provvisorio lungo tutto il tratto di sezione tipo 2.
- 4. Realizzazione del ribasso per il completamento dello scavo della sezione con installazione dei piedritti delle centine per il completamento del supporto di prima fase; al fine di realizzare un tratto di lunghezza pari a circa 6.00m
- 5. Scavo dell'arco rovescio e getto di cls magro di sottofondo (spessore=10cm)
- 6. Posa del sistema di impermeabilizzazione, getto arco rovescio e murette esteso sino ad una distanza di 1,00m dal fronte di scavo del ribasso ed esecuzione del ritombamento al di sopra dell'arco rovescio per realizzare un piano di lavoro fino alla quota di imposta delle centine.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

- 7. Completamento sezione con impermeabilizzazione e getto di calotta8. Ripresa dello scavo a sezione piena (tipo 1)

5.4 Scelta delle sezioni di verifica

Nella tabella sottostante è riportata una sintesi delle caratteristiche della sezioni oggetto di studio:

Tabella 5-1 Sintesi delle caratteristiche delle sezioni tipo1 e 2.

Sezione tipo	1	2
Tipo di scavo	Sezione piena	Sezione parzializzata
Pre-Sostegno – calotta	Consolidamenti – 13 colonne passo	N°50 bulloni autoperforanti R38 Iniettati con resina bicomponente a base di silicati L=4m, I=0.2-0.35m
Pre-Sostegno – Piedritti/Arco rovscio	1.3 m (schemi come da disegni specifici)	Iniezioni di consolidamento con geometria tale da avere un ampiezza pari a 2m oltre il perimetro di scavo
Rinforzo fronte	-	Circa 30 tubi in VTR φ60/40mm L _{tot} =12m L _{utile} =6m
Centine	2*IPN 140 passo 1m	2*IPN 160 passo 0.5m
Cls proiettato	2+18cm cls fibrorinforzato	2+18cm cls fibrorinforzato
Impermeabilizzazione	Telo in PVC e TNT applicati in calotta e piedritti	Telo in PVC e TNT applicati in calotta e piedritti
Lunghezza sfondo max	1 m	0.5 m
Distanza max getto arco rovescio	1 diametro equivalente	6,00m dal fronte della seconda fase di scavo
Distanza max getto calotta	4 diametri equivalenti	4 diametri equivalenti
Rivestimento calotta	60 cm	60 cm
Rivestimento AR	70 cm media (sez troncocónica)	70 cm

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

6. CRITERI DI DIMENSIONAMENTO

6.1 Basi per il calcolo

Per le sezioni tipo di scavo e sostegno della galleria a foro cieco, sono state condotte analisi bidimensionali agli elementi finiti, che, mediante la simulazione delle fasi esecutive hanno permesso di individuare lo stato tenso-deformativo atteso ed eseguire i dimensionamenti e le verifiche geotecniche e strutturali elaborate in conformità al metodo degli stati limite. Questa procedura verifica che la risposta strutturale sia maggiore delle sollecitazioni indotte dal carico. Diversi fattori di carico si applicano a seconda delle condizioni dello stato limite considerato e dei materiali utilizzati, come riportato nei paragrafi che seguono.

6.2 Definizione dei carichi statici

Nel calcolo della galleria sono considerati i seguenti carichi permanenti:

- G1_p, peso proprio delle strutture temporanee e permanenti
- G1_g, carichi geotecnici che il programma di modellazione numerica (Plaxis 2D) calcola automaticamente data la geometria del problema
- G1 w, carichi idrostatici legati alla posizione assunta dalla falda
- G2_ed, carico legato alla presenza di edifici in superficie nell'area d'influenza della galleria
- G2 _pon, carico legato alla presenza delle fondazioni del ponte sottopassato in corrispondenza di via Toscanini

In particolare, data la natura del terreno in cui si scava la galleria e la geometria del problema intesa come dimensioni dell'opera e sua profondità, la galleria è da considerare come superficiale e quindi il rivestimento definitivo a lungo termine dovrà garantire la capacità di reggere l'intero peso del terreno gravante in superficie.

In merito ai carichi variabili si considerano:

Q1=carico uniformemente distribuito di 20kPa

6.3 Azione sismica

Le azioni sismiche (E) sono definite secondo la procedura seguente.

La vita nominale dell'opera V_N è intesa come il numero di anni nei quali la struttura deve poter essere usata per lo scopo al quale è destinata; per l'opera oggetto di questo documento si considera 100 anni.

In presenza di azioni simiche, in relazione alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso che, nel caso specifico, è la III cui è associato un coefficiente pari a 1.5.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Le azioni sismiche su ciascuna costruzione sono valutate in relazione ad un periodo di riferimento VR definito come prodotto tra la vita nominale ed il coefficiente d'uso.

$$V_R = V_N \cdot C_U$$

Per il caso in esame si ottiene: V_R=150 anni

La pericolosità sismica si definisce, per il caso in oggetto, in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero, su sito di riferimento rigido con superficie topografica orizzontale, in considerazione di prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R . Il valore di progetto dell'accelerazione a_g viene definito in funzione della "probabilità di superamento" in un dato "tempo di ritorno". Queste due grandezze sono correlate tra loro:

$$T_R = -V_R/ln(1-P_{VR})$$

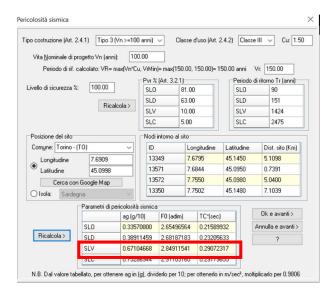
- T_R è il tempo di ritorno
- V_R il periodo di riferimento dell'opera
- P_{VR} è la probabilità di superamento nel periodo di riferimento

Per la struttura in oggetto, le verifiche in condizioni simiche saranno condotte facendo riferimento allo Stato Limite Ultimo di salvaguardia della vita (SLV) come azione sismica di progetto che, nel dettaglio, è derivata utilizzando le informazioni disponibili nel reticolo di riferimento (Allegato B del DM 14/01/2008 a cui il DM 17/01/2018 rimanda). La tratta in esame della Linea 2 della metropolitana di Torino, tratta Retrostazione Rebaudengo – Pozzo Giulio Cesare, si trova all'interno delle aree di competenza del comune di Torino. Al fine di ottenere i parametri spettrali (ag, Fo, T*c) specifici del sito, si considerano le coordinate riferite al sottopasso di via Toscanini:

- Latitudine 45,0998°
- Longitudine 7,6909°

da cui i valori di riferimento allo SLV

Tabella 6-1 Parametri spettrali del sito



Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna

Galleria naturale – Relazione di calcolo

01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Gli effetti di amplificazione locale dovuti alla stratigrafia ed alla conformazione topografica vengono messi in conto mediante i parametri S_S ed S_T .

La categoria di suolo più attinente è la C

С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	180 m/s e 360 m/s.

pertanto, in considerazione dei parametri a_g ed F_0 definiti nella Tabella 6-1, si ottiene S_S (DM 17/01/2018 Tab.3.2.IV).

$$Ss=1,7-0,6*F0*ag/g=1,7-0,6*2,849*(0,671/9,81)=1,58$$

Per tener conto delle condizioni topografiche si utilizzano i valori del coefficiente topografico S_T riportati nella Tab.3.2.V del DM 17/01/2018. Per il caso in esame si assume S_T =1.0.

Risulta quindi

$$S=S_S*S_T=1,58$$

Definiti i parametri che definiscono il sisma di progetto, esso è applicato alla sezione trasversale imponendo una deformazione di ovalizzazione seguendo quanto proposto da Youssef M.A. Hashash, Jeffrey J. Hooka, Birger Schmidtb, John I-Chiang Yaoa nell'articolo "Seismic design and analysis of underground structures", 2001.

L'approccio usato fa riferimento ad una condizione di "free-field" (secondo quanto descritto da Wang, 1993), cioè considerando il caso per cui le deformazioni subito dal terreno sono quelle

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

ottenute in assenza di struttura; questa è una condizione conservativa poiché ignora l'effetto che la presenza della struttura avrebbe nel limitare le deformazioni del terreno.

Si ipotizza dunque che la struttura, durante un evento sismico, si muova insieme con il terreno circostante, e che le deformazioni così imposte generino delle sollecitazioni M,N,V che si sovrappongono a quelle già presenti originate dai carichi statici cui la struttura è normalmente soggetta.

La metodologia da seguire per calcolare gli effetti sismici secondo questo principio è la seguente:

- 1. Calcolo della PGA (accelerazione di picco al suolo) e della magnitudo M_w del terremoto di riferimento in una condizione di base (substrato roccioso con topografia orizzontale).
- 2. Amplificazione della PGA in funzione del tipo di terreno e geometria specifica del sito (moltiplicazione per il fattore S calcolato in precedenza).

3. Correzione dell'accelerazione trovata in funzione della profondità della galleria

$$a_{z,max}=a_{max}*C=0.24$$

dove il fattore C viene definito nella Tabella 4 dell'articolo (Hashash, 2001) riportata di seguito e viene assunto in modo cautelativo pari a 1.

Tabella 6-2 Fattore moltiplicativo C secondo Hashash, 2001

Tunnel depth (m)	Ratio of ground motion at tunnel depth to motion at ground surface
≤ 6	1.0
6-15	0.9
15-30	0.8
> 30	0.7

4. Il valore di az, max viene utilizzato per trovare la deformazione massima nelle condizioni di "free-field", " γ_{max} ", che è funzione della Vs (velocità di picco, funzione a sua volta della magnitudo e della distanza dalla fonte sismica, k).

$$\gamma_{max}$$
=Vs/Cs

$$Vs=k*a_{z,max}$$

Il fattore k viene definito nella Tabella 3 dell'articolo (Hashash, 2001) presentata di seguito, considerando una condizione di "soft soil", con minima magnitudo e massima distanza epicentrale, condizioni assolutamente valide per la zona di Torino.

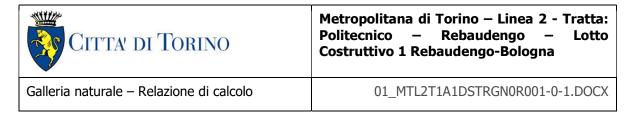


Tabella 6-3 Fattore moltiplicativo k secondo Hashash, 2001

Moment magnitude	Ratio of peak ground velocity (cm/s) to peak ground acceleration (g) Source-to-site distance (km)		
(M_w)			
	0-20	20-50	50-100
Rock ^a			
6.5	66	76	86
7.5	97	109	97
8.5	127	140	152
Stiff soil*			
6.5	94	102	109
7.5	140	127	155
8.5	180	188	193
Soft soil ^a			
6.5	140	132	142
7.5	208	165	201
8.5	269	244	251

^aIn this table, the sediment types represent the following shear wave velocity ranges: rock \geq 750 m/s; stiff soil is 200–750 m/s; and soft soil < 200 m/s. The relationship between peak ground velocity and peak ground acceleration is less certain in soft soils.

Cs è invece la velocità reale di propagazione delle onde di taglio che è stata valutata direttamente dalle prove geofisiche a disposizione presenti nella relazione MTL2T1A1DGEOGENR001 relazione geotecnica e sismica.

Una volta trovata la deformazione massima γ_{max} , occorre ricavare le sollecitazioni indotte da questa deformazione sul rivestimento della galleria, imponendo questa deformazione al modello calcolata nel modo seguente.

$$\Delta x_{\text{max}} = \gamma_{\text{max}} = (h_{\text{mod}}/2)$$

Nel caso specifico si ottiene Δx_{max} =0.0077 m

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

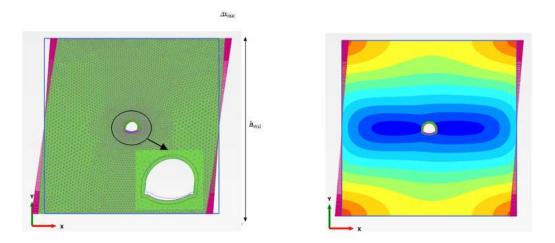


Figura 6-1 Vista del modello deformato

6.4 Fattori riduttivi delle resistenze dei materiali

La resistenza dei materiali viene divisa per fattori che riducono le prestazioni in sezione secondo i valori indicati nella tabella che segue.

Tabella 6-4 Fattori parziali per materiali allo SLU

Materiale	Normale	Accidentale/Sismico
Calcestruzzo	1.50	1.20
Acciaio per calcestruzzo armato	1.15	1.00
Acciaio per carpenteria metallica (centine)	1.05	1.00

I parametri a lungo termine sono ridotti secondo il fattore α_{cc} 0.85.

6.5 Combinazioni di carico

In base a quanto disposto dalle NTC 2018 (Rif. § 6.2.4.1.3) è possibile utilizzare l'Approccio 1 secondo la combinazione A1+M1+R1 e pertanto verranno impiegate le seguenti combinazioni di carico per la progettazione che coinvolgono le verifiche di tipo GEO e STR.

In relazione alle condizione idrogeologiche osservate non si considerano stati limiti di tipo UPL e HYD.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Tabella 6-5 Combinazioni di carico considerate per sezione Tipo 1.

Combinazione	Sezione Tipo	Combinazione di carico
Combinazione fondamentale SLU 2	Sezione Tipo 1	1,30·ΣG1+1,30·G2_pon
Combinazione sismica SLU S	Sezione Tipo 1	1,00·ΣG1+1,00·G2_pon+E
SLS		1.00·ΣG1+G2

Tabella 6-6 Combinazioni di carico considerate per sezione Tipo 2.

Combinazione	Sezione Tipo	Combinazione di carico
Combinazione fondamentale SLU 1	Sezione Tipo 2 in corrispondenza di edifici	1,30·ΣG1+1,30·G2_ed+1,5·Q1
Combinazione sismica SLU S	Sezione Tipo 2 in corrispondenza di edifici	1,00·ΣG1+1,00·G2_ed+E+Q1
SLS 1		1.00·ΣG1+G2+0,7·Q1

6.5.1 Carichi variabili – Accidentali

Un carico variabile pari a 20 kN/m2 uniformemente distribuito è applicato in superficie in tutte le fasi di calcolo.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

7. MODELLAZIONE NUMERICA

Nel seguito vengono illustrati il metodo e i modelli numerici realizzati per lo studio della galleria scavata a foro cieco. La simulazione dello scavo del tunnel e la stima della pressione agente sul supporto è stata valutata definendo, mediante la cura caratteristica di una cavità circolare omogenea non supportata (GRC-Ground Reaction Curve, un coefficiente di rilascio tensionale" λ ". Questo è un approccio comune per lo studio del comportamento delle gallerie sia in roccia sia in materiali sciolti.

In questo caso, la curva caratteristica del tunnel mette semplicemente in relazione la pressione interna fornita dai supporti installati "pi" con lo spostamento radiale "ur" delle pareti del tunnel. In questo modo l'approccio consente di ottenere risultati sull'interazione tra la reazione degli appoggi e la reazione del materiale di scavo, stimando sia le deformazioni finali della roccia sia la pressione agente sugli appoggi installati. Per un dato raggio di galleria e sollecitazione in situ, la forma della curva caratteristica della galleria dipende dai criteri di rottura del materiale omogeneo considerato e dai parametri specifici di resistenza e deformabilità. Le curve caratteristiche, nei tratti di verifica considerati, sono state determinate utilizzando la soluzione in forma chiusa di Duncan-Fama, basata sul criterio di rottura di Mohr-Coulomb.

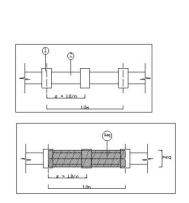
La verifica delle strutture viene eseguita ripercorrendo l'intera vita delle stesse. La successione delle fasi esecutive, lo stato tensionale indotto nell'ammasso dallo scavo nonché le sollecitazioni risultanti sui rivestimenti di prima fase e definitivi sono state analizzate con il metodo agli elementi finiti, utilizzando il codice di calcolo Plaxis 2D.

Tale programma consente di studiare problemi di ingegneria geotecnica piani o assialsimmetrici, riproducendo l'esatta storia di carico del terreno e fornendo al termine di ogni fase di carico il quadro tensio-deformativo nell'ammasso e negli elementi di sostegno. In particolare il terreno può essere discretizzato attraverso una maglia costituita da elementi triangolari connessi in corrispondenza dei nodi perimetrali (possono essere utilizzati elementi a 6 o a 15 nodi). I modelli di comportamento applicabili nella descrizione del suolo possono essere sia di tipo elastico che di tipo elasto-plastico ed è possibile riprodurre le varie fasi di scavo attivando o disattivando gli elementi del modello interessati.

Per il suolo si utilizza un legame costitutivo elastico-lineare perfettamente plastico, adottando il criterio di rottura di Mohr-Coulomb, mentre le strutture sono schematizzate attraverso un materiale a comportamento elastico-lineare. Gli elementi "beam" sono caratterizzati da rigidezza assiale EA, rigidezza flessionale EJ, peso proprio e coefficiente di Poisson v.

L'analisi del comportamento del modello, come in precedenza accennato, è di tipo statico incrementale: ogni passo di calcolo coincide cioè con una precisa configurazione caratterizzata da un certo grado di scavo, da un certo insieme di rivestimenti e da una precisa distribuzione dei carichi applicati. Lo stato di sollecitazione ed il campo di spostamenti conseguente dipendono dalla storia delle configurazioni precedenti, data la natura elasto-plastica del modello. Le analisi sviluppate sono dunque volte a cogliere il comportamento dei supporti di prima fase e definitivo

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX


soggetti a compressione momenti flettenti e taglio. I carichi agenti sono pertanto costituiti in questo caso dalle spinte del terreno.

Il sostegno di prima fase è stato simulato con elementi "plate" aventi comportamento elasticolineare. Gli elementi plate, nel modello matematico, sono stati simulati con un materiale di rigidezza equivalente ed è considerata la sezione omogeneizzata composta da centina-shotcrete. Il sostegno di prima fase è stato verificato sia in condizioni giovani, sia in condizioni di completa maturazione.

Tabella 7-1 Caratteristiche rivestimento di prima fase in Plaxis 2D.

	Shotcrete	E shotcrete [MPa]	E _{acciaio} [MPa]	EA sez. eq [kN/m]	EI _{sez. eq} [kNm²/m]
Sezione tipo 1 2 IPN 140@1.0m + 0.2 m shotcrete	Fresco	15000	210000	3.657·10 ⁶	1.217·10 ⁴
	Maturo	31000	210000	6.857·10 ⁶	2.283·10 ⁴
Sezione tipo 2	Fresco	15000	210000	4.607·10 ⁶	1.695·10⁴
2 IPN 160@0.5m + 0.2 m shotcrete	Maturo	31000	210000	7.807·10 ⁶	2.762·104

Le caratteristiche della sezione equivalente sono state calcolate secondo la teoria di Carranza Torres (2004).

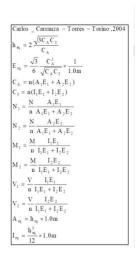


Figura 7-1 Calcolo della sezione equivalente secondo Carranza Torres (2004)

A lungo termine si è ipotizzato che il sostegno di prima fase e gli interventi di trattamento del terreno non siano più attivi ed i carichi siano trasferiti al rivestimento definitivo. Il rivestimento definitivo è simulato tramite elementi plate aventi comportamento elastico-lineare. Al momento della loro attivazione, è stato disattivato qualsiasi intervento di miglioramento delle condizioni del terreno nell'intorno dello scavo.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

7.1 Sezione pk 14+586 - sottopasso di via Toscanini con consolidamento dall'alto – Tipo 1

La zona di consolidamento a capanna eseguito dalla superficie è stata simulata come una fascia di elementi triangolari di spessore pari a circa 2,5m sulla calotta ed in corrispondenza dei piedritti. I parametri assegnati a tale materiale sono riassunti nella tabella seguente.

Tabella 7-2 Parametri utilizzati per la simulazione del consolidamento da Piano Campagna.

γ	С	ф	E	ν
[kN/m ³]	[kPa]	[°]	[MPa]	[-]
19	150	36	450	0.3

7.1.1 Fasi di modellazione

Come accennato nei paragrafi precedenti, la modifica dello stato tenso-deformativo attorno allo scavo della galleria e le forze agenti sul rivestimento saranno calcolati attraverso diverse fasi computazionali, che simulano l'andamento della realizzazione della galleria nella sezione di analisi considerata. In particolare, il comportamento tridimensionale, che simula l'avanzamento dello scavo, è tenuto in conto utilizzando il fattore di rilascio tensionale λ che simula l'effetto di confinamento sulla cavità e del progressivo incremento dei carichi dell'ammasso scavato sugli appoggi installati man mano che il fronte di scavo avanza.

Il valore di rilascio tensionale λ quindi può essere definito come:

$$p_r = p_0 (1 - \lambda)$$

- P_r è il valore della pressione fittizia ad una certa distanza dal fronte di scavo
- P_0 è la pressione litostatica calcolata alla profondità data galleria considerata
- λ è definito come fattore di rilascio tensionale e varia da 0 a 1; in particolare per λ =0 rappresenta la configurazione di partenza con assenza dello scavo e pressioni litostatiche, mentre λ =1 significa totale rilascio tensionale e rappresenta una sezione a grande distanza dal fronte di scavo.

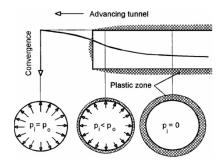
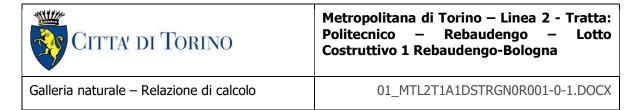


Figura 7-2 Fasi di scavo e rilasci per la realizzazione di un tunnel



CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Per cui le fasi utilizzate per la modellazione dell'esecuzione della galleria caratterizzata dalla sezione di tipo 1 sono di seguito riportate.

- Fase 0: condizione geostatica considerando la quota di progetto della falda (+1.5m rispetto alla quota misurata nell'autunno 2021)
- Fase 1: attivazione del carico superficiale (70 kN/m per tener conto sia dei carichi variabili accidentali 20kN/m sia del riporto ai lati del ponte) e azzeramento degli spostamenti (in corrispondenza degli appoggi del ponte sono stati imposti carichi pari a 200 kN/m per tener conto sia del peso del ponte stesso sia dei carichi variabili accidentali);
- Fase 2: attivazione del consolidamento;
- Fase 3: situazione prima dell'applicazione del sostegno di prima fase con corrispondente scarico tensionale (λ =0.48);
- Fase 4: Installazione del sostegno di prima fase cls fresco e applicazione di ulteriore scarico tensionale (λ =0.6);
- Fase 5: situazione lontano dal fronte di scavo-cls maturo (λ =1);
- Fase 6: scavo dell'arco rovescio e applicazione del rivestimento definitivo,
- Fase 7: disattivazione del consolidamento per la condizione di lungo termine e innalzamento guota falda +3.0m rispetto alla guota di progetto.
- Fase 8: condizione sismica

7.1.2 Risultati

7.1.2.1 Condizioni tensio-deformative finali al contorno

Sono riportati di seguito i punti di plasticizzazione del modello corrispondenti sia alla fase di installazione del rivestimento di prima fase (cls fresco con scarico tensionale λ =0.6 e cls maturo con scarico tensionale λ =1.0) sia alla fase di installazione del rivestimento definitivo considerando la fase a breve termine e la fase a lungo termine (senza la presenza del Jet grouting di contorno)

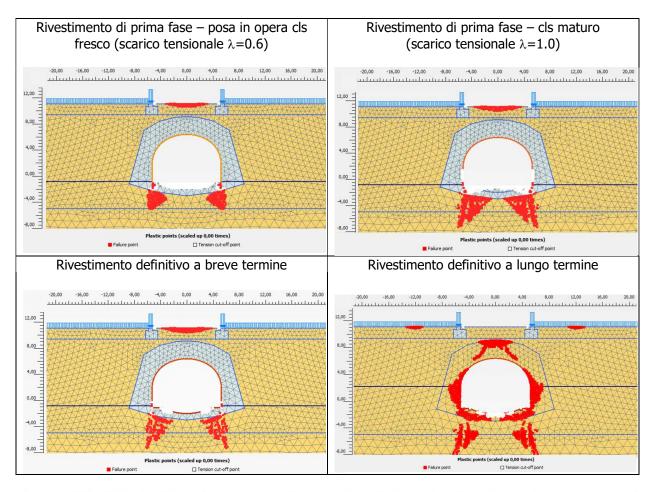
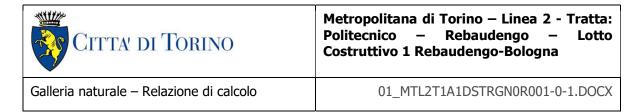
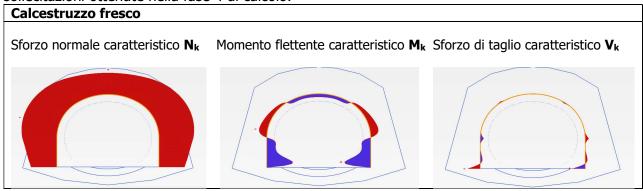
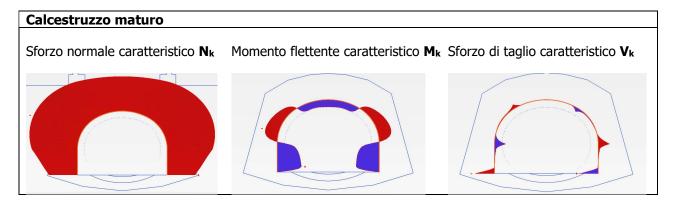



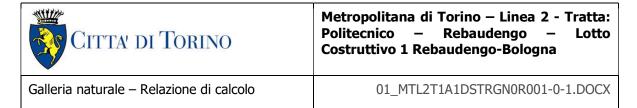
Figura 7-3 Punti di plasticizzazione del modello – fase installazione rivestimento di prima fase e fase di installazione del rivestimento definitivo


Come si evince dai risultati del modello agli elementi finiti, l'estensione delle zone plasticizzate intorno alla sezione di scavo, risulta contenuta grazie ai consolidamenti effettuati in precedenza.

7.1.2.2 Sollecitazioni sul sostegno di prima fase

Di seguito sono mostrati gli sforzi caratteristici di sollecitazione (N_k , M_k , T_k), ottenuti dall'analisi numerica della sezione. Per le verifiche del calcestruzzo fresco sono state considerate le sollecitazioni ottenute nella fase 4 di calcolo.




Figura 7-4 Andamento delle sollecitazioni caratteristiche – Rivestimento prima fase

I valori di progetto delle massime sollecitazioni agenti sono riportate nelle tabelle seguenti

Tabella 7-3 Valori di progetto delle sollecitazioni - Rivestimento prima fase

CALCESTRUZZO FRESCO									
	Cal	otta	Piedritti						
	N_d (kN)	M_d (kNm)	V _d (kN)	N _d (kN)	M_d (kNm)	V_d (kN)			
N _{max}	-143	1	0	-168	0	31			
N_{min}	-241	-2	-1	-228	0	9			
M _{max}	-167	1	0	-181	7	2			
M_{min}	-239	-2	0	-168	0	-31			
V _{max}	-228	0	9	-168	0	31			
V_{min}	-228	0	-9	-168	0	-31			

CALCESTRUZZO MATURO										
	Cal	otta	Piedritti							
	N_d (kN)	M_d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)				
N _{max}	-260	2	0	-208	0	23				
N_{min}	-380	-3	0	-339	2	14				
M _{max}	-260	2	0	-234	6	-1				
M_{min}	-376	-4	0	-210	0	-24				
V _{max}	-339	2	15	-208	0	23				
V_{min}	-338	2	-15	-210	0	-24				

Nelle seguenti immagini sono riportati i valori degli spostamenti del sostegno di prima fase risultanti nella fase 5 di fine posa rivestimento di prima fase.

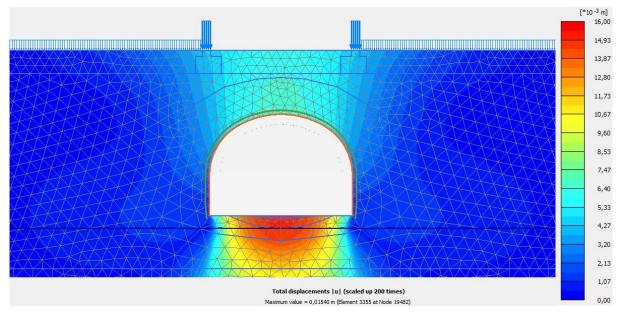
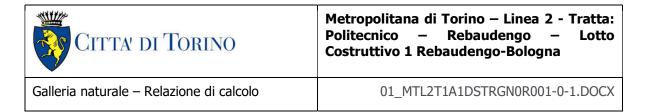
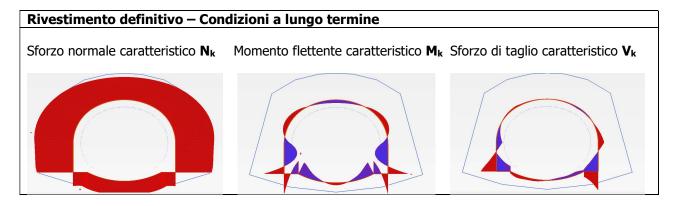


Figura 7-5 Spostamenti totali corrispondenti alla fase di fine posa rivestimento di prima fase

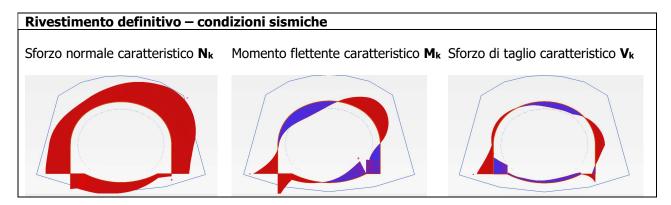

Tabella 7-4 Spostamenti totali netti – Rivestimento di prima fase.

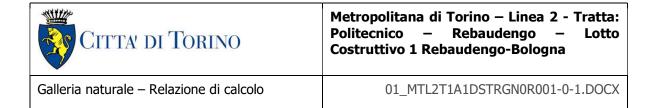
		Spostamenti orizzontali ux[mm]	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
		Positivi verso l'interno della sezione	Positivi verso l'interno della sezione	
Fine posa rivestimento	Calotta	-	6.90 mm	
di prima fase	Piedritti	-1.5 mm	-0.6 mm	


7.1.2.3 Sollecitazioni sul rivestimento definitivo

Di seguito sono mostrati gli sforzi caratteristici di sollecitazione (N_k, M_k, T_k) per il rivestimento finale in condizioni di lungo termine (Simulando il deterioramento del Jet Grouting) e in condizioni

sismiche, ottenuti dall'analisi numerica della sezione. In accordo con la pratica corrente, per questo genere di opere, è stata considerata la perdita di ogni capacità strutturale del rivestimento di prima fase, così che solo il rivestimento definitivo si oppone ai carichi provenienti dal terreno e dall'acqua.




Figura 7-6 Andamento delle sollecitazioni caratteristiche – Rivestimento definitivo

I valori di progetto delle massime sollecitazioni agenti sono riportate nelle tabelle seguenti

Tabella 7-5 Valori di progetto delle sollecitazioni – Rivestimento definitivo

Rivesti	Rivestimento definitivo – Condizioni a lungo termine											
	Calotta Piedritti			Giunto (Muretta)			Arco rovescio					
	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)
N _{max}	-299	23	0	-499	10	122	-265	-168	271	-269	-44	205
N _{min}	-521	3	48	-513	46	73	-506	-82	-204	-402	40	0
M _{max}	-513	46	73	-507	75	-2	-270	-43	-204	-328	93	0
M _{min}	-470	-29	0	-505	-46	-179	-495	-218	-278	-269	-44	205
V _{max}	-513	46	73	-502	-46	179	-267	-218	297	-269	-44	205
V_{min}	-512	46	-78	-506	-46	-180	-267	-218	-297	-271	-20	-196

Rivestimento definitivo – Condizioni sismiche												
	Calotta I			Piedritti	Piedritti Giunto			o (Muretta)		Arco rovescio		
	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)
N_{max}	-223	227	-24	-365	191	49	-165	117	-189	-197	232	-110
N_{min}	-610	-340	-21	-503	-322	-281	-517	-565	-368	-416	-105	70
M _{max}	-239	238	1	-381	200	-1	-194	219	-116	-207	296	-89
M_{min}	-610	-342	-3	-502	-322	-280	-517	-565	-368	-348	-319	311
V _{max}	-445	-46	121	-366	191	49	-362	-565	384	-348	-319	312
V_{min}	-451	22	-191	-503	-322	-281	-517	-565	-368	-197	232	-110

Nelle seguenti immagini sono riportati i valori degli spostamenti del sostegno definitivo (al netto di quelli esibiti dal sostegno di prima fase) nella fase 7 per la condizione a lungo termine simulando il deterioramento del consolidamento di Jet grouting.

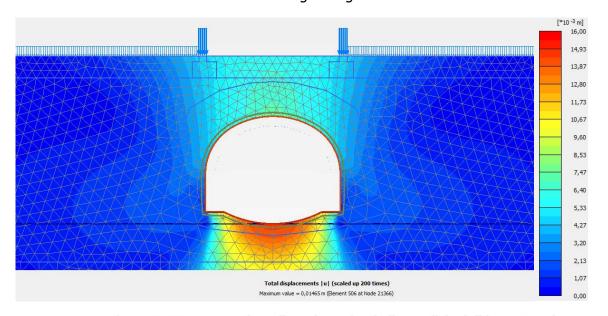


Figura 7-7 Spostamenti totali corrispondenti alle condizioni di lungo termine

Tabella 7-6 Spostamenti totali.

		abena / o opostamenti totam			
		Spostamenti orizzontali ux[mm]	Spostamenti verticali uy[mm]		
		Positivi verso l'interno della sezione	Positivi verso l'interno della sezione		
Condizioni a lungo termine	Calotta	-	-4.0 mm		
	Piedritti	-2.00 mm	-		
	Arco rovescio	-	19.00 mm		

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

7.2 Sezione pk 15+162 – Consolidamento in avanzamento e sezione di scavo parzializzata – Tipo 2

Il miglioramento del terreno in calotta è realizzato mediante l'intervento in avanzamento, costituito dal sistema di bulloni autoperforanti iniettati con resina poliuretanica, eseguito ogni 2,00m di scavo ed avente 2,00m di sovrapposizione tra 2 trattamenti consecutivi. Nell'analisi numerica tale miglioramento è stato simulato con l'introduzione di un materiale di spessore equivalente pari a carica 80cm, modellato attraverso elementi triangolari all'estradosso della calotta, aventi le caratteristiche di deformabilità e resistenza del miglioramento summenzionato.

Tabella 7-7 Parametri di calcolo per la simulazione del miglioramento del terreno in calotta.

γ	c	φ	E	v
[kN/m³]	[kPa]	[°]	[MPa]	[-]
19	1800	36	850	0.2

Il calcolo per il rilascio tensionale da applicare nella modellazione è stato eseguito considerando un terreno migliorata al fronte grazie all'inserimento dei VTR così come dettagliato nel paragrafo 7.3.

7.2.1 Fasi di modellazione

Come accennato nei paragrafi precedenti, la modifica dello stato tenso-deformativo attorno allo scavo della galleria e le forze agenti sul rivestimento saranno calcolati attraverso diverse fasi computazionali, che simulano l'andamento della realizzazione della galleria nella sezione di analisi considerata. In particolare, il comportamento tridimensionale, che simula l'avanzamento dello scavo, è tenuto in conto utilizzando il fattore di rilascio tensionale λ che simula l'effetto di confinamento sulla cavità e del progressivo incremento dei carichi dell'ammasso scavato sugli appoggi installati man mano che il fronte di scavo avanza.

Il valore di rilascio tensionale λ quindi può essere definito come:

$$p_r=p_0 (1-\lambda)$$

- P_r è il valore della pressione fittizia ad una certa distanza dal fronte di scavo
- P_0 è la pressione litostatica calcolata alla profondità data galleria considerata
- λ è definito come fattore di rilascio tensionale e varia da 0 a 1; in particolare per λ =0 rappresenta la configurazione di partenza con assenza dello scavo e pressioni litostatiche, mentre λ =1 significa totale rilascio tensionale e rappresenta una sezione a grande distanza dal fronte di scavo.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

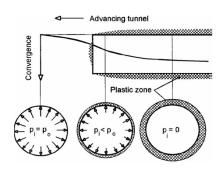
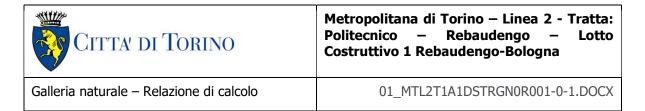



Figura 7-8 Fasi di scavo e rilasci per la realizzazione di un tunnel

Per cui le fasi utilizzate per la modellazione dell'esecuzione della galleria caratterizzata dalla sezione di tipo 2 sono di seguito riportate.

- Fase 0: condizione geostatica considerando la quota di progetto della falda (+1.5m rispetto alla quota misurata che date le condizioni dei luoghi si considera in questa fase coincidente con il piano di arco rovescio provvisorio);
- Fase 1: attivazione del carico superficiale (30 kN/m dati dalla presenza dell'edificio in superficie) e azzeramento degli spostamenti;
- Fase 2: attivazione del miglioramento del terreno;
- Fase 3: scavo dell'area di calotta e situazione prima dell'applicazione del sostegno di prima fase con corrispondente scarico tensionale (λ =0.45);
- Fase 4: Installazione del sostegno di prima fase nell'area di calotta cls fersco e applicazione di ulteriore scarico tensionale (λ =0.52);
- Fase 5: situazione lontano dal fronte di scavo-cls maturo (λ =1);
- Fase 6: attivazione del miglioramento del terreno nella zona di arco rovescio simulando le iniezioni di consolidamento verticale;
- Fase 7: Scavo della parte inferiore della sezione e rilascio tensionale parziale.
- Fase 8: applicazione del rivestimento di prima fase nella parte inferiore della sezione (piedritti) cls fresco e applicazione di ulteriore scarico tensionale (λ =0.45);
- Fase 9: situazione lontano dal fronte di scavo-cls maturo (λ =1);
- Fase 10: scavo dell'arco rovescio e applicazione del rivestimento definitivo,
- Fase 11: disattivazione del consolidamento per la condizione di lungo termine e innalzamento quota falda +3.0m rispetto alla quota di progetto.
- Fase 12: condizione sismica

7.2.2 Risultati

7.2.2.1 Condizioni tensio-deformative finali al contorno

Sono riportati di seguito i punti di plasticizzazione sia del modello corrispondente alla fase di posa in opera del rivestimento di prima fase nella zona di calotta con cls giovane (scarico tensionale λ =0.8) e alla fase di completamento del sostegno di prima fase con cls maturo (scarico tensionale λ =1.0) sia alla fase di installazione del rivestimento definitivo considerando la fase a breve termine e la fase a lungo termine (senza la presenza delle iniezioni di consolidamento in arco rovescio)

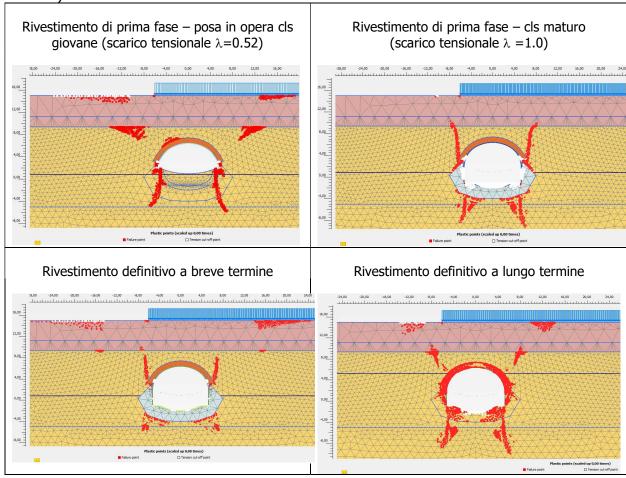
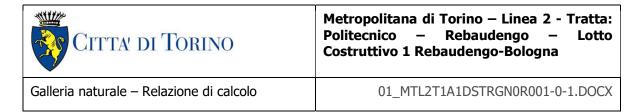
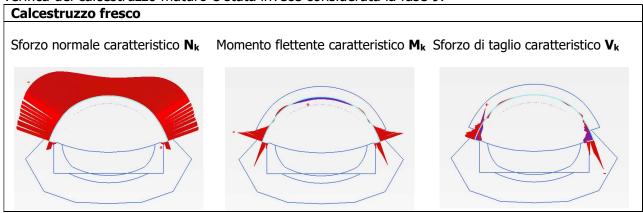



Figura 7-9 Punti di plasticizzazione – fase di posa in opera del rivestimento di prima fase e rivestimento definitivo


Come si evince dai risultati del modello agli elementi finiti, il consolidamento in calotta mediante bulloni autoperforanti con conseguente miglioramento del terreno risulta essenziale per limitare i cedimenti in superficie. Inoltre l'estensione delle zone plasticizzate intorno alla sezione di scavo in arco rovescio, risulta contenuta grazie ai consolidamenti effettuati.

7.2.2.2 Sollecitazioni sul sostegno di prima fase

Di seguito sono mostrati gli sforzi caratteristici di sollecitazione (N_k , M_k , T_k). Per le verifiche del calcestruzzo fresco sono state considerate le sollecitazioni ottenute nella fase 4 mentre per la verifica del calcestruzzo maturo è stata invece considerata la fase 9.

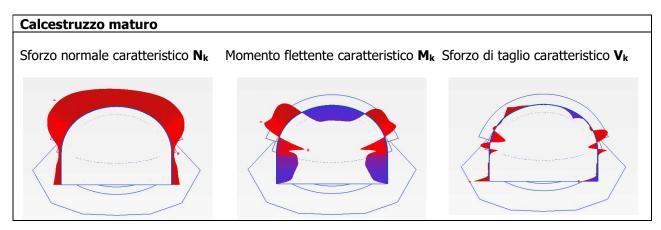


Figura 7-10 Andamento delle sollecitazioni caratteristiche – Rivestimento prima fase con cls giovane successivo allo scavo della zona di calotta e maturo corrispondete allo scavo dell'intera sezione

I valori di progetto delle massime sollecitazioni agenti sono riportate nelle tabelle sequenti

Tabella 7-8 Valori di progetto delle sollecitazioni – Rivestimento prima fase

CALCESTRUZZO FRESCO – Scavo calotta – fase 4 della modellazione									
	Cal	otta		Appoggi					
	N _d (kN)	M _d (kNm)	N _d (kN)	M _d (kNm)	V _d (kN)				
N _{max}	-113	6	0	-9	0	-10			
N _{min}	-277	-3	4	-224	-48	-58			
M _{max}	-144	6	0	-9	0	10			
M _{min}	-224	-42	-60	-215	-66	-63			
V _{max}	-208	-39	58	-59	-66	208			

CIT	ta' di Tori	NO	Politec	olitana di Toi nico – Re tivo 1 Rebau	ebaudengo	– Lotto	
Galleria natur	ale – Relazione o	li calcolo		01_MTL2T1A1	LDSTRGN0R001	L-0-1.DOCX	
V_{min}	-224	-42		-60	-57	-63	-194

CALCESTRUZZO MATURO – Scavo sezione completa – fase 9 della modellazione									
	Cal	otta	Piedritti						
	N _d (kN)	M_d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)			
N _{max}	-58	8	-22	-57	9	-21			
N _{min}	-645	-12	1	-197	0	39			
M _{max}	-144	17	2	-109	14	-1			
M _{min}	-527	-12	0	-197	0	39			
V _{max}	-361	2	36	-197	0	39			
V _{min}	-348	2	-33	-190	0	-39			

Nelle seguenti immagini sono riportati i valori degli spostamenti del sostegno di prima fase risultanti nella fase 9 di fine posa rivestimento di prima fase.

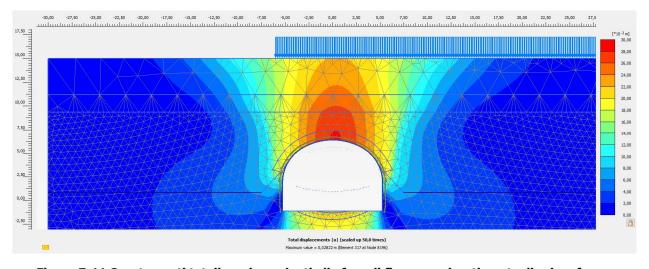
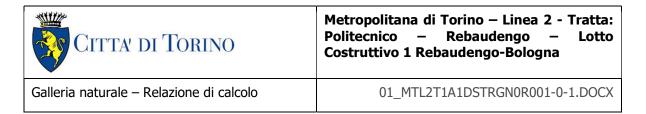


Figura 7-11 Spostamenti totali corrispondenti alla fase di fine posa rivestimento di prima fase

Tabella 7-9 Spostamenti totali netti – Rivestimento di prima fase corrispondete alla fase 9 della


modellazione.

		Spostamenti orizzontali ux[mm] Positivi verso l'interno della sezione	
Fine posa rivestimento	Calotta	-4.1 mm	28.0 mm
di prima fase	Piedritti	2.7 mm	2.8 mm

7.2.2.3 Sollecitazioni sul rivestimento definitivo

Di seguito sono mostrati gli sforzi caratteristici di sollecitazione (N_k, M_k, T_k) per il rivestimento finale in condizioni di lungo termine (Simulando il deterioramento del trattamento d'iniezione) e

in condizioni sismiche, ottenuti dall'analisi numerica della sezione. In accordo con la pratica corrente, per questo genere di opere, è stata considerata la perdita di ogni capacità strutturale del rivestimento di prima fase, così che solo il rivestimento definitivo si oppone ai carichi provenienti dal terreno e dall'acqua.

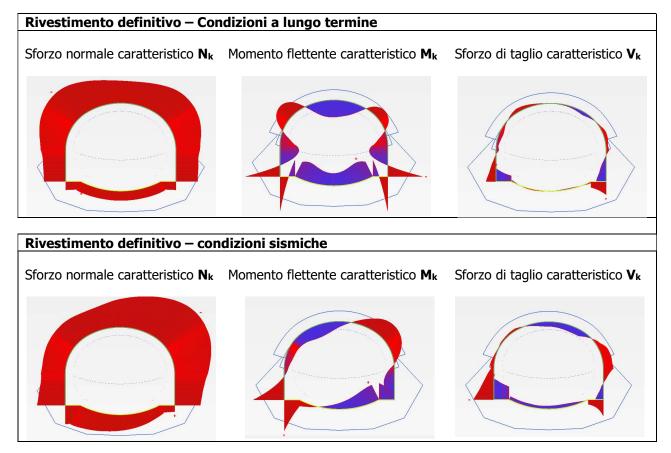


Figura 7-12 Andamento delle sollecitazioni caratteristiche – Rivestimento definitivo

I valori di progetto delle massime sollecitazioni agenti sono riportate nelle tabelle seguenti

Tabella 7-10 Valori di progetto delle sollecitazioni - Rivestimento definitivo

Rivesti	Rivestimento definitivo – Condizioni a lungo termine											
Calotta				Piedritti			Giunto (Kickers)			Arco rovescio		
	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)
N _{max}	-565	95	8	-564	120	95	-369	-382	407	-378	-90	309
N _{min}	-875	-95	8	-621	137	67	-586	-384	389	-506	186	-2
M _{max}	-604	135	-72	-594	152	-1	-377	-124	-324	-506	186	0
M _{min}	-874	-96	-2	-577	-102	263	-586	-384	389	-378	-90	309
V _{max}	-789	11	111	-577	-102	263	-369	-382	407	-378	-90	309

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

V _{min}	-753	22	-92	-578	-99	-266	-369	-384	-416	-378	-88	-314
------------------	------	----	-----	------	-----	------	------	------	------	------	-----	------

Rivesti	Rivestimento definitivo – Condizioni sismiche												
	Calotta			Piedritti			Giun	Giunto (Kickers)			Arco rovescio		
	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	N _d (kN)	M _d (kNm)	V _d (kN)	
N _{max}	-454	229	-4	-473	84	-86	-270	-72	-381	-309	177	-246	
N _{min}	-900	-316	-37	-638	102	-182	-587	-705	-484	-556	-115	85	
M _{max}	-454	229	-5	-575	193	7	-306	149	-257	-398	329	-2	
M _{min}	-896	-323	-1	-548	-342	-354	-587	-705	-484	-464	-346	392	
V _{max}	-764	-184	119	-538	111	149	-471	-705	481	-464	-346	392	
V_{min}	-740	-52	-182	-548	-342	-354	-587	-705	-484	-309	177	-246	

Nelle seguenti immagini sono riportati i valori degli spostamenti del sostegno definitivo (al netto di quelli esibiti dal sostegno di prima fase) nella fase 11 per la condizione a lungo termine simulando il deterioramento del consolidamento.

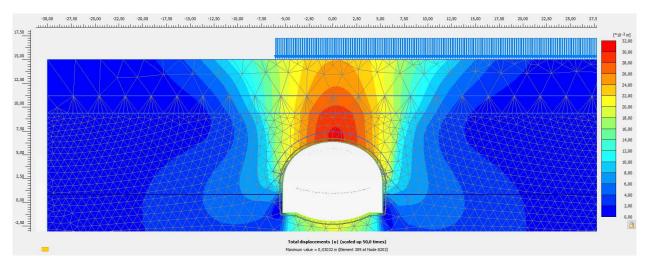


Figura 7-13 Spostamenti totali corrispondenti alle condizioni di lungo termine

Tabella 7-11 Spostamenti totali.

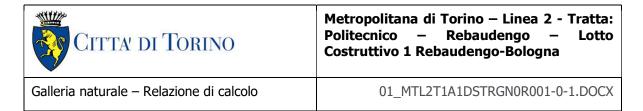
		Spostamenti orizzontali ux[mm] Positivi verso l'interno della sezione	
Condizioni a lungo termine	Calotta	-0.5 mm	5.0 mm
	Piedritti	0.3 mm	-1.70 mm
	Arco rovescio	-	27.0 mm

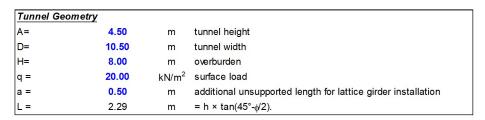
CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

7.3 Stabilità dei fronti di scavo

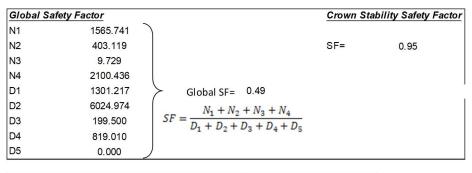
Durante lo scavo della galleria nei tratti in cui è prevista la sezione di tipo 2, per ovviare alla mancanza del jet grouting e garantire la stabilità del fronte di scavo durante l'avanzamento, oltre alla parzializzazione dello scavo è previsto un consolidamento mediante VTR di lunghezza pari a 12,00m di cui 6,00m utili realizzato ogni 3 campi di avanzamento. I VTR saranno disposti a distanza pari a 1.00 in tutta l'area di scavo.

La valutazione della stabilità del fronte di scavo può essere condotta mediante l'impiego di metodi analitici semplificati all'equilibrio limite. In particolare si fa riferimento alle teorie di Tamez e Cornejo che ipotizzano che esistano dei prismi di terreno in distacco secondo sezioni longitudinali, giungendo a definire un coefficiente di sicurezza SF nei confronti della stabilità del fronte di scavo. Il metodo dell'equilibrio limite proposto da Tamez tiene conto della riduzione dello stato di confinamento triassiale del nucleo di terreno oltre il fronte per mezzo di un meccanismo di rottura del tipo effetto volta, con il quale il volume di terreno gravante sulla corona della galleria è definito da un paraboloide, approssimato mediante tre solidi prismatici, come illustrato nelle figure sequenti.


Figura 7-14 Schema proposto da Tamez

Come si evince dalla figura seguente, dove è riportato il calcolo della stabilità del fronte in assenza di elementi che ne aiutino la stabilità, il fattore di sicurezza risulta molto inferiore all'unità che si traduce in una marcata instabilità del fronte di scavo nonostante la parzializzazione dello scavo della sezione.



Layer	si	γ	С	φ
	[m]	[kN/m³]	$[kN/m^2]$	[°]
1	100.00	19.00	10	36

K _P =	3.85
K _A =	0.26

FSF = 0.49 Safety factor of Tamez.

Figura 7-15 Verifica di stabilità secondo Tamez del fronte senza contributo dei VTR

Nelle seguenti immagini viene riportato il calcolo del fattore di sicurezza della stabilità del fronte di scavo in presenza di consolidamento dato dalla presenza di VTR. Secondo le formulazioni empiriche proposte da Tamez, tali consolidamenti sono tenuti in conto mediante il metodo della "coesione equivalente", ovvero valutando la pressione di confinamento sul fronte esercitata dagli elementi in vetroresina. L'incremento di coesione "dc" (vedi figura) è stato calcolato secondo lo schema riportato nella seguente figura, che si traduce in un aumento di coesione pressione aggiuntiva di stabilizzazione al fronte.

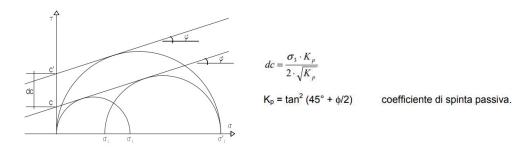


Figura 7-16 Contributo dei VTR

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna	
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX	

La posizione e la geometria dei VTR sull'impronta della sezione di scavo viene dettagliato nel disegno MTL2T1A0DSTRGN1T003 e riportato nell'immagine seguente.

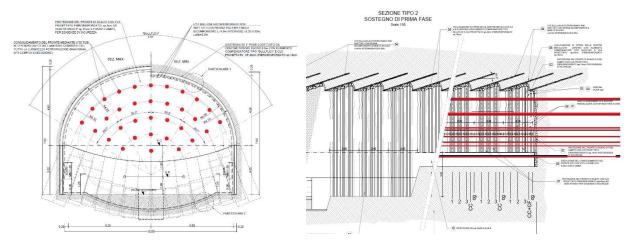


Figura 7-17 Schema iniezioni di consolidazione al fronte mediante VTR

Inoltre per completezza di informazioni sono riportate di seguito le caratteristiche associate ai VTR per il calcolo della pressione fittizia di stabilizzazione del fronte.

Tabella 7-12 Caratteristiche VTR 60/40

Materiale	Diametro esterno[mm]	Diametro interno[mm]	Sezione resistente [mm²]	Resistenza a trazione [MPa]	Resistenza a taglio [MPa]	Modulo E _{VTR} [MPa]
Resina poliestere termoindurente rinforzata con fibra di vetro con superficie esterna ad aderenza migliorata	60	40	1570	500	140	15000

Si è calcolato il valore di σ3 (= pressione di confinamento sul fronte) relativo a tre possibili meccanismi di rottura:

Rottura del VTR

Sfilamento dell'elemento VTR dal consolidamento di malta cementizia per superamento delle tensioni di aderenza VTR/malta

Sfilamento del blocco di malta consolidata dal terreno circostante per superamento delle tensioni di aderenza malta/terreno

Per la valutazione di "dc" è stato considerato il minore tra i tre.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna	
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX	

<u>VTR</u>			
n°	35	nº	total number of VTR elements
L =	6.00	m	overlap length.
P=	188	mm	VTR element perimeter.
A _{VTR} =	1571	$\rm mm^2$	VTR element area.
σ=	450000	kN/m ²	VTR material maximum stress
øh =	110	mm	diameter of the hole.
Geometry o	f the excavation	_	
A =	44.00	m ²	Face excavation area
<u>Geotechnic</u>	al parameters		
c =	10.00	kN/m²	cohesion of the soil to be excavated.
φ =	36.00	0	friction angle of the soil to be excavated.
τ ₁ =	98	kN/m ²	mortar-soil adherence tension.
τ2 =	2300	kN/m ²	VTR-mortar adherence tension
<u>Maximum F</u>	Pulling Force		
T1 =	203.20	kN	Maximum Pulling Force at the interface soil-mortar:
T2 =	706.86	kN	Maximum Pulling Force of VTR element:
T3 =	2601.24	kN	Maximum Pulling Force at the interface VTR element-mortar:
T _{LIM} =	203.20	kN	Applicable pulling force
Design para	meters of face	<u>stability</u>	
P _E =	145.47	kN/m ²	stabilization pressure to be applied to the face due to the SN.

Figura 7-18 Incremento della coesione di progetto con contributo dei VTR

Fattore parziale di sicurezzza EQU sulle azioni perm. favorevoli

Come si evince dalla figura seguente, dove è riportato il calcolo della stabilità del fronte utilizzando il valore di coesione migliorata, il fattore di sicurezza risulta di molto superiore all'unità che quindi implica un comportamento elastico dell'ammasso al fronte con conseguenti limitati fenomeni di estrusione.

 $\gamma_{G1-EQU} =$

0.90

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Layer	s _i	γ	c improved	ф
	[m]	[kN/m³]	[kN/m²]	[°]
1	100.00	19.00	153	36.00

lc= 143	kN/m2
---------	-------

Tunnel Ge	eometry		
A=	4.50	m	tunnel height
D=	10.50	m	tunnel width
H=	8.00	m	overburden
q =	20.00	kN/m2	surface load
a =	0.50	m	additional unsupported length for lattice girder installation
L=	2.29	m	= h × $tan(45^{\circ}-\psi/2)$.

K _P =	3.85	
K _A =	0.26	

Global	Safety Factor		Crown S	Stability Safety Factor
N1	23733.531			
N2	6110.482		SF=	14.48
N3	148.611			
N4	32084.557			
D1	1301.217	Global SF= 7.44		·
D2	6024.974	N + N + N + N		
D3	199.500	$SF = \frac{N_1 + N_2 + N_3 + N_4}{D_1 + D_2 + D_3 + D_4 + D_5}$		
D4	819.010	$D_1 + D_2 + D_3 + D_4 + D_5$		
D5	0.000	J		

FSF =	7.44	Safety factor of Tamez.
. 0.	5. 5. 5. 5.	callety labter of railiez.

Figura 7-19 Verifica di stabilità secondo Tamez del fronte con contributo dei VTR

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

8. VERIFICHE STRUTTURALI

8.1 Sezione di progetto Tipo 1 - Sostegno di prima fase

La sezione è stata divisa in differenti parti tra calotta e piedritti come mostrato nella seguente figura, per ottimizzare le verifiche strutturali.

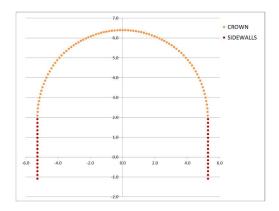


Figura 8-1 Modello di suddivisione della sezione tipo 1- Sostegno di prima fase

Le verifiche per il supporto di prima fase sono state eseguite allo stato limite ultimo (SLU), considerando le sollecitazioni di progetto calcolate incrementando le sollecitazioni caratteristiche stimate con il modello agli elementi finiti del coefficiente parziale di sicurezza delle azioni permanenti $\gamma G = 1.30$. I valori di calcolo delle resistenze dei materiali si ricavano dividendo ciascun valore caratteristico per il fattore di sicurezza parziale γM specifico del materiale considerato come descritto in Tabella 6-4.

Le verifiche strutturali, eseguite secondo la teoria di Carranza Torres (2004) sono riportate di seguito; in particolare è stata eseguita una verifica a presso/tenso-flessione sia della centina sia della sezione di calcestruzzo intermedio tra due centine successive, scomponendo le forze di sollecitazione in funzione delle rigidezze degli elementi verificati. Per quanto riguardi invece la verifica a taglio, è stato ipotizzato che l'intera aliquota di taglio agente sia assorbita dalle sole centine.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

8.1.1 Verifica a presso flessione

Le verifiche sono state eseguite sia per il calcestruzzo giovane sia per il calcestruzzo maturo le cui caratteristiche sono riportate nella seguente tabella.

Tabella 8-1 Caratteristiche rivestimento di prima fase – Centine, Cls giovane e Cls maturo.

Centine	Acciaio	Profilo	Area [m²]	Inerzia [m⁴]	Altezza t[m]	f _{yk} [MPa]	f _{yd} [MPa]	Es [MPa]	Passo [m]
Centine	S275	2 IPN140	3.66E-03	1.15E-05	0.14	275	261.9	2.10E+05	1.00

	CLS	f _{ck} [MPa]	f _{ctk} [MPa]	f _{cd} [MPa]	f _{ctd} [MPa]	E _s [MPa]	t [m]	Area [m²]	Inerzia [m⁴]
Cls (1 d) giovane	C25/30	8.00	-1.44	5.33	-0.96	1.5E+4	0.20	0.2	0.00067
Cls (1 d) maturo	C25/30	25.00	-3.00	16.67	-2.00	3.10E+4	0.20	0.2	0.00067

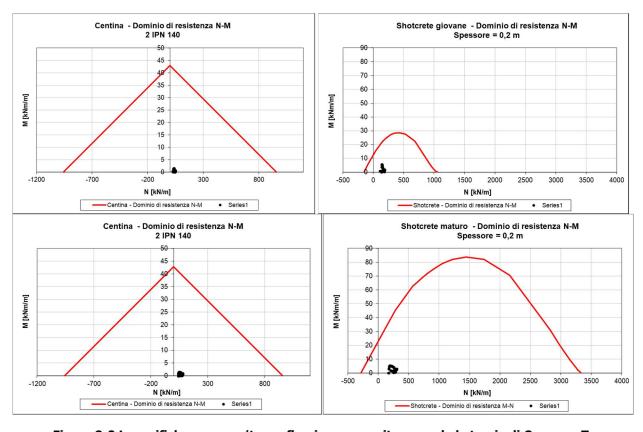


Figura 8-2 Le verifiche a presso/tenso flessione, eseguite secondo la teoria di Carranza Torres (2004)

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

8.1.1 Verifica a taglio

La verifica a taglio, è stata eseguita sulle sole centine, ipotizzando che queste assorbano l'intera aliquota di taglio agente.

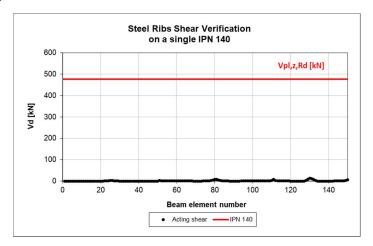


Figura 8-3 Le verifiche a taglio – ipotesi che le sole centine assorbano l'intera aliquota di taglio agente

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

8.2 Sezione di progetto Tipo 1 - Rivestimento definitivo

La sezione è stata divisa in differenti parti tra calotta, piedritti, arco rovescio e area di giunzione tra piedritti e arco rovescio, come mostrato nella seguente figura, per ottimizzare le verifiche strutturali.

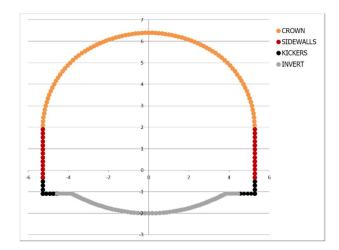


Figura 8-4 Modello di suddivisione della sezione tipo 1 – Sostegno definitivo

I valori di calcolo delle resistenze dei materiali si ricavano dividendo ciascun valore caratteristico per il fattore di sicurezza parziale γ_M specifico del materiale considerato come descritto in 0. Le verifiche per il supporto definitivo sono state eseguite:

- in condizioni statiche (condizioni di normale esercizio):
 - Verifica a S.L.U. per flessione;
 - Verifica a S.L.U. per taglio;
 - Verifica a S.L.E per fessurazione: w<0.3mm.
- in condizioni dinamiche (condizioni sismiche):
 - Verifica a S.L.U. per flessione;
 - Verifica a S.L.U. per taglio.

Considerando per le S.L.U le sollecitazioni di progetto calcolate incrementando le sollecitazioni caratteristiche stimate con il modello agli elementi finiti del coefficiente parziale di sicurezza delle azioni permanenti $\gamma_G=1.30$

Per le verifiche sul rivestimento definitivo è stato considerato uno spessore di 60cm di calcestruzzo armato gettato in opera in calotta e piedritti, e uno spessore di 70cm in arco rovescio. Inoltre, per effettuare la verifica strutturale, sono state proposte e verificate distribuzioni di armatura con barre corrugate di diametro 20mm. In particolare:

- Armatura intradosso: barre Ø20 con passo 20.0 cm
- Armatura estradosso: barre Ø20 con passo 20.0 cm

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Di seguito è mostrato il dominio di resistenza della sezione armata confrontata con le sollecitazioni agenti lungo l'intero perimetro della galleria distinguendo l'arco rovescio che ha spessore 70cm dal resto della sezione:

<u>Condizioni statiche – SLU presso-flessione</u>

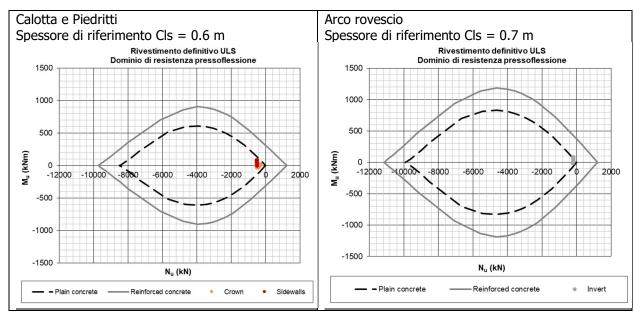


Figura 8-5 Verifica presso flessione SLU condizioni statiche – Rivestimento definitivo

Condizioni sismiche – SLU S presso-flessione

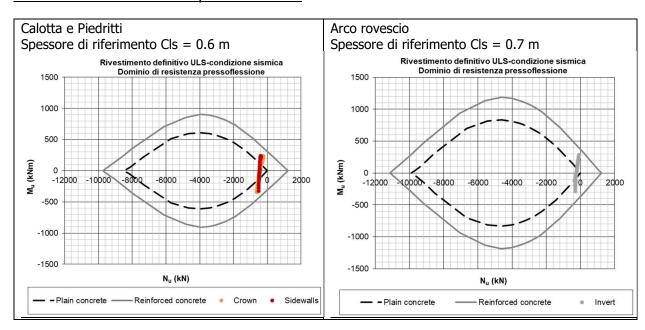


Figura 8-6 Verifica presso flessione SLU S condizioni sismiche – Rivestimento definitivo

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

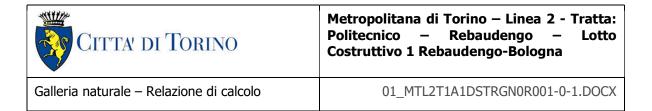
E' bene sottolineare come le verifiche appena mostrate siano state eseguite omettendo i picchi di sollecitazione agenti nell'area di giunzione da arco rovescio e piedritti. Quest'area, avente un raggio pari allo spessore minimo degli elementi collegati, risulta un'area singolare con spessore variabile e con sovrapposizione delle armature provenienti sia dai piedritti che dall'arco rovescio. Le stesse ipotesi sono state adottate per la verifica a taglio agli SLU sia in condizioni statiche di lungo termine (senza jet grouting) sia in condizioni sismiche (dinamiche)

Nella seguente tabella sono riportati i valori massimi degli sforzi agenti di progetto e il corrispondente valore del taglio resistente calcolato secondo Eurocodice solo con l'ausilio dell'armatura prevista a flessione.

Tabella 8-2 Verifica taglio mediante il calcolo del taglio resistente dato dalle sole armatura prevista a flessione

a nessione							
Verifica a taglio		N _d	M _d	V _d	V _{rd,c}	σ_{cp}	Verifica
		[kN/m]	[kNm/m]	[kN/m]		,	
Condizioni statiche a lungo termine – Rivestimento definitivo - SLU							
	N_{max}	-299.1	22.7	-0.1	243.5	-0.50	Verificato
	N_{min}	-520.7	2.6	48.0	274.0	-0.87	Verificato
Calotta	M_{max}	-513.0	46.2	73.4	272.9	-0.86	Verificato
Calotta	M_{min}	-470.3	-28.7	-0.4	267.1	-0.78	Verificato
	V_{max}	-513.0	46.2	73.4	272.9	-0.86	Verificato
	V_{min}	-512.2	45.6	-78.0	272.8	-0.85	Verificato
	N_{max}	-499	10	122	271.0	-0.83	Verificato
	N_{min}	-513	46	73	272.9	-0.85	Verificato
Piedritti	M_{max}	-507	75	-2	272.1	-0.84	Verificato
Plearitti	M_{min}	-505	-46	-179	271.9	-0.84	Verificato
	V_{max}	-502	-46	179	271.4	-0.84	Verificato
	V_{min}	-506	-46	-180	271.9	-0.84	Verificato
	N_{max}	-269	-44	205	257.0	-0.38	Verificato
	N_{min}	-402	40	0	275.5	-0.57	Verificato
Arco rovescio	M_{max}	-328	93	0	265.2	-0.47	Verificato
Arco rovescio	M_{min}	-269	-44	205	257.0	-0.38	Verificato
	V_{max}	-269	-44	205	257.0	-0.38	Verificato
	V_{min}	-271	-20	-196	257.4	-0.39	Verificato
Condizioni dinamiche analisi sismica – Rivestimento definitivo – SLU S							
	N_{max}	-223	227	-24	233	-0.37	Verificato
	N_{min}	-610	-340	-21	286	-1.02	Verificato
0.1	M_{max}	-239	238	1	235	-0.40	Verificato
Calotta	M_{min}	-610	-342	-3	286	-1.02	Verificato
	V_{max}	-445	-46	121	264	-0.74	Verificato
	V_{min}	-451	22	-191	264	-0.75	Verificato
	N _{max}	-365	191	49	253	-0.61	Verificato
			_				Non
Piedritti	N_{min}	-503	-322	-281	272	-0.84	Verificato
	M _{max}	-381	200	-1	255	-0.64	Verificato

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX


	M_{min}						Non
	I*Imin	-502	-322	-280	271	-0.84	Verificato
	V_{max}	-366	191	49	253	-0.61	Verificato
	V_{min}						Non
	V min	-503	-322	-281	272	-0.84	Verificato
	N_{max}	-197	232	-110	247	-0.28	Verificato
Arco rovescio	N_{min}	-416	-105	70	278	-0.59	Verificato
	M_{max}	-207	296	-89	248	-0.30	Verificato
	M_{min}						Non
	irimin	-348	-319	311	268	-0.50	Verificato
	V_{max}						Non
	v max	-348	-319	312	268	-0.50	Verificato
	V_{min}	-197	232	-110	247	-0.28	Verificato

Di seguito, per completezza di informazioni sono riportate le verifiche riguardanti il taglio massimo agente in ognuna delle parti principali della sezione analizzata:

Crown - Long Term		
γ_c =is the partial safety factor for concrete	1.5	
k =is a factor that takes into account the size effect =1+(200/d) $^{\circ}$ 0.5	1.60	
d =is the effective depth of the cross section	550	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0029	
Ast = longitudinal reinforcement area	1571	mm2
$f_{\text{ck}} = \text{is the characteristic value of cylindrical compressive strength}$	25	Мра
$b_{\text{w}}=$ is the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-512	kN
Ac= concrete area	600000	mm2
$\sigma_{\text{cp}} = \text{is the average stress}$ acting on the concrete cross section (-comp)	-0.85	N/mm2

Vrd,ct	273 kN
Maximum acting design shear	73.45 kN

viu,ot		
Vrd,ct	257	7 kN
$\sigma_{cp}=$ is the average stress acting on the concrete cross section (-comp)	-0.39	N/mm2
Ac = concrete area	700000	mm2
Nd= compressive force (-comp)	-271	kN
$p_{\rm w}=$ is the smallest width of the cross section in tensile area	1000	mm
c _k = is the characteristic value of cylindrical compressive strength	25	Мра
Ast = longitudinal reinforcement area	1570.8	mm2
ol = is the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0024	
d =is the effective depth of the cross section	650	mm
$c = is$ a factor that takes into account the size effect $= 1 + (200/d) ^0.5$	1.55	
$\gamma_{\rm c}$ =is the partial safety factor for concrete	1.5	
nvert - Long Term		
	180.0	3 kN
Vrd,ct	27	2 kN
Scp — is the average stroop acting on the concrete cross section (comp)	0.01	14/1111112
$\sigma_{\rm co}$ = is the average stress acting on the concrete cross section (-comp)	-0.84	N/mm2
Nd= compressive force (-comp) Ac= concrete area	-506 600000	kN mm2
b _w = is the smallest width of the cross section in tensile area	1000	mm
f _{ck} = is the characteristic value of cylindrical compressive strength	25	Мра
Ast = longitudinal reinforcement area	1570.8	mm2
pl = is the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0029	
d =is the effective depth of the cross section	550	mm
$k = is$ a factor that takes into account the size effect =1+(200/d) 0 0.5	1.60	
γ_c =is the partial safety factor for concrete	1.5	

Figura 8-7 Verifica del taglio massimo agente in ognuna delle parti principali della sezione analizzata mediante il calcolo del taglio resistente dato dalle sole armatura prevista a flessione – Condizione a lungo termine –

Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna

Galleria naturale – Relazione di calcolo

01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Crown - Seismic analysis		
γ_c =is the partial safety factor for concrete	1.5	
$k = is$ a factor that takes into account the size effect =1+(200/d) $^{\circ}$ 0.5	1.60	
d =is the effective depth of the cross section	550	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0029	
Ast = longitudinal reinforcement area	1570.8	mm2
f_{ck} = is the characteristic value of cylindrical compressive strength	25	Mpa
$b_w = is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-450.9	kN
Ac = concrete area	600000	mm2
σ_{cp} = is the average stress acting on the concrete cross section (-comp)	-0.75	N/mm2
or — is the average stress details on the controlle closs section (comp)	0.70	14/1111112
Vrd,ct		4 kN
	190.5	3 kN
Sidewalls - Seismic analysis		
γ_c =is the partial safety factor for concrete	1.5	
k = is a factor that takes into account the size effect = $1 + (200/d) ^0.5$	1.60	
d =is the effective depth of the cross section	550	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0029	
Ast = longitudinal reinforcement area	1570.8	mm2
$f_{ck} = is$ the characteristic value of cylindrical compressive strength	25	Mpa
$b_w = is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-503	kN
Ac= concrete area	600000	mm2
$\sigma_{\text{cp}} = \text{is the average stress acting on the concrete cross section (-comp)}$	-0.84	N/mm2
Mind ad	070	LAI
Vrd,ct	280.59	kN kN
	200.03	, KIN
Invert - Seismic analysis		
γ_c =is the partial safety factor for concrete	1.5	
k = is a factor that takes into account the size effect = $1 + (200/d) ^0.5$	1.55	
d =is the effective depth of the cross section	650	mm
$\rho \text{I} = \text{is the reinforcement ratio for the longitudinal reinforcement} = \text{Ast/Ac}$	0.0024	
Ast = longitudinal reinforcement area	1570.8	mm2
$f_{ck} = is$ the characteristic value of cylindrical compressive strength	25	Мра
$b_{\text{w}}=is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-197	kN
Ac= concrete area	700000	mm2
$\sigma_{\text{cp}} = \text{is the average stress acting on the concrete cross section (-comp)}$	-0.28	N/mm2
Vrd,ct	247	7 kN
Viu,ct	<u></u>	MIT

312.34 kN

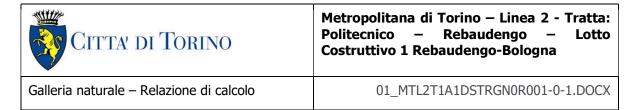
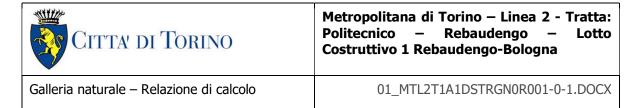

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Figura 8-8 Verifica del taglio massimo agente in ognuna delle parti principali della sezione analizzata mediante il calcolo del taglio resistente dato dalle sole armatura prevista a flessione — Condizione Sismica —

La verifica mostra come nella zona di giunzione tra arco rovescio e piedritti della sezione verificata è necessaria un'armatura a taglio specifica. L'armatura di progetto per la presso flessione risulta non sufficiente per assorbire gli sforzi di taglio agenti. Nelle sezioni non verificate viene proposta e verificata di seguito l'aggiunta di armatura con diametro 12mm (considerando spilli con un interasse trasversali pari a 25cm e longitudinale 40cm).

Di seguito, sono riportate le verifiche al taglio con l'aggiunta dell'armatura a taglio proposta delle sezioni precedentemente non verificate:



SHEAR VERIFICATION EC2 WITH SHEAR REINFORCEMENT

Vd <vrd< th=""><th>V_{Rd} V_d</th><th>491.9 280.6</th><th></th></vrd<>	V _{Rd} V _d	491.9 280.6	
ı	V _{Rd,max}	2475.0	
	$\mathbf{V}_{Rd,c,min}$ $\mathbf{V}_{Rd,s}$	219.1	
	V _{Rd,c}	272.9 264.5	
,			
q	45	1.032+10	0.10L-1
а	90	tan 1.63E+16	6.13E-1
diameter stirrups/tie bars ramas/nº barras	0	12 2.5	cotan
ge stress acting on the concrete cross section (-compression)	$\sigma_{\rm cp}$	-0.84	N/mm ²
Nd (- compression)		-503	
reinforcement ratio for the longitudinal reinforcement = Ast/Ac $$	ρ	0.0029	
reinforcementspacing	s _t	250	mm
	n	0.6	
	A _{sw,max}	7027.778	
reinforcement area per unit	A _{sw}		mm ²
longitudinal reinforcement area	A _{sl}	1570.8	
design value of steel strength	f _{ywd}	391.30	
characteristic value of steel strength	ισικ f _{ywk}		N/mm ²
characteristic value of concrete tensille strength	f _{ctk}		N/mm ²
characteristic value of cylindrical compressive strength	γ _s f _{ck}		N/mm ²
partial safety factor for concrete partial safety factor for steel	γc	1.15	
factor that takes into account the size effect = $1+(200/d) ^0.5$	k	1.60 1.5	
	A _c	600000	mm²
	Z		mm
smallest width of the cross section in tensile area	b_{w}	1000	
effective depth of the cross section	d		mm
depth of the cross section	h	600	mm

Figura 8-9 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato dall'aggiunta di armatura a taglio — Condizione Sismica - Piedritti —

SHEAR VERIFICATION EC2 WITH SHEAR REINFORCEMENT

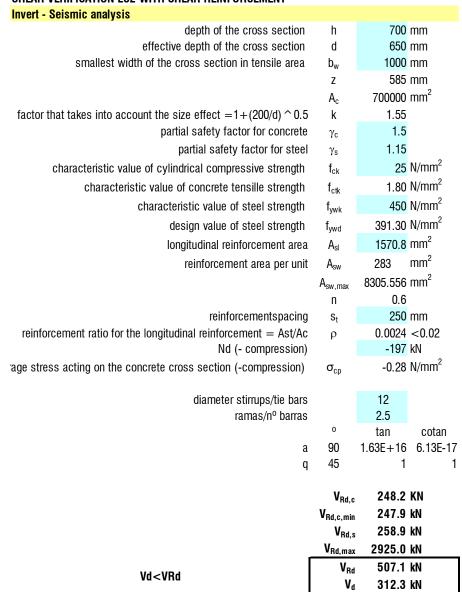


Figura 8-10 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato dall'aggiunta di armatura a taglio — Condizione Sismica — Arco rovescio —

Al fine di verificare lo stato limite di esercizio del rivestimento definitivo viene verificata l'ampiezza massima della fessura in ciascuna sezione. L'ampiezza della fessura massima ammissibile è pari a 0,3 mm. I fattori parziali si sicurezza considerati per la combinazione di stato limite di esercizio sono pari a 1 sia per i carichi permanenti che per i carichi variabili (vediTabella 6-5.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Il calcolo per la stima dell'ampiezza di possibili fessure è stato eseguito per tutte le coppie di valori N-M lungo l'intera sezione analizzata. Per semplicità sono riportate di seguito solo i risultati riguardanti la massima fessura calcolata lungo la calotta e i piedritti e nell'are di arco rovescio. Il calcolo è stato eseguito secondo Eurocodice in condizioni statiche a lungo termine.

DATA:				
	CROSS-SECTION			
	Cross-section width	b	1.000 m	
	Cross-section depth	h	0.600 m	
	Nominal concrete cover	C _{nom}	40.00 mm	Art 4.4.1
	Area of compression reinforcement	A _s '	15.70 cm ²	
	Diameter of compression bars	φ's	20 mm	
	Mechanical cover of compression reinf.	ď'	0.050 m	
	Area of tension reinforcement	As	15.70 cm ²	
	Diameter of tension bars	φs	20 mm	
	Mechanical cover of tension reinf.	d'	0.050 m	
	Area of prestressing steel within A _{c,eff}	A _p '	0.00 cm ²	
	Equivalent diameter of tendon	ф	0 mm	Art. 6.8.2
	Spacing between bonded reinforcement	S	200 mm	
	MATERIALS			
		fck	25 N/mm ²	
	Modulus of elasticity of reinf. steel	Es	210000 N/mm ²	
	Ratio of bond strength between prest.&reinf.		0.00	Table 6.2
	DESIGN FORCES			
	Bending moment	М	66.0 kNm	
	Axial force (N>0 comp.)	N	391.0 kN	
	FACTORS FOR CALCULATION OF CRACK	(WIDTH		
	Factor depending on the duration of load	k _t	0.4	
	Bond properties of bonded reinf. coeff.	k ₁	0.8	
	Distribution of strain coefficient	k ₂	0.5	
		k ₃	3.4	
		k ₄	0.425	
	Limiting crack width	\mathbf{w}_{max}	0.30 mm	Table 7.1N
RESULTS:				
	Crack width	Wk	0.00 mm	< 0.3 mm> OK

Figura 8-11 Verifica fessurazione - massima fessura calcolata lungo la calotta e i piedritti

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna				
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX				

ATA:		•	•		•	
	CROSS-SECTION					
	Cross-section width	b	1	1.000 r	n	
	Cross-section depth	h	(0.700 n	n	
	Nominal concrete cover	C _{nom}	" 4	40.00 n	nm	Art 4.4.1
	Area of compression reinforcement	A _s '	1	15.70 c	:m²	
	Diameter of compression bars	ψ's		20 n	nm	
	Mechanical cover of compression reinf.	ď'	•	0.050 n	n	
	Area of tension reinforcement	A_s	1	15.70 c	m ²	
	Diameter of tension bars	φs	•	20 n	nm	
	Mechanical cover of tension reinf.	ď'	•	0.050 n	n	
	Area of prestressing steel within A _{c.eff}	A _p '		0.00	m ²	
	Equivalent diameter of tendon	ф		0 n		Art. 6.8.2
	Spacing between bonded reinforcement	Ψν S	•	200 n		
	MATERIALS					
	Charact. compressive strength of concrete	fck		25 N	√mm²	
	Modulus of elasticity of reinf. steel	E_s	21	00001	√mm²	
	Ratio of bond strength between prest.&reinf.	ζ		0.00		Table 6.2
	_					
	DESIGN FORCES					
	Bending moment	М		64.4 k		
	Axial force (N>0 comp.)	N	1	137.0 k	:N	
	FACTORS FOR CALCULATION OF CRACK	(WIDTH	l			
	Factor depending on the duration of load	k _t		0.4		
	Bond properties of bonded reinf. coeff.	k ₁	•	0.8		
	Distribution of strain coefficient	k ₂	•	0.5		
		k ₃		3.4		
		k ₄	(0.425		
		114				
	Limiting crack width	\mathbf{w}_{max}		0.30 n	nm	Table 7.1N
RESULTS:						

Figura 8-12 Verifica fessurazione - massima fessura calcolata nell'are di arco rovescio

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

8.3 Sezione di progetto Tipo 2 - Sostegno di prima fase

La sezione tipo 2 come descritto nel paragrafo 0 a differenza della sezione tipo 1 verrà eseguita in differenti fasi di scavo. Verrà prima eseguito lo scavo della parte di calotta sostenuto da una corona di bulloni autoperforanti e poi, una volta consolidata la base dello scavo mediante iniezioni di consolidamento verticale, si procederà con il completamento della sezione. Il fronte di scavo verrà migliorata mediante l'inserimento di VTR (L=12,00m utili 6,00m ogni 3 campi) al fronte.

Completato il rivestimento di prima fase, si procederà poi, a partire da una distanza prefissata dal fronte, con lo scavo dell'arco rovescio e l'immediato getto del rivestimento definitivo. Ultima fase poi sarà il completamento del rivestimento definitivo in calotta e sui piedritti. In questo modo è possibile minimizzare l'ampiezza del fronte e gestire al meglio le problematiche di scavo.

Essendo la sezione tipo 2 divisa in due successivi fasi di scavo, la verifica strutturale del supporto di prima fase verrà eseguita verificando prima il sostegno applicato nella zona di calotta successivo alla prima fase di scavo considerando quindi un cls giovane, e poi verificando il sostegno con calcestruzzo maturo ed il sostegno di prima fase completo su tutta la sezione. Le sezioni verificate sono riportate nelle figure seguenti:

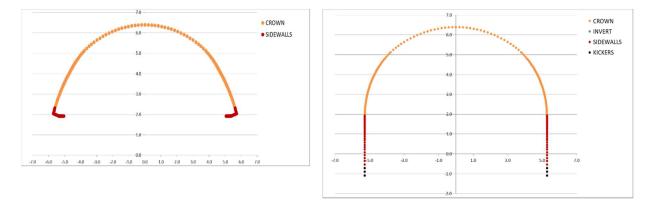


Figura 8-13 Modello di suddivisione della sezione tipo 2– Sostegno di prima fase riferito sia alla prima fase di scavo (verifica con cls giovane) sia all'intera sezione (cls maturo senza arco rovescio)

Le verifiche per il supporto di prima fase sono state eseguite allo stato limite ultimo (SLU), considerando le sollecitazioni di progetto calcolate incrementando le sollecitazioni caratteristiche stimate con il modello agli elementi finiti del coefficiente parziale di sicurezza delle azioni permanenti $\gamma_G = 1.30$. I valori di calcolo delle resistenze dei materiali si ricavano dividendo ciascun valore caratteristico per il fattore di sicurezza parziale γ_M specifico del materiale considerato come descritto inTabella 6-4.

Le verifiche strutturali, eseguite secondo la teoria di Carranza Torres (2004) sono riportate di seguito; in particolare è stata eseguita una verifica a presso/tenso-flessione sia della centina sia della sezione di calcestruzzo intermedio tra due centine successive, scomponendo le forze di sollecitazione in funzione delle rigidezze degli elementi verificati. Per quanto riguardi invece la

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

verifica a taglio, è stato ipotizzato che l'intera aliquota di taglio agente sia assorbita dalle sole centine.

8.3.1 Verifica a presso flessione

Le verifiche a presso/tensio-flessione sono state eseguite sia per il calcestruzzo fresco sia per il calcestruzzo maturo le cui caratteristiche sono riportate nella seguente tabella:

	Tabella 8-3 Caratteristiche rivestimento di prima fase – Centine, Cls fresco e Cls maturo.								
Centine	Acciaio	Profilo	Area [m²]	Inerzia [m⁴]	Altezza t[m]	f _{yk} [MPa]	f _{yd} [MPa]	Es [MPa]	Passo [m]
Continio	S275	2 IPN160	5.56E-03	1.87E-05	0.16	275	261.9	2.10E+05	0.5
	CLS	f _{ck} [MPa]	f _{ctk} [MPa]	f _{cd} [MPa]	f _{ctd} [MPa]	E _s [MPa]	t [m]	Area [m²]	Inerzia [m⁴]
Cls (1 d) giovane	C25/30	8.00	-1.44	5.33	-0.96	1.5E+4	0.20	0.1	0.00033
Cls (1 d) maturo	C25/30	25.00	-3.00	16.67	-2.00	3.10E+4	0.20	0.1	0.00033

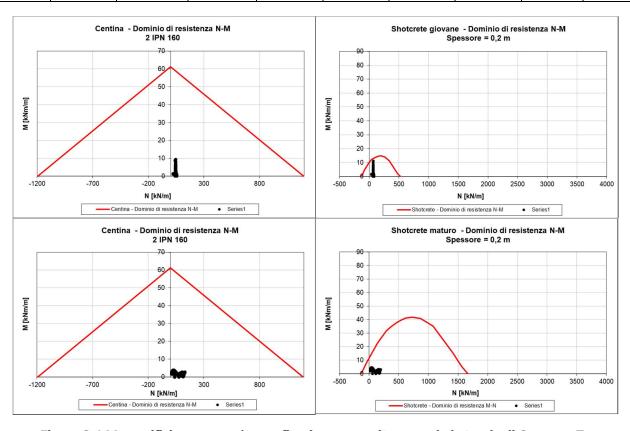


Figura 8-14 Le verifiche a presso/tenso flessione, eseguite secondo la teoria di Carranza Torres (2004)

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

8.3.2 Verifica a taglio

La verifica a taglio, è stata eseguita sulle sole centine, ipotizzando che queste assorbano l'intera aliquota di taglio agente.

Figura 8-15 Le verifiche a taglio – ipotesi che le sole centine assorbano l'intera aliquota di taglio agente

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

8.4 Sezione di progetto Tipo 2 - Rivestimento definitivo

La sezione è stata divisa in differenti parti tra calotta, piedritti, arco rovescio e area di giunzione tra piedritti e arco rovescio, come mostrato nella seguente figura, per ottimizzare le verifiche strutturali.

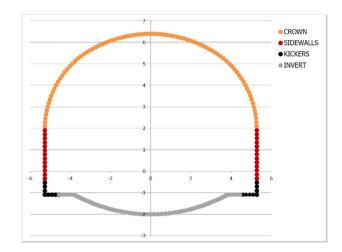


Figura 8-16 Modello di suddivisione della sezione tipo 2 – Sostegno definitivo

I valori di calcolo delle resistenze dei materiali si ricavano dividendo ciascun valore caratteristico per il fattore di sicurezza parziale γ_M specifico del materiale considerato come descritto in 0. Le verifiche per il supporto definitivo sono state eseguite:

- in condizioni statiche (condizioni di normale esercizio):
 - Verifica a S.L.U. per flessione;
 - Verifica a S.L.U. per taglio;
 - Verifica a S.L.E per fessurazione: w<0.3mm.
- in condizioni dinamiche (condizioni sismiche):
 - Verifica a S.L.U. per flessione;
 - Verifica a S.L.U. per taglio.

Considerando per le S.L.U le sollecitazioni di progetto calcolate incrementando le sollecitazioni caratteristiche stimate con il modello agli elementi finiti del coefficiente parziale di sicurezza delle azioni permanenti $\gamma_G=1.30$

Per le verifiche sul rivestimento definitivo è stato considerato uno spessore di 60cm di calcestruzzo armato gettato in opera in calotta e piedritti, e uno spessore di 70cm in arco rovescio. Inoltre, per effettuare la verifica strutturale, sono state proposte e verificate distribuzioni di armatura con barre corrugate di diametro 20mm. In particolare:

- Armatura intradosso: barre Ø20 con passo 20.0 cm
- Armatura estradosso: barre Ø20 con passo 20.0 cm

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Di seguito è mostrato il dominio di resistenza della sezione armata confrontata con le sollecitazioni agenti lungo l'intero perimetro della galleria distinguendo l'arco rovescio che ha spessore 70cm dal resto della sezione:

<u>Condizioni statiche – SLU presso-flessione</u>

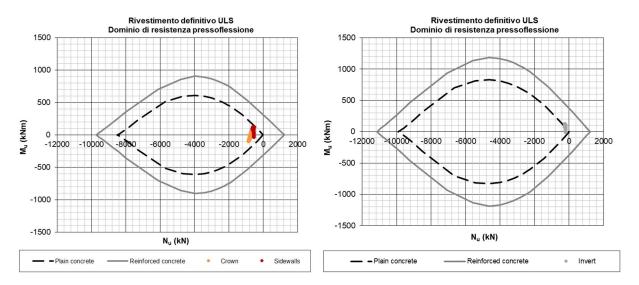


Figura 8-17 Verifica presso flessione SLU condizioni statiche – Rivestimento definitivo

Condizioni sismiche – SLU S presso-flessione

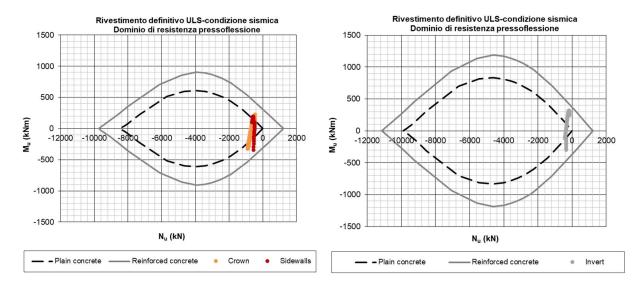


Figura 8-18 Verifica presso flessione SLU S condizioni sismiche – Rivestimento definitivo

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Nella seguente tabella sono riportati i valori massimi degli sforzi agenti di progetto e il corrispondente valore del taglio resistente calcolato secondo Eurocodice solo con l'ausilio dell'armatura prevista a flessione.

Tabella 8-4 Verifica taglio mediante il calcolo del taglio resistente dato dalle sole armatura prevista a flessione

		_		riessione		I	
Verifica a	taglio	N _d [kN/m]	M _d [kNm/m]	V _d [kN/m]	$V_{\text{rd,c}}$	σср	Verifica
	C-				otimonto defi	nitivo CLI	<u> </u>
	Condizioni statiche a lungo termine – Rivestimento definitivo - SLU						
	N_{max}	-564.8	95.2	8.1	280.1	-0.94	Verificato
	N_{min}	-875.1	-95.3	8.3	322.7	-1.46	Verificato
Calotta	M_{max}	-604.2	135.4	-71.8	285.5	-1.01	Verificato
Carocca	M_{min}	-874.4	-95.6	-2.2	322.6	-1.46	Verificato
	V_{max}	-789.0	10.9	111.5	310.9	-1.32	Verificato
	V_{min}	-753.2	21.9	-91.9	306.0	-1.26	Verificato
	N_{max}	-564	120	95	280.0	-0.94	Verificato
	N_{min}	-621	137	67	287.8	-1.04	Verificato
Piedritti	M_{max}	-594	152	-1	284.1	-0.99	Verificato
Plearitti	M_{min}	-577	-102	263	281.7	-0.96	Verificato
	V_{max}	-577	-102	263	281.7	-0.96	Verificato
	V_{min}	-578	-99	-266	281.9	-0.96	Verificato
	N _{max}	-378	-90	309	272.1	-0.54	Non Verificato
	N_{min}	-506	186	-2	290.0	-0.72	Verificato
Arco	M_{max}	-506	186	0	290.0	-0.72	Verificato
rovescio	M_{min}	-378	-90	309	272.1	-0.54	Non Verificato
	V_{max}	-378	-90	309	272.1	-0.54	Non Verificato
	V_{min}	-378	-88	-314	272.2	-0.54	Non Verificato
			niche analisi si				
	N _{max}	-454	229	-4	265	-0.76	Verificato
	N_{min}	-900	-316	-37	326	-1.50	Verificato
	M_{max}	-454	229	-5	265	-0.76	Verificato
Calotta	M_{min}	-896	-323	-1	326	-1.49	Verificato
	V_{max}	-764	-184	119	307	-1.27	Verificato
	V_{min}	-740	-52	-182	304	-1.23	Verificato
	N _{max}	-473	84	-86	267	-0.79	Verificato
	N _{min}	-638	102	-182	290	-1.06	Verificato
	M _{max}	-575	193	7	281	-0.96	Verificato
Piedritti	M _{min}	-548	-342	-354	278	-0.91	Non Verificato
	V _{max}	-538	111	149	276	-0.90	Verificato
	V_{min}	-548	-342	-354	278	-0.91	Non Verificato
	N _{max}	-309	177	-246	263	-0.44	Verificato
Arco	N _{min}	-556	-115	85	297	-0.79	Verificato
rovescio	M _{max}	-398	329	-2	275	-0.79	Verificato
	- I*Imax	-236	323	-2	2/3	-0.57	VEHILALO

CITTA	T id	ORINO		Metropolitana di Torino – Linea 2 - Tratta Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna			
Galleria naturale – Relazione di calcolo				01_	MTL2T1A1D	STRGN0R00	01-0-1.DOCX
	1 _{min}	-464 -464	-346 -346	392 392	284 284	-0.66 -0.66	Non Verificato Non Verificato
\ \	/ _{min}	-309	177	-246	263	-0 44	Verificato

Di seguito, per completezza di informazioni sono riportate le verifiche riguardanti il taglio massimo agente in ognuna delle parti principali della sezione analizzata:

Crown - Long Term		
γ_c =is the partial safety factor for concrete	1.5	
k = is a factor that takes into account the size effect = $1 + (200/d) ^ 0.5$	1.60	
d =is the effective depth of the cross section	550	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0029	
Ast = longitudinal reinforcement area	1571	mm2
$f_{\text{ck}} = \text{is the characteristic value of cylindrical compressive strength}$	25	Мра
$b_{\text{w}}=is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-753	kN
Ac= concrete area	600000	mm2
$\sigma_{\text{cp}} = \text{is}$ the average stress acting on the concrete cross section (-comp)	-1.26	N/mm2

Vrd,ct	306	kN .
Maximum acting design shear	111.49	kN
Sidewalls - Long Term		
γ_c =is the partial safety factor for concrete	1.5	
k = is a factor that takes into account the size effect = $1 + (200/d) ^ 0.5$	1.60	
d =is the effective depth of the cross section	550	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0029	
Ast = longitudinal reinforcement area	1570.8	mm2
$f_{\text{ck}} = \text{is the characteristic value of cylindrical compressive strength}$	25	Mpa
$b_{w}=is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-578	kN
Ac= concrete area	600000	mm2
$\sigma_{\text{cp}} = \text{is the average stress acting on the concrete cross section (-comp)}$	-0.96	N/mm2
Vrd,ct	282	kN

263.27 kN

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Invert - Long Term		
γ_c =is the partial safety factor for concrete	1.5	
k = is a factor that takes into account the size effect = $1 + (200/d) ^0.5$	1.55	
d =is the effective depth of the cross section	650	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0024	
Ast = longitudinal reinforcement area	1570.8	mm2
$f_{ck} = is$ the characteristic value of cylindrical compressive strength	25	Мра
$b_{w}=is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-378	kN
Ac= concrete area	700000	mm2
$\sigma_{\text{cp}} = \text{is the average stress acting on the concrete cross section (-comp)}$	-0.54	N/mm2
Vrd,ct	272	! kN
	313.92	kN

Figura 8-19 Verifica del taglio massimo agente in ognuna delle parti principali della sezione analizzata mediante il calcolo del taglio resistente dato dalle sole armatura prevista a flessione – Condizione a lungo termine –

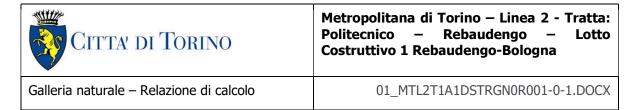
Crown - Seismic analysis		
γ_c =is the partial safety factor for concrete	1.5	
k = is a factor that takes into account the size effect = $1 + (200/d) ^0.5$	1.60	
d =is the effective depth of the cross section	550	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0029	
Ast = longitudinal reinforcement area	1570.8	mm2
$f_{\text{ck}} = \text{is the characteristic value of cylindrical compressive strength}$	25	Mpa
$b_{\text{w}}=is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-739.8	kN
Ac= concrete area	600000	mm2
$\sigma_{\text{cp}} = \text{is the average stress}$ acting on the concrete cross section (-comp)	-1.23	N/mm2

Vrd,ct	304	kN
	182.18	kN
Sidewalls - Seismic analysis		
γ_c =is the partial safety factor for concrete	1.5	
k = is a factor that takes into account the size effect = $1 + (200/d) ^0.5$	1.60	
d =is the effective depth of the cross section	550	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0029	
Ast = longitudinal reinforcement area	1570.8	mm2
$f_{ck} = is$ the characteristic value of cylindrical compressive strength	25	Мра
$b_{w} = is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-548	kN
Ac= concrete area	600000	mm2
$\sigma_{\text{cp}} = \text{is the average stress acting on the concrete cross section (-comp)}$	-0.91	N/mm2

Vrd,ct 278 kN 354.3 kN

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

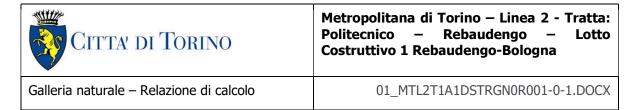
Invert - Seismic analysis		
γ_c =is the partial safety factor for concrete	1.5	
k = is a factor that takes into account the size effect = $1 + (200/d) ^0.5$	1.55	
d =is the effective depth of the cross section	650	mm
$\rho I = is$ the reinforcement ratio for the longitudinal reinforcement = Ast/Ac	0.0024	
Ast = longitudinal reinforcement area	1570.8	mm2
$f_{\text{ck}} = \text{is the characteristic value of cylindrical compressive strength}$	25	Мра
$b_{w}=is$ the smallest width of the cross section in tensile area	1000	mm
Nd= compressive force (-comp)	-309	kN
Ac = concrete area	700000	mm2
$\sigma_{\text{cp}} = \text{is the average stress acting on the concrete cross section (-comp)}$	-0.44	N/mm2
Vrd,ct	263	kN .
	391.78	kN


Figura 8-20 Verifica del taglio massimo agente in ognuna delle parti principali della sezione analizzata mediante il calcolo del taglio resistente dato dalle sole armatura prevista a flessione

— Condizione Sismica —

La verifica mostra come nella zona di giunzione tra arco rovescio e piedritti della sezione verificata è necessaria un'armatura a taglio specifica. L'armatura di progetto per la presso flessione risulta non sufficiente per assorbire gli sforzi di taglio agenti. Nelle sezioni non verificate viene proposta e verificata di seguito l'aggiunta di armatura con diametro 12mm (considerando spilli con un interasse trasversali pari a 25cm e longitudinale 40cm).

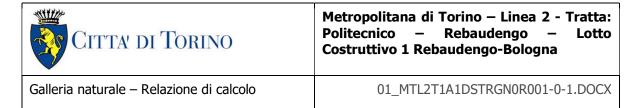
Di seguito, sono riportate le verifiche al taglio con l'aggiunta dell'armatura a taglio proposta delle sezioni precedentemente non verificate:



SHEAR VERIFICATION EC2 WITH SHEAR REINFORCEMENT

V _{Rd,max}	2925.0 532.4	
$V_{Rd,c}$	273.5	
40	ı	
		6.13E-1
	tan	cotan
	12 2.5	
σ_{cp}	-0.54	N/mm ²
	-378	
	0.0024	< 0.02
		mm
n n	0.6	
		mm ²
-		
		N/mm ²
		N/mm ²
Ť		N/mm ²
	1.55	
A_c	700000	mm ²
z.		mm
-		
	A _c k γc γs f _{ck} f _{ctk} f _{ywk} f _{ywd} A _{sl} A _{sw} A _{sw,max} n St ρ	d 650 b _w 1000 z 585 A _c 700000 k 1.55 γ _c 1.5 γ _s 1.15 f _{ck} 25 f _{ctk} 1.80 f _{ywk} 450 f _{ywk} 391.30 A _{SI} 1570.8 A _{SW} 283 A _{SW,max} 8305.556 n 0.6 S _t 250 ρ 0.0024 -378 σ _{cp} -0.54 12 2.5 ο tan 90 1.63E+16 45 1 V _{Rd,c} 273.5 V _{Rd,c,min} 273.1 V _{Rd,s} 2925.0

Figura 8-21 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato dall'aggiunta di armatura a taglio – Condizione a lungo termine – Arco rovescio –



SHEAR VERIFICATION FC2 WITH SHEAR REINFORCEMENT

Vd <vrd< th=""><th>V_{Rd} V_d</th><th>496.1 KN 354.3 kN</th></vrd<>	V _{Rd} V _d	496.1 KN 354.3 kN
1	V _{Rd,max}	2475.0 kN 498.1 kN
	$V_{Rd,s}$	219.1 kN
	$\mathbf{V}_{\mathrm{Rd,c,min}}$	270.6 kN
	$V_{Rd,c}$	279.0 KN
Ч	JU	•
a q	90 45	1.63E+16 6.13E-1
	0	tan cotan
ramas/nº barras		2.5
diameter stirrups/tie bars		12
ge stress acting on the concrete cross section (-compression)	σ_{cp}	-0.91 N/mm ²
Nd (- compression)		-548 kN
$reinforcement\ ratio\ for\ the\ longitudinal\ reinforcement\ =\ Ast/Ac$	ρ	0.0029 < 0.02
reinforcementspacing	\mathbf{s}_{t}	250 mm
	n	0.6
'	A _{sw, max}	7027.778 mm ²
reinforcement area per unit	A _{sw}	283 mm ²
longitudinal reinforcement area	A _{sl}	1570.8 mm ²
design value of steel strength	f _{ywd}	391.30 N/mm ²
characteristic value of steel strength	f _{ywk}	450 N/mm ²
characteristic value of concrete tensille strength	f _{ctk}	1.80 N/mm ²
characteristic value of cylindrical compressive strength	f _{ck}	25 N/mm ²
partial safety factor for steel	γc γs	1.15
factor that takes into account the size effect $=1+(200/d) ^0.5$ partial safety factor for concrete	k	1.60 1.5
	A _c	600000 mm ²
	Z	495 mm
smallest width of the cross section in tensile area	b_{w}	1000 mm
depth of the cross section effective depth of the cross section	d	550 mm
	h	600 mm

Figura 8-22 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato dall'aggiunta di armatura a taglio – Condizione Sismica - Piedritti –

SHEAR VERIFICATION EC2 WITH SHEAR REINFORCEMENT

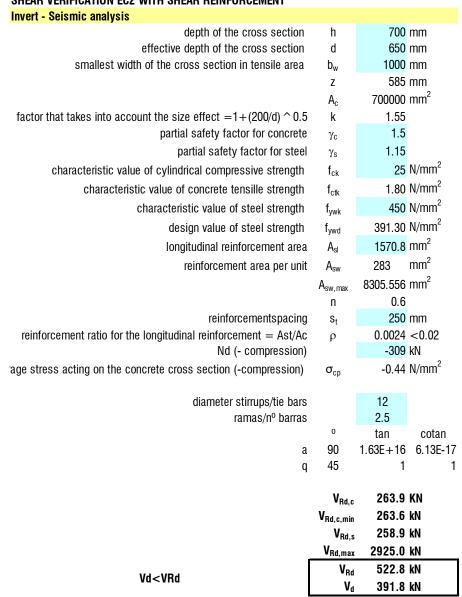


Figura 8-23 Verifica taglio massimo agente mediante il calcolo del taglio resistente dato dall'aggiunta di armatura a taglio – Condizione Sismica – Arco rovescio –

Al fine di verificare lo stato limite di esercizio del rivestimento definitivo viene verificata l'ampiezza massima della fessura in ciascuna sezione. L'ampiezza della fessura massima ammissibile è pari a 0,3 mm. I fattori parziali si sicurezza considerati per la combinazione di stato limite di esercizio sono pari a 1 sia per i carichi permanenti che per i carichi variabili (vediTabella 6-6).

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

Il calcolo per la stima dell'ampiezza di possibili fessure è stato eseguito per tutte le coppie di valori Nk-Mk lungo l'intera sezione analizzata. Per semplicità sono riportate di seguito solo i risultati riguardanti la massima fessura calcolata lungo la calotta e i piedritti e nell'area di arco rovescio. Il calcolo è stato eseguito secondo Eurocodice in condizioni statiche a lungo termine.

DATA:

	CROSS-SECTION			
	Cross-section width	b	1.000 m	
	Cross-section depth	h	0.600 m	
	Nominal concrete cover	C _{nom}	40.00 mm	Art 4.4.1
	Area of compression reinforcement	A _s '	15.70 cm ²	
	Diameter of compression bars	φ's	20 mm	
	Mechanical cover of compression reinf.	d'	0.050 m	
	Area of tension reinforcement	A_s	15.70 cm ²	
	Diameter of tension bars	фв	20 mm	
	Mechanical cover of tension reinf.	d'	0.050 m	
	Area of prestressing steel within A _{c.eff}	A _p '	0.00 cm ²	
	Equivalent diameter of tendon	φ _ο	0 mm	Art. 6.8.2
	Spacing between bonded reinforcement	s	200 mm	
	MATERIALS			
	Charact. compressive strength of concrete	fck	25 N/mm ²	
	Modulus of elasticity of reinf. steel	E_s	210000 N/mm ²	
	Ratio of bond strength between prest.&reinf.	ζ	0.00	Table 6.2
	DESIGN FORCES			
	Bending moment	М	90.0 kNm	
	Axial force (N>0 comp.)	N	432.0 kN	
	FACTORS FOR CALCULATION OF CRACK	WIDTH		
	Factor depending on the duration of load	k _t	0.4	
	Bond properties of bonded reinf. coeff.	k ₁	0.8	
	Distribution of strain coefficient	k ₂	0.5	
	2.523	k ₃	3.4	
		k ₄	0.425	
		N4	0.420	
	Limiting crack width	W _{max}	0.30 mm	Table 7.1N
ESULTS:				

Figura 8-24 Verifica fessurazione - massima fessura calcolata lungo la calotta e i piedritti

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

DATA: **CROSS-SECTION** 1.000 m Cross-section width b Cross-section depth h 0.700 m 40.00 mm Art 4.4.1 Nominal concrete cover $\mathsf{c}_{\mathsf{nom}}$ Area of compression reinforcement 15.70 cm² A_s' Diameter of compression bars 20 mm φ's Mechanical cover of compression reinf. ď 0.050 m A_s Area of tension reinforcement 15.70 cm² Diameter of tension bars 20 mm 0.050 m Mechanical cover of tension reinf. ď' Area of prestressing steel within A_{c,eff} 0.00 cm^2 A_p Art. 6.8.2 0 mm Equivalent diameter of tendon ф 200 mm Spacing between bonded reinforcement **MATERIALS** Charact. compressive strength of concrete fck 25 N/mm² Modulus of elasticity of reinf. steel 210000 N/mm² 0.00 Ratio of bond strength between prest.&reinf. ζ Table 6.2 DESIGN FORCES Bending moment Μ 95.0 kNm Axial force (N>0 comp.) 190.0 _{kN} Ν FACTORS FOR CALCULATION OF CRACK WIDTH Factor depending on the duration of load 0.4 Bond properties of bonded reinf. coeff. k_1 0.8 Distribution of strain coefficient 0.5 k_2 3.4 k_3 0.425 k_4 Limiting crack width \mathbf{w}_{max} 0.30 mm Table 7.1N RESULTS: Crack width < 0.3 mm --> OK 0.05 mm $\mathbf{w}_{\mathbf{k}}$

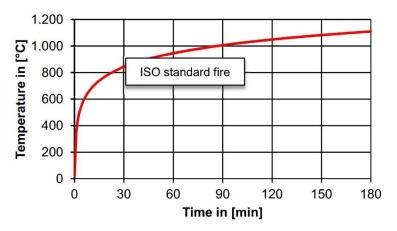
Figura 8-25 Verifica fessurazione - massima fessura calcolata nell'area di arco rovescio

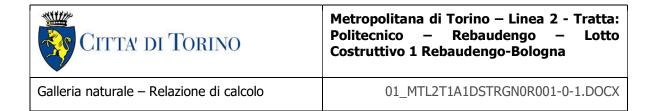
CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

8.5 Verifiche di resistenza al fuoco

Nelle verifiche strutturali, come riportato nel seguente paragrafo, secondo la normativa di riferimento viene anche considerata la resistenza strutturale del rivestimento definitivo in caso di incendio; garantendo che la struttura non collassi a causa delle temperature che si sviluppano all'interno della galleria in seguito ad un definito scenario di progetto.

L'incremento di temperatura che si registra durante l'evoluzione dell'incendio viene descritto adottando la curva standard temperatura/tempo.




Figura 8-26 Curva di fuoco standard considerata

La resistenza strutturale del rivestimento definitivo è verificata in accordo al Metodo Isotermo 500°C, basato sui principi di progettazione strutturale riguardanti la resistenza al fuoco esposti nell' EN 1992-1-2, Allegato B.1, dove è riportato nello specifico: "questo metodo è applicabile a un'esposizione standard al fuoco e a qualsiasi altro regime di tempo di calore che provoca dei campi di temperatura simili nell'elemento esposto al fuoco".

Il Metodo Isotermo a 500°C permette di definire l'estensione della zona danneggiata del rivestimento definitivo e quindi di indicare uno spessore ridotto della sezione trasversale, ignorando il contributo strutturale delle zone danneggiate riscaldate al fronte del calcestruzzo. Si considera che la zona danneggiata si estenda fino alla profondità riferita alla isoterma a 500°C, mentre la parte restante mantiene inalterati i valori di resistenza e delle proprietà elastiche (come in EN 1992-1-2, Allegato B.1).

Sulla base della curva di fuoco parametrica di progetto prescritta, il rivestimento definitivo deve resistere fino a una temperatura massima di 1100°C, che, come indicato di seguito, corrisponde a una classe di fuoco EC2 - R180, come richiesto dalla curva standard. Considerando la curva di progetto al fuoco, il profilo di temperatura incluso nella norma EN 1992-1-2, allegato A, e l'approccio isoterma a 500°C (EN 1992-1-2, Allegato B.1), la profondità massima di danneggiamento del calcestruzzo in caso di incendio R180 si trova a 50 mm di distanza dalla superficie esposta:

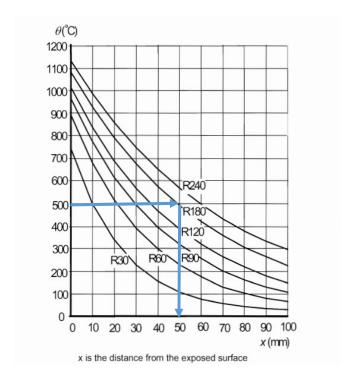


Figura 8-27 Curva di progetto al fuoco (da specifiche tecniche) e profili di temperatura (EN 1992-1-2)

La resistenza della restante sezione di calcestruzzo, è valutata mediante la relazione seguente:

$$f_{cd,fi} = f_{ck} / \gamma_{M,fi}$$

- f_{ck} è il valore caratteristico della resistenza del calcestruzzo;
- $\gamma_{M,fi}$ è il fattore parziale di sicurezza del materiale in caso di incendio (il valore raccomandato di $\gamma_{M,fi}$ è pari a 1.2).

Per quanto concerne l'armatura invece, ad essa viene assegnata una resistenza ridotta in funzione della temperatura raggiunta durante l'incendio. Il contributo dell'acciaio alla resistenza della sezione viene considerato anche se esso si trova al di fuori dell'isoterma 500°C.

La resistenza a snervamento dell'acciaio al variare della temperatura è calcolato mediante la relazione seguente:

$$f_{\text{yd,fi}} = k_{\theta} \cdot f_{\text{yk}} / \gamma_{\text{M,fi}}$$

- f_{yk} è il valore caratteristico della resistenza a snervamento dell'acciaio a temperatura ambiente;
- k_{θ} è il fattore di riduzione della resistenza a snervamento dell'acciaio $(f_{yk,\theta}/f_{yk})$ dipendente dalla temperatura del materiale (Figura 8-28);

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

• $\gamma_{M,fi}$ è il fattore parziale di sicurezza del materiale in caso di incendio (il valore raccomandato di $\gamma_{M,fi}$ è pari a 1.0).

Nella figura seguente si riporta la variazione del fattore $k\theta$ al variare della temperatura.

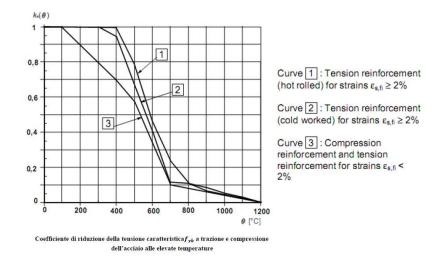


Figura 8-28 Grafico di riduzione della resistenza a snervamento dell'acciaio in relazione alla temperatura

Dalla figura precedente si osserva come l'isoterma 500° C si trova a 50mm dall'intradosso; l'acciaio in intradosso raggiunge la temperatura prossima ai 500° C e, in base al grafico riportato in Figura 8-28 si ottiene un coefficiente $k\theta$ pari a 0.6. Di seguito sono riportate le verifiche effettuate sul dominio per la condizione più sfavorevole (TIPO 2)

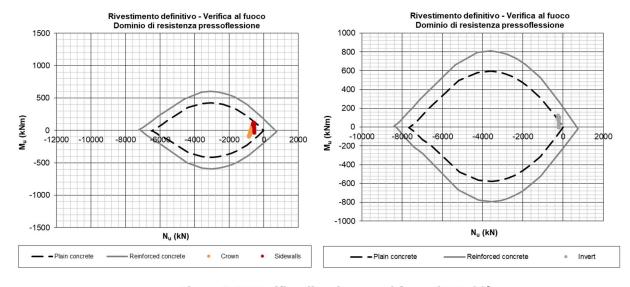


Figura 8-29 Verifica di resistenza al fuoco (5+5\(\psi 20 \)

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

9. PIANO DI MONITORAGGIO

Nel tratto oggetto della presente relazione le pre-esistenze interferite sono estremamente limitate e le soluzioni proposte prevedono un uso massiccio di consolidamenti dalla superficie ed in avanzamento.

A fronte di questa situazione oggettiva, l'impegno per il monitoraggio in corso di costruzione risulta più limitato rispetto ad altri tratti della linea.

In particolare, si distinguono i monitoraggi relativi alla galleria e quelli relativi agli edifici e strutture in genere.

Per quanto attiene la galleria si individuano due tipologie di sezioni:

- Sezione Corrente (SC) che ha lo scopo di monitorare gli spostamenti dei sostegni di prima fase ed i cedimenti in superficie;
- Sezione Principale (SP) costituita dalla SC integrata con misure di deformazione nel terreno, misure del livello piezometrico, misure di carico sui sostegni e misure tensiodeformative nelle strutture definitive

Le sezioni SC hanno una cadenza regolare di circa 25m, mentre le sezioni SP sono localizzati laddove ritenuto più utile al controllo delle interferenze indotte, specie a ridosso delle poche strutture presenti in zona.

Per quanto attiene gli edifici, essi sono tipicamente ad uno o due piani e questi vengono monitorati con misure di spostamento (anche con livellazioni di precisione), vibrometri e fessurimetri.

Lungo la tratta esiste poi un'opera infrastrutturale costituita dal ponte lungo via Toscanini per cui si prevede il controllo degli spostamenti e delle vibrazioni, così come di eventuali fessure.

In merito ai fessurimetri, essi saranno individuati in numero e posizione appena prima dell'avvio della costruzione a seguito di sopralluoghi mirati.

Gli schemi proposti e la localizzazione degli strumenti sono indicati nell'elaborato grafico MTL2T1A1DPRCGN0T001 a cui si rimanda.

Come buona prassi il monitoraggio dovrà essere gestito in un'ottica di analisi e gestione del rischio e pertanto in sede di Progettazione Esecutiva dovranno essere definite le soglie di attenzione ed allarme in base ai risultati dei calcoli sviluppati nell'ultima fase di Progetto. Indicativamente si ritiene opportuno utilizzare percentuali del 70% e 100% dei valori nominali di calcolo rispettivamente per la soglia di attenzione ed allarme.

Nel caso in cui venga raggiunta la prima soglia le letture di monitoraggio verranno intensificate mentre, al raggiungimento della seconda, verranno attivate le contromisure che il Progetto Esecutivo dovrà definire.

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta: Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX

La frequenza delle letture dovrà avare almeno la cadenza indicata nella tabella che segue.

Tabella 9-1 Frequenza letture di monitoraggio

Tubella y 1 Trequenza leccare al monteoraggio					
Stato della costruzione		Frequenza			
Durante la realizzazione dei consolidamenti		1 lettura/giorno			
Dopo il termine dei consolidamenti e prima dell'avvio degli scavi		1 lettura/settimana			
Durante lo scavo della galleria in funzione della posizione del fronte di avanzamento					
Anti il fronte (m)	Dietro il fronte (m)				
d>50	-	2 letture iniziali			
10 <d<50< td=""><td>-</td><td colspan="2">1 lettura/giorno</td></d<50<>	-	1 lettura/giorno			
d<10	-	2 letture/giorno			
-	d<10	2 letture/giorno			
-	10 <d<50< td=""><td colspan="2">1 lettura/2 giorni</td></d<50<>	1 lettura/2 giorni			
-	d>50	1 lettura/settimana fino a stabilizzazione			

CITTA' DI TORINO	Metropolitana di Torino – Linea 2 - Tratta Politecnico – Rebaudengo – Lotto Costruttivo 1 Rebaudengo-Bologna	
Galleria naturale – Relazione di calcolo	01_MTL2T1A1DSTRGN0R001-0-1.DOCX	

10. CONCLUSIONI

Come descritto nei capitoli precedenti, la scelta e lo studio delle due sezioni caratteristiche Tipo 1 e Tipo 2 progettate e verificate risulta rappresentativo per l'intera galleria GN oggetto di studio. I calcoli strutturali sono stati eseguiti allo stato limite ultimo (sia in condizioni statiche che sismiche) e allo stato limite di esercizio per la verifica delle fessurazioni. È importante sottolineare che durante la verifica del rivestimento definitivo non è stato tenuto in conto né il contributo del rivestimento iniziale né il contributo dei consolidamenti del terreno circostante; in modo da massimizzare le sollecitazioni di progetto.

I cedimenti in superficie soprattutto nella sezione caratteristica Tipo 2 risultano molto marcati il che porta a definire un attento sistema di monitoraggio durante la fase di scavo.

Inoltre, per entrambe le sezioni si raccomanda di ridurre al minimo la distanza tra lo scavo completo della sezione e la messa in opera dell'arco rovescio ed il fronte di scavo

10.1Riassunto armature

A seguito di tutte le condizioni verificate (condizioni statiche, sismiche e di incendio), le armature per quanto riguarda le sezioni di galleria oggetto di studio sono le seguenti:

Tabella 10-1 Armature rivestimento definitivo - Galleria

Tabella 10 1 / Illiatare Tivestillento acilillavo Galicila					
	Armatura principale/ trasversale	Armatura secondaria/ longitudinale	Spilli		
Calotta	5+5 \(\phi \) 20	4+4 \(\phi\) 16	φ12 25x40		
Piedritti	5+5 \(\phi \) 20	4+4 \(\phi\) 16	φ12 25x40		
Arco rovescio	5+5 φ 20	4+4 \(\phi\) 16	φ12 25x40		

